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Abstract. We consider the question whether all the coefficients in the series expansions of
some specific rational functions are positive, and we demonstrate how computer algebra can
help answering questions arising in this context. By giving partial computer proofs, we provide
new evidence in support of some longstanding open conjectures. Also two new conjectures are
made.

AMS Subject Classification. 33F10, 13F25, 05E99

Keywords. Computer Algebra, Positivity Theory, Power Series.

1. Introduction

Proving that all the coefficients in the series expansion of some given multivariate rational function
are positive can be quite a difficult task. There are difficult papers on this subject by Szegö [14],
Askey and Gasper [2], Koornwinder [10], and others. Gillis, Reznick and Zeilberger [8] have pointed
out that some seemingly difficult positivity results can be proven also by elementary means. In
this paper, we make an attempt at going one step further: We ask to which extent positivity
results can be proven automatically using computer algebra. Two results from the literature and
two longstanding open conjectures related to them are considered. For none of the latter, we are
able to provide full proofs, but we give partial proofs that add new evidence in support of these
conjectures.

Also Zeilberger [15] addresses the question of proving positivity results with the aid of computer
algebra. He proposes a method using positivity-preserving transformations, which is independent
of our approach described below. The approach we take is a continuation of our previous work on
treating special function inequalities via symbolic computation [5, 6, 9, 1].

While it is easy to show that there can be no algorithm which for a given multivariate rational
function decides whether all its series coefficients are positive, computer algebra is nevertheless
useful for deciding subproblems that may arise in the construction of a positivity proof. Our
proofs follow a common pattern: We first determine recurrence equations for the coefficients (using
computer algebra, see Section 1.1), and then prove a suitable quantified formula about polynomial
inequalities (using computer algebra, see Section 1.2) which together with the recurrence equations
implies the desired positivity result. Sometimes this method is successful, sometimes it is not.

Before entering the subject, let us briefly summarize the two main techniques from computer
algebra that are used throughout the rest of the paper.

1.1. Guessing and Proving Recurrence Relations. Let a(n, m) be a sequence whose value
can be computed for every particular point (n, m) ∈

� 2. If the sequence satisfies a recurrence
equation with polynomial coefficients, then this equation can be found easily by making an ansatz.
To this end, we first choose a finite set S ⊆

� 4. A recurrence corresponds to an array of constants
αi (i ∈ S) with

∑

i=(i1,i2,i3,i4)∈S

αin
i1mi2a(n + i3, m + i4) = 0.

In order to find candidates for αi, we evaluate the above expression for a couple of specific sample
points (n, m) ∈

� 2 and undetermined coefficients αi, thus obtaining a linear system for the
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coefficients αi. Each coefficient vector (αi : i ∈ S) corresponding to an actual recurrence will belong
to the solution space of the system, but there might be additional solutions not corresponding to
recurrence equations. This is why the method is referred to as automated guessing [12].

If the a(n, m) arise as coefficients in the series expansion of a rational function r(x, y), then it is
easy to decide for a conjectured recurrence whether it is true or false. It suffices to transform the
conjectured recurrence into a PDE for its generating function (this can be done automatically) and
check whether r(x, y) solves that differential equation. It will do so if and only if the conjectured
recurrence holds true. We can thus repeat the guessing procedure with bigger and bigger sets of
sample points until the recurrences delivered by the guessing method are all found to be true.

It is of course immaterial that a(n, m) is a bivariate sequence; the same algorithm is applicable
for any arity. All the recurrence equations claimed in this paper have been found and verified in
this way, unless otherwise stated.

1.2. Proving and Finding Polynomial Inequalities. Our second incredient is the CAD algo-
rithm [4]. This algorithm operates on quantified formulas about polynomial inequalities over the
reals. Formally, a quantifier-free formula Φ(x1, . . . , xn) is

• a logical constant, i.e., True or False,
• or an atomic formula, i.e., p(x1, . . . , xn) ♦ 0 for a polynomial p ∈ k[x1, . . . , xn] and a

relation ♦ ∈ {=, 6=, >, <,≥,≤}; k being the field of real algebraic numbers,
• or a boolean combination of other quantifier-free formulas, i.e.,

Ψ1(x1, . . . , xn) ♦ Ψ2(x1, . . . , xn)

with ♦ ∈ {∧,∨,⇒,⇔}, or ¬Ψ1(x1, . . . , xn), for some subformulas Ψ1, Ψ2.

A quantified formula Φ(x1, . . . , xn) is a formula of the form

Q1y1 Q2y2 . . . Qmym : Ψ(x1, . . . , xn, y1, . . . , ym),

where Ψ is a quantifier-free formula and Q1, . . . , Qm ∈ {∀, ∃}. The x1, . . . , xn are referred to as
free variables, as opposed to the y1, . . . , ym which are called bounded variables.

The CAD algorithm is able to perform quantifier elimination over such formulas, i.e., given any
quantified formula Φ(x1, . . . , xn), it computes a quantifier-free formula Φ′(x1, . . . , xn) such that

∀x1, x2, . . . , xn ∈ � :
(

Φ(x1, . . . , xn) ⇐⇒ Φ′(x1, . . . , xn)
)

.

The formula Φ′(x1, . . . , xn) describes the condition that the x1, . . . , xn have to satisfy in order to
make Φ true. If CAD is applied to a formula Φ with no free variables, it will deliver as quantifier-
free formula Φ′ either True (then this is a rigorous proof for Φ) or False (then this is a rigorous
proof for ¬Φ).

All the quantified formulas claimed in this paper have been proven with Mathematica’s implemen-
tation of CAD [13], unless otherwise stated.

2. A Result of Askey and Gasper, and a Conjectured Variation

Theorem 1. [3] Let a(n, m, k) be such that

1

1 − (x + y + z) + 4xyz
=

∑

n,m,k≥0

a(n, m, k)xnymzk.

Then a(n, m, k) > 0 for all n, m, k ≥ 0.

First we determine all constants αi,u,v,w such that
∑

u,v,w∈{0,1}

(α0,u,v,w + α1,u,v,wn + α2,u,v,wm + α3,u,v,wk)a(n + u, m + v, k + w) = 0
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for all n, m, k ≥ 0. It turns out that the possible choices for αi,u,v,w form a vector space of
dimension 10; the algorithm described in the introduction gives us a basis for this vector space,
say the basis elements correspond to the recurrence equations

(1)
∑

u,v,w∈{0,1}

pi,u,v,w(n, m, k)a(n + u, m + v, k + w) = 0 (i = 1, . . . , 10),

for certain linear polynomials pi,u,v,w(n, m, k) that we know explicity.

We want to construct a recurrence equation
∑

u,v,w∈{0,1}

qu,v,w(n, m, k)a(n + u, m + v, k + w) = 0

with q1,1,1(n, m, k) < 0 and qu,v,w(n, m, k) ≥ 0 ((u, v, w) 6= (1, 1, 1)) for all n ≥ m ≥ k ≥ 0. From
such a recurrence, the positivity of the a(n, m, k) easily follows by induction. (It is sufficient to
consider n ≥ m ≥ k ≥ 0 by the symmetry of a(n, m, k).) If such a recurrence exists, then it must
be a linear combination of the basis equations in (1), so we can make an ansatz with undetermined
coefficients:

(2) qu,v,w(n, m, k) := β1p1,u,v,w(n, m, k) + β2p2,u,v,w(n, m, k) + · · · + β10p10,u,v,w(n, m, k).

Next, we apply CAD to the formula

∀n ≥ m ≥ k ≥ 0 : q1,1,1(n, m, k) < 0 ∧
∧

u,v,w∈{0,1}

(u,v,w)6=(1,1,1)

qu,v,w(n, m, k) ≥ 0.

The resulting condition depends on the basis elements (1). For our basis, we obtained that the
formula becomes true if and only if the βi are chosen such that

β1 ≤ 0 ∧ β2 ≥ 0 ∧ β3 ≥ 0 ∧ β4 = 0 ∧ β5 ≥ 0 ∧ β6 ≥ 0 ∧ 2β1 + 2β2 + 2β3 + β4 + β5 + β6 ≤ 0
∧ β3 ≥ β7 ∧ 2β1 + β3 + β6 + β7 ≤ 0 ∧ β2 + β8 = 0 ∧ β3 + β4 ≥ 2β7 + β8 + β9

∧ β9 ≤ 0 ∧ 3β1 + β2 + β3 + β5 + β6 + β7 + β9 ≤ 0 ∧ 2β1 + β5 + β6 + 2 (β7 + β9) ≥ β4

∧ β4 ≤ β5 + β6 + 2β10 ∧ β1 + β3 + β4 ≥ β7 + β8 + β10 ∧ β1 + β2 + β7 + β8 ≥ β10

∧ β10 < 0∧ 2β1 + β2 + β3 + β5 + β6 + β10 ≤ 0∧ (β1 + β7 = 0 ∨ (β1 + β7 < 0 ∧ β1 + β7 + β9 ≤ 0)).

It is an easy matter to find a tuple (β1, . . . , β10) that satisfies this condition, if desired, we can
have the computer find one. For instance, (β1, . . . , β10) = (1, 0, 0, 0, 0, 2, 0, 0, 0,−1) satisfies the
condition, and, if plugged into the ansatz equation (2), yields

2(n + m− k)a(n, m, k + 1) + (1 + n−m + k)a(n, m + 1, k + 1)− (1 + n)a(n + 1, m + 1, k + 1) = 0.

Together with the initial value a(0, 0, 0) = 1 > 0, this recurrence forms an easy induction proof of
Theorem 1.

The recurrence above was first observed by Gillis and Kleeman [7]. They do, however, not remark
on how they discovered this recurrence. As we have shown above, it is possible to derive it in a
systematic way using computer algebra.

Let us now turn to an open problem. Gillis, Reznick and Zeilberger [8] have raised the conjecture
that for any r ≥ 4, the series coefficients of 1/(1 − (x1 + x2 + · · · + xr) + r!x1x2 · · ·xr) are
nonnegative. According to their Proposition 3, in order to confirm the conjecture, it suffices to
prove nonnegativity of the diagonal coefficients ar(n, n, . . . , n) which are given by the binomial
sum

ar(n, n, . . . , n) =
n

∑

k=0

(−1)k (rn − (r − 1)k)!(r!)k

(n − k)!rk!
.

As computational evidence for their conjecture, they verified that ar(n, n, . . . , n) ≥ 0 for r = 4
and 0 ≤ n ≤ 220. We next prove the conjecture for r = 4, 5, 6 and arbitrary n.
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Theorem 2.

(1) Let a(n, m, k, l) be such that

1

1 − (x + y + z + w) + 4!xyzw
=

∑

n,m,k,l≥0

a(n, m, k, l)xnymzkwl.

Then a(n, m, k, l) ≥ 0 for all n, m, k, l ≥ 0.
(2) Let a(n, m, k, i, j) be such that

1

1 − (x + y + z + u + v) + 5!xyzuv
=

∑

n,m,k,i,j≥0

a(n, m, k, i, j)xnymzkuivj .

Then a(n, m, k, i, j) ≥ 0 for all n, m, k, i, j ≥ 0.
(3) Let a(n, m, k, i, j, l) be such that

1

1 − (x + y + z + u + v + w) + 6!xyzuvw
=

∑

n, m, k, i, j ≥ 0

a(n, m, k, i, j)xnymzkuivjwl.

Then a(n, m, k, i, j, l) ≥ 0 for all n, m, k, i, j, l ≥ 0.

Proof. We prove the first statement, the others can be done in the same manner.

According to Prop. 3 of [8], it suffices to show that a(n) ≥ 0 for all n ≥ 0, where

a(n) =

n
∑

k=0

(−1)k (4n − 3k)!4!k

(n − k)!4k!
.

With Zeilberger’s algorithm [16, 11] we obtained the recurrence equation

331776(2n + 7)(4n + 11)(4n + 15)(n + 1)3a(n)

+ 13824(4n + 15)
(

32n5 + 344n4 + 1424n3 + 2855n2 + 2801n + 1085
)

a(n + 1)

+ 576
(

192n6 + 3072n5 + 20108n4 + 68918n3 + 130513n2 + 129613n + 52815
)

a(n + 2)

− 8(n + 3)(4n + 7)(4n + 13)
(

40n3 + 380n2 + 1193n + 1240
)

a(n + 3)

+ (n + 4)3(2n + 5)(4n + 7)(4n + 11)a(n + 4) = 0

for a(n). Consider the formula

∀ A0, A1, A2, A3, A4 ∈ � ∀ n ≥ 0 :
(

A3 ≥ βA2 ∧ A2 ≥ βA1 ∧ A1 ≥ βA0 ≥ 0 ∧ p0(n)A0 + · · · + p4(n)A4 = 0
)

=⇒ A4 ≥ βA3,

where pi(n) denotes the polynomial appearing as coefficient of a(n + i) in the above recurrence
(i = 0, . . . , 4). Using CAD, we find that this formula is valid if and only if β ≥ β0, where β0 is the
real root of the polynomial

x4 − 160x3 + 3456x2 + 55296x + 331776

whose approximate value is 42.04.

We prove a(n + 1) ≥ 43a(n) ≥ 0 for n ≥ 1 by induction on n. The induction step follows from
the formula above. As for the induction base, it suffices to check that a(n + 1) ≥ 43a(n) ≥ 0 for
n = 1, 2, 3, 4, which is trivial.

The nonnegativity of a(n) for n ≥ 1 is hence established. Furthermore, a(0) = 1 ≥ 0, so the proof
is complete. �

The proof for parts 2 and 3 of the theorem proceeds along the the same lines, of course with
different recurrence equations, and consequently with different values for β0. Their approximate
values for r = 5 and r = 6 are β0 ≈ 138.9 and β0 ≈ 715.5, respectively. We believe that for
any specific value of r it is possible to obtain a similar proof, but the runtime requirements for
the computations grow drastically and with currently available machines we were not able to go
beyond r = 6 with reasonable effort. The runtime required for completing the cases r = 4, 5, 6 on
a 2.4GHz Linux machine was, however, no more than a few minutes.
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3. A Result of Szegö, and a Conjectured Variation

Theorem 3. Let a(n, m, k) be such that

1

1 − (x + y + z) + 3
4 (xy + xz + yz)

=
∑

n,m,k≥0

a(n, m, k)xnymzk.

Then a(n, m, k) > 0 for all n, m ≥ 0 and (at least) k = 0, 1, 2, . . . , 16.

Proof. Because of symmetry it suffices to consider the case n ≥ m ≥ k ≥ 0. For all the claimed
values of k, we find a recurrence equation

p0,k(n, m)a(n, m, k) + p1,k(n, m)a(n + 1, m, k) + p2,k(n, m)a(n + 2, m, k) = 0,

with pi,k(n, m) being polynomials in n and m for which the formula

∀A0, A1, A2 ∈ � ∀ n ≥ m ≥ k :
(

A1 ≥ A0 > 0 ∧ p0,k(n, m)A0 + p1,k(n, m)A1 + p2,k(n, m)A2 = 0
)

=⇒ A2 ≥ A1

is true. This gives the induction step for proving a(n + 1, m, k, l) ≥ a(n, m, k, l) > 0 for all
n ≥ m ≥ k ≥ 0. Checking the induction base is trivial. �

We believe that the proof technique described above succeeds for every specific value of k; again
we were not able to verify this for k > 16 owing to the extensive runtime requirements of the
algorithms.

Szegö [14] has shown by a rather complicated derivation that indeed a(n, m, k) > 0 for all n, m, k ≥
0. Later, Askey and Gasper [2] have given a different, but still complicated proof for the same fact.
Both proofs rely on finding an integral representation for a(n, m, k) and then applying arguments
from the theory of special function for showing that the integrals are always positive.

Comparison to the simple recurrence equation obtained in Section 2 that asserts positivity of the
coefficients (1− (x+ y + z)+4xyz)−1 leads naturally to the question whether a similar recurrence
can be given for the coefficients of (1 − (x + y + z) + 3

4 (xy + xz + yz))−1. No such recurrence
has been published so far. By applying the procedure described in the proof of Theorem 1 to the
present example, we have also not found such a recurrence. This, however, means that no such
recurrence exists at all—a result that is perhaps not as easy to prove without computer assistence.

Proposition 1. Let a(n, m, k) be as in Theorem 3. Then there does not exist a recurrence equation
∑

u,v,w∈{0,1}

qu,v,w(n, m, k)a(n + u, m + v, k + w) = 0 (n, m, k ≥ 0)

with linear polynomials qu,v,w(n, m, k) (u, v, w ∈ {0, 1}) such that

q1,1,1(n, m, k) < 0 and qu,v,w(n, m, k) ≥ 0 ((u, v, w) 6= (1, 1, 1))

for all n ≥ m ≥ k ≥ 0.

Despite some effort, we have also not been able to find a computer proof for general k by other
means. We did find some simple recurrences for a(n, m, k) but we did not succeed in constructing
a positivity proof from any of them.

A variation of Theorem 3 arises as conjecture in the article of Askey and Gasper [2]: Are the
coefficients in the series expansion of (1− (x+ y + z +w)+ 2

3 (xy +xz +xw + yz + yw + zw))−1 all
positive? This conjecture is still open; the techniques of this paper are also insufficient for giving a
complete proof. We can only offer additional evidence by supplying proofs for the situation where
two indices are set to specific integers.

Theorem 4. Let a(n, m, k, l) be such that

1

1 − (x + y + z + w) + 2
3 (xy + xz + xw + yz + yw + zw)

=
∑

n,m,k,l≥0

a(n, m, k, l)xnymzkwl

Then a(n, m, k, l) > 0 for all n, m ≥ 0 and (at least) all k, l with 0 ≤ k + l ≤ 14.
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Proof. Because of symmetry it suffices to consider the case n ≥ m ≥ k ≥ l ≥ 0. For all the claimed
values of k and l, we find a recurrence equation

p0,k,l(n, m)a(n, m, k, l) + p1,k,l(n, m)a(n + 1, m, k, l) + p2,k,l(n, m)a(n + 2, m, k, l) = 0

where pi,k,l(n, m) are some polynomials for which the formula

∀A0, A1, A2 ∈ � ∀ n ≥ m ≥ k :
(

A1 ≥ A0 > 0 ∧ p0,k,l(n, m)A0 + p1,k,l(n, m)A1 + p2,k,l(n, m)A2 = 0
)

=⇒ A2 ≥ A1

is true. This gives the induction step for proving a(n + 1, m, k, l) ≥ a(n, m, k, l) > 0 for all
n ≥ m ≥ k ≥ l ≥ 0. Checking the induction base is trivial. �

Further evidence can be obtained by considering diagonals.

Theorem 5. Let a(n, m, k, l) be as in the previous theorem. Then a(n, n + u, n + v, n + w) > 0
for all n ≥ 0 and (at least) all u, v, w with 0 ≤ u, v, w ≤ 12.

Proof. We abreviate au,v,w(n) := a(n, n + u, n + v, n + w). For all the claimed values of u, v, w,
we find a recurrence equation

p0,u,v,w(n)au,v,w(n) + p1,u,v,w(n)au,v,w(n + 1) + p2,u,v,w(n)au,v,w(n + 2) = 0

where pi,u,v,w(n) are some polynomials in n and m for which the formula

∀A0, A1, A2 ∈ � ∀ n ≥ 3(u + v + w + 2) :
(

A1 ≥ 64
9 A0 > 0 ∧ p0,u,v,w(n)A0 + p1,u,v,w(n)A1 + p2,u,v,w(n)A2 = 0

)

=⇒ A2 ≥ 64
9 A1

is true. This gives the induction step for proving au,v,w(n + 1) ≥ 64
9 au,v,w(n) > 0. The proof is

completed by checking au,v,w(3(u + v + w + 2) + 1) ≥ 64
9 au,v,w(3(u + v + w + 2)) > 0 as induction

base, and au,v,w(n) > 0 for the points 0 ≤ n < 3(u + v + w + 2) not covered by the induction
argument. �

The mysterious constant 64
9 that is needed in the induction step formula of the proof above was

obtained in the same way as in the proof of Theorem 2. The lower bound 3(n + v + w + 2) was
found by experimenting and would probably have to be adjusted for values of u, v, w outside the
range that we have considered.

4. Two new Conjectures

We conclude this paper with two rational functions for which we conjecture that all their series
coefficients are positive. Computational experiments have led us to these conjectures. As evidence
in support of the conjectures, we provide partial proofs. We shall not state any opinion about the
difficulty of proving the conjectures in full generality.

Theorem 6. Let a(n, m, k) be such that

1

1 − (x + y + z) + 1
4 (x2 + y2 + z2)

=
∑

n,m,k≥0

a(n, m, k)xnymzk.

Then a(n, m, k) > 0 for all n, m ≥ 0 and (at least) k = 0, 1, 2, . . . , 9.

Proof. Because of symmetry it suffices to consider the case n ≥ m ≥ k ≥ 0. For all the claimed
values of k, we find a recurrence

p0,k(n, m)a(n, m, k) + p1,k(n, m)a(n + 1, m, k) + p2,k(n, m)a(n + 2, m, k) = 0,

with pi,k(n, m) being polynomials in n and m for which the formula

∀A0, A1, A2 ∈ � ∀ n ≥ m ≥ 0 :
(

A1 ≥ 1
2A0 > 0 ∧ p0,k(n, m)A0 + p1,k(n, m)A1 + p2,k(n, m)A2 = 0

)

=⇒ A2 ≥ 1
2A1.

is true. This is the induction step for proving a(n + 1, m, k) ≥ 1
2a(n, m, k) > 0 for all n ≥ m ≥

k ≥ 0. Checking the induction base is trivial. �
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Conjecture 1. Let a(n, m, k) be as in Theorem 6. Then a(n, m, k) > 0 for all n, m, k ≥ 0.

Computer experiments suggest furthermore that the conjecture becomes false if the constant 1
4 in

the denominator be replaced by 1
4 + ε for any ε > 0.

Theorem 7. Let a(n, m, k, l) be such that

1

1 − (x + y + z + w) + 64
27 (xyz + xyw + xzw + yzw)

=
∑

n,m,k,l≥0

a(n, m, k, l)xnymzkwl.

Then a(n, m, k, l) > 0 for all n, m ≥ 0 and (at least) all k, l with 0 ≤ k + l ≤ 12.

Proof. For all the claimed values of k and l, we find that a(n, m, k, l) is hypergeometric with
respect to n, i.e., we find rational functions rk,l(n, m) such that

∀n, m ≥ 0 : a(n + 1, m, k, l) = rk,l(n, m)a(n, m, k, l).

A CAD computation confirms that rk,l(n, m) > 0 for all n, m ≥ k + l, so positivity of the
a(n, m, k, l) follows from the positivity of a(n, m, k, l) for n, m ≤ k + l, which is easily verified. �

Conjecture 2. Let a(n, m, k, l) be as in Theorem 7. Then a(n, m, k, l) > 0 for all n, m, k, l ≥ 0.

Also for this example, computer experiments suggest furthermore that the conjecture becomes
false if the constant 64

27 in the denominator be replaced by 64
27 + ε for any ε > 0.
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[14] Gabor Szegö. Über gewisse Potenzreihen mit lauter positiven Koeffizienten. Mathematische Zeitschriften,

37(1):674–688, 1933.
[15] Doron Zeilberger. The holonomic ansatz III: Towards automatic proofs of positivity results for coefficients of

rational functions of several variables. in preparation.
[16] Doron Zeilberger. The method of creative telescoping. Journal of Symbolic Computation, 11:195–204, 1991.



8 MANUEL KAUERS

Manuel Kauers, Research Institute for Symbolic Computation, J. Kepler University Linz, Austria

E-mail address: mkauers@risc.uni-linz.ac.at


