
Shift Equivalence of P-finite Sequences

Manuel Kauers∗

Research Institute for Symbolic Computation

Johannes Kepler University

Altenbergerstraße 69

A4040 Linz, Austria

mkauers@risc.uni-linz.ac.at

Submitted: Aug 8, 2006; Accepted: Oct 19, 2006

Mathematics Subject Classification: 68W30

Abstract

We present an algorithm which decides the shift equivalence problem for P-

finite sequences. A sequence is called P-finite if it satisfies a homogeneous linear

recurrence equation with polynomial coefficients. Two sequences are called shift

equivalent if shifting one of the sequences s times makes it identical to the other,

for some integer s. Our algorithm computes, for any two P-finite sequences, given

via recurrence equation and initial values, all integers s such that shifting the first

sequence s times yields the second.

1 Introduction

This paper is part of a long-term project concerning the development of a symbolic sum-
mation algorithm for finding closed forms of sums

n∑

k=1

rat(n, f1(n), . . . , fr(n)),

where f1(n), . . . , fr(n) satisfy homogeneous linear recurrence equations with polynomial
coefficients and rat is a multivariate rational function. The principal question is to decide
whether there exists another rational function rat1 such that the above sum is equal to
rat1(n, f1(n), . . . , fr(n)) for n ≥ 1, and if so, to compute one.

Already the case where the fi(n) satisfy linear recurrence equations with constant
coefficients is unsolved. In a recent paper, Greene and Wilf [13] have provided a partial

∗Partially supported by FWF grants SFB F1305 and P16613-N12

the electronic journal of combinatorics 13 (2006), #R00 1

result by restricting the fi(n) to such sequences and assuming in addition that the sum-
mand involves these sequences only polynomially. For this situation, they have obtained
a complete summation algorithm.

The solution to the shift equivalence problem is a step towards allowing nontrivial
denominators in the summand expression. The problem is, for two given sequences to
decide whether one of them can be matched to the other by shifting it an appropriate
number of times. Formally, given f, g :

�
→ k, we want to determine all s ∈ � such that,

for all possible n, f(n) = g(n + s).
Several summation algorithms include a subroutine for deciding this problem for some

classes of sequences. Gosper’s algorithm [12, 21] for indefinite hypergeometric summation
requires solving the shift equivalence problem for univariate polynomials, i.e., given p, q ∈�

[n], to determine s ∈ � with p(n) = q(n + s). Also the computation of a greatest
factorial factorisation (GFF) requires solving shift equivalence problems [21, 9, 10]. The
problem can be solved for polynomials by observing that all possible solutions s must be
among the integer roots of the polynomial resn(p(n), q(n+ s)) ∈

�
[s], so in order to solve

the problem it suffices to check all those roots. Alternative algorithms are available, we
refer to [2, 19, 22] for further information about this case.

Karr’s algorithm [14, 15] for simplifying nested sum and product expressions also in-
cludes an algorithm for deciding shift equivalence. In Karr’s algorithm, sequences are
represented as elements of certain types of difference fields (k, E) [7]. The shift equiva-
lence algorithm is, roughly stated, based on finding the orbits in the multiplicative group
{E(f)/f : f ∈ k \ {0} }. See [3, 24] for details.

In the present paper, we present a solution to the shift equivalence problem for se-
quences f, g :

�
→ k which are defined by homogeneous linear recurrence equations with

polynomial coefficients (P-finite sequences). This is sufficiently general for solving the
shift equivalence problems arising in summation. There, we are given multivariate poly-
nomials p1, p2 and a tuple of P-finite sequences f1, . . . , fr and we have to solve the shift
equivalence problem for f(n) := p1(f1(n), . . . , fr(n)) and g(n) := p2(f1(n), . . . , fr(n)). As
the set of P-finite sequences is closed under addition and multiplication [25], also f and g
are P-finite and recurrence equations for them can be obtained algorithmically from p1, p2

and recurrence equations for f1, . . . , fr [23, 18].

2 P-finite and C-finite Sequences

In all theoretical statements made in this paper, it is assumed that k is an arbitrary field
of characteristic 0. For the algorithms, however, it is necessary to choose the field k such
that certain problems can be solved in k. These are explained at the end of Section 3.2
below.

Definition 1 [26] Let f :
�

→ k be a sequence.

1. f is called P-finite if there exist polynomials a0, . . . , ar ∈ k[n] such that

a0(n)f(n) + a1(n)f(n + 1) + · · ·+ ar(n)f(n + r) = 0 (n ∈
�

).

the electronic journal of combinatorics 13 (2006), #R00 2

2. f is called C-finite if there exist constants a0, . . . , ar ∈ k such that

a0f(n) + a1f(n + 1) + · · ·+ arf(n + r) = 0 (n ∈
�

).

In this section, we recall some known facts about P-finite and C-finite sequences that
will be needed in the sequel.

2.1 Annihilating Operators

Let k(n) be the field of univariate rational functions over k, and let k(n)[E] be the
univariate skew polynomial ring over k(n) with the commutation rules En = (n + 1)E
and Ec = cE for each c ∈ k. This is a special instance of an Ore ring [20]. It acts on the
ring k � of sequences via

((a0 + a1E + · · ·+ arE
r) · f)(n) := a0(n)f(n) + a1(n)f(n + 1) + · · ·+ ar(n)f(n + r).

In view of this action, we will refer to the elements of k(n)[E] as operators. If a sequence
f :

�
→ k is P-finite, then there exists an operator L ∈ k(n)[E] such that L·f = 0. The set

of all such operators forms a left ideal of k(n)[E], the annihilating ideal of f . Occasionally
we will allow also negative powers of E, naturally interpreting them as backwards shift.
For s < 0, we understand that the sequence Es · f is defined only for n > −s, but we
prefer to suppress this detail in order to keep the notation simple.

Annihilating operators are heavily used in symbolic computation algorithms for special
functions. For a thorough account on annihilating operators, we refer to [26, 6] and the
references given there.

We write deg(L) for the degree of L ∈ k(n)[E] with respect to E, i.e., the maximum
index r ∈

�
such that the coefficient of Er in L is nonzero. Further we define deg(0) :=

−∞. In view of the operator interpretation, we shall use the words “order” and “degree”
as synonyms for the degree of skew polynomials.

We need some elementary facts about the ring k(n)[E].

Definition 2 Let A, B, D ∈ k(n)[E]. If there exist A′, B′ ∈ k(n)[E] such that A = A′D
and B = B′D then D is called a common right divisor of A and B. If D is a common
right divisor of maximum degree, then D is called a greatest common right divisor of A
and B, written D = gcrd(A, B).

The greatest common right divisor of two operators A, B ∈ k(n)[E] is uniquely de-
termined up to multiplication by elements of the ground field k(n). The monic greatest
common right divisor of A and B is called the greatest common right divisor (gcrd). The
gcrd of any two specific operators can be computed by a modified version of the Euclidean
algorithm [4, Sect. 3]. Also, by a modification of the extended Euclidean algorithm, one
can compute for any A, B ∈ k(n)[E] cofactor operators S, T with

SA + TB = gcrd(A, B).

the electronic journal of combinatorics 13 (2006), #R00 3

As in the commutative case, S and T can be chosen such that deg(S) ≤ deg(B) and
deg(T) ≤ deg(A). Li [16, 17] has shown that the subresultant theory for efficient com-
putation of gcds can be generalized to gcrds in k(n)[E] as well. This generalizes earlier
results of Chardin [5] for differential operators. We need here the following resultant cri-
terion, which is classic for commutative polynomials, and which is contained in Li’s work
for skew polynomials.

Definition 3 Let A, B ∈ k(n)[E], with coefficients

A = a0(n) + a1(n)E + · · ·+ ar(n)Er, B = b0(n) + b1(n)E + · · ·+ bs(n)Es.

Then we call
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ar(n + s − 1) 0 · · · 0 bs(n + r − 1) 0 · · · 0

ar−1(n + s − 1) ar(n + s − 2)
. . .

...
...

. . .
. . .

...
... ar−1(n + s − 2)

. . . 0
...

. . . 0
...

. . . ar(n) b1(n + r − 1) bs(n)

a0(n + s − 1) ar−1(n) b0(n + r − 1)
. . .

...

0 a0(n + s − 2)
... 0

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . b1(n)

0 · · · 0 a0(n) 0 · · · 0 b0(n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

the resultant of A and B (with respect to E), and denote the value of that determinant
res(A, B).

The resultant of two operators A, B ∈ k(n)[E] belongs to k(n). Note that no noncom-
mutative arithmetic is required for its computation.

Proposition 1 [17, Prop. 9.1(1,2)] Let A, B ∈ k(n)[E] \ k(n). Then res(A, B) = 0 if
and only if deg(gcrd(A, B)) > 0.

If L ∈ k(n)[E] is an annihilating operator of a sequence f :
�

→ k, then so is AL
for any A ∈ k(n)[E]. In particular, by choosing an appropriate A ∈ k(n), we can always
replace L by an equivalent operator whose coefficients belong to k[n] instead of k(n). If
L ∈ k(n)[E] is such an operator, i.e.,

L = l0(n) + l1(n)E + · · ·+ lr(n)Er

with l0, . . . , lr ∈ k[n], then f is uniquely defined by L and sufficiently many initial values.
The number of initial values necessary to define f is given by max(0, n0) + r, where n0 is
the greatest integer root of lr. (Set n0 := 0 if lr does not have any integer roots.) Given
this data, many questions about f can be answered algorithmically [23, 18], in particular,
it can be decided whether already a right divisor D of L annihilates f .

the electronic journal of combinatorics 13 (2006), #R00 4

Proposition 2 Let f :
�

→ k be annihilated by L ∈ k[n][E], and let A = a0(n) +
a1(n)E + · · · + ar(n)Er ∈ k[n][E], B = b0(n) + b1(n)E + · · ·+ bs(n)Es ∈ k[n][E] be such
that L = AB. Then B · f = 0 if and only if (B · f)(n) = 0 for n = 0, . . . , max(0, n0) + r,
where n0 is the greatest integer root of ar.

Proof. First of all, we have (A · g)(n) = 0 for n = 0, . . . , max(0, n0) + r if and only if g
is the zero sequence. For n > max(0, n0), this can be seen by induction:

ar(n)g(n + r) = a0(n)g(n) + a1(n)g(n + 1) + · · ·+ ar−1(n)g(n + r − 1)

= a0(n)0 + a1(n)0 + · · ·+ ar−1(n)0 = 0,

hence, since ar(n) 6= 0, we must have g(n+r) = 0. Now take g = B ·f . Then A · (B ·f) =
(AB) · f = L · f = 0 implies the claim. �

Note that A can be computed from L and B by right division, if it is not given. Also
note that more generally, we can test for any L′ ∈ k(n)[E] whether it annihilates f by
applying the proposition to B := gcrd(L, L′).

2.2 Characteristic Polynomial and Companion Matrix

It will be convenient to adopt matrix notation for C-finite operators. If f :
�

→ k is
C-finite, say L · f = 0 for some L = Er − a0 − a1E − · · ·− ar−1E

r−1 ∈ k[E], then we have
the matrix identity










f(n + 1)
...
...

f(n + r − 1)
f(n + r)










=










0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
a0 a1 · · · · · · ar−1



















f(n)
...
...

f(n + r − 2)
f(n + r − 1)










for every n ∈
�

. The r × r matrix in this equation is called the companion matrix of L.
Iterating the above equation n times, it follows that










f(n + 1)
...
...

f(n + r − 1)
f(n + r)










=










0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
a0 a1 · · · · · · ar−1










n 








f(0)
...
...

f(r − 2)
f(r − 1)










,

thus any value of f can be obtained by multiplying the vector of initial values by a suitable
power of the companion matrix.

The characteristic polynomial of the companion matrix is precisely L. For this reason,
L is also called the characteristic polynomial of the sequence f . We can always assume
that a0 6= 0 by changing to an operator of lower order, if necessary. In this case, the
companion matrix will not have 0 as an eigenvalue.

the electronic journal of combinatorics 13 (2006), #R00 5

3 Shift Equivalence of C-finite Sequences

We now introduce an algorithm for solving the shift equivalence problem for two C-finite
sequences. The algorithm for the P-finite case calls this algorithm as a subroutine.

Let f1, f2 :
�

→ k be C-finite sequences, and suppose that L1, L2 ∈ k[E] are given
with L1 · f1 = L2 · g2 = 0. We want to determine all s ∈ � such that f1 = Es · f2.

Lemma 1 Let f1, f2 :
�

→ k be annihilated by L1, L2 ∈ k[E], respectively.

1. For all s ∈ � and all L ∈ k[E], we have L · f1 = 0 if and only if L · (Es · f1) = 0.

2. If there exists some s ∈ � with f1 = Es · f2, then L · f1 = L · f2 = 0 for L :=
gcd(L1, L2).

Proof.

1. Let s ∈ � and L = l0 + l1E + · · ·+ lrE
r ∈ k[E]. Then

L · f1 = 0 ⇐⇒ ∀n ∈
�

: l0f1(n) + l1f1(n + 1) + · · ·+ lrf1(n + r) = 0

⇐⇒ ∀n ∈
�

: l0f1(n + s) + l1f1(n + s + 1) + · · ·+ lrf1(n + s + r) = 0

⇐⇒ ∀n ∈
�

: l0(E
sf1)(n) + l1(E

sf1)(n + 1) + · · ·+ lr(E
sf1)(n + r) = 0

⇐⇒ L · (Es · f1) = 0.

2. Let s ∈ � be such that f1 = Esf2. Then, by part 1, L2 · f1 = 0. By assumption,
L1 · f1 = 0, hence (SL1 + TL2) · f1 = 0 for any S, T ∈ k[E]. As it is possible to
choose S, T such that SL1 + TL2 = L, it follows that L · f1 = 0. For the same
reason, L · f2 = 0. �

In order to solve the shift equivalence problem for f1, f2, we check in a preprocessing
step whether these sequences are annihilated by the same recurrence. Computing L =
gcd(L1, L2), we need to check whether L · f1 = 0 and L · f2 = 0, which is possible by
Prop. 2. If one or both of the two sequences is not annihilated by L, then there is no
solution to the shift equivalence problem, and we return the empty set. Otherwise, we
proceed as described in the remainder of this section. From now on, we may assume that
L ∈ k[E] monic with L · f1 = L · f2 = 0 is given.

3.1 Reduction to a Matrix Equation

Let r = deg(L) and let C ∈ kr×r be the companion matrix of L. Writing

F1(n) :=








f1(n)
f1(n + 1)

...
f1(n + r − 1)








and F2(n) :=








f2(n)
f2(n + 1)

...
f2(n + r − 1)








,

the electronic journal of combinatorics 13 (2006), #R00 6

we then have the matrix identities

F1(n) = CnF1(0) and F2(n) = CnF2(0)

for all n ∈
�

.

Lemma 2 In the notation above, we have f1 = Esf2 if and only if

F1(0) = CsF2(0), (1)

for any s ∈ � .

Proof. Let s ∈ � . Then

f1 = Esf2 ⇐⇒ ∀n ∈
�

: F1(n) = F2(n + s) ⇐⇒ ∀n ∈
�

: CnF1(0) = Cn+sF2(0)

⇐⇒ F1(0) = CsF2(0),

as claimed. �

Thus in order to solve the shift equivalence problem for f1, f2, it remains to solve the
matrix equation (1).

3.2 Solution of the Matrix Equation

Let C ∈ kr×r be invertible, and u, v ∈ kr. We seek all s ∈ � satisfying the matrix equation
u = Csv. Consider the Jordan decomposition of C, i.e., let T, J ∈ k̄r×r be invertible such
that C = T−1JT and J is of the form

J =









J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jm









with Ji =











αi 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 αi











(i = 1, . . . , m),

where each αi is an eigenvalue of C. Owing to the cancellation of T−1 with T , we have
Cs = T−1JsT , and so we are done if we find all s ∈ � such that ū = J sv̄, where ū := Tu
and v̄ := Tv.

Since

Js =









J1

s

0 · · · 0

0 J2

s . . .
...

...
. . .

. . . 0

0 · · · 0 Jm

s









(s ∈ �),

we can solve the problem for each Jordan block separately. The intersection of the indi-
vidual solution sets gives the set of all solutions:

the electronic journal of combinatorics 13 (2006), #R00 7

Algorithm 1

INPUT: A matrix C ∈ kr×r, vectors u = (u1, . . . , ur), v = (v1, . . . , vr) ∈ kr

OUTPUT: All s ∈ � such that u = Csv

1 function solveMatrixEquation(C, u, v; k)
2 Compute J, T ∈ k̄r×r such that C = T−1JT and J is in Jordan form
3 ū := Tu; v̄ := Tv
4 S := �
5 foreach Jordan block Ji of J do

6 Let r0, r1 be the index of the first and last row of Ji in J , respectively
7 S := S ∩ solveMESingleJordanBlock(Ji, (ūr0

, . . . , ūr1
), (v̄r0

, . . . , v̄r1
); k̄) // Alg. 2

8 return S

Now assume that J ∈ kr×r consists of a single Jordan block, and let α 6= 0 be its
eigenvalue. We can assume without loss of generality that ūr 6= 0 6= v̄r. (Otherwise: If
ū = v̄ = 0, the solution set is � . If ūr = v̄r = 0 we can drop the last entries of ū, v̄ and
the last row and the last column from J , and iterate if necessary. If ūr = 0 and v̄r 6= 0 or
ūr 6= 0 and v̄r = 0, then the solution set is ∅.) As can be shown easily by induction, we
have

Js =











α 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 α











s

=











αs sαs−1
(

s

2

)
αs−2 · · ·

(
s

r−1

)
αs−(r−1)

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
(

s

2

)
αs−2

...
. . . αs sαs−1

0 · · · · · · 0 αs











(s ∈ �).

If r = 1, the solution set for ū = Jv̄ is simply given by

{ s ∈ � : ūr/v̄r = αs }.

If r > 1, then the last two rows of the matrix equation yield

ūr−1 = αsv̄r−1 + sαs−1v̄r =
ūr

v̄r

v̄r−1 +
s

α

ūr

v̄r

v̄r

=⇒ s = α
(ūr−1

ūr

−
v̄r−1

v̄r

)

as a unique solution candidate. If this s is not an integer, or it does not satisfy ū = J sv̄,
then the solution set is ∅, otherwise it is {s}. This gives the following algorithm.

Algorithm 2

INPUT: A Jordan block J ∈ kr×r, and vectors u = (u1, . . . , ur), v = (v1, . . . , vr) ∈ kr

OUTPUT: All s ∈ � such that u = J sv

1 function solveMESingleJordanBlock(J, u, v; k)
2 if u = v = (0, . . . , 0) then return �

the electronic journal of combinatorics 13 (2006), #R00 8

3 while vr = 0 do

4 if ur = 0 then r := r − 1 else return ∅
5 // now vr 6= 0
6 if ur = 0 then return ∅
7 // now ur 6= 0 6= vr

8 Let α ∈ k be the diagonal element of J
9 if r = 1 then return {s ∈ � : ur/vr = αs}

10 s := α(ur−1/ur − vr−1/vr)
11 if s ∈ � and u = Jsv then return {s} else return ∅

The correctness of Algorithms 1 and 2 should be clear by the above discussion. Several
restrictions, however, have to be made for the field k in order that every step in these
algorithms can be carried out algorithmically. Of course, it is necessary that k is a com-
putable, i.e., that every element has a finite representation, that the arithmetic operations
+,−, ·, / are computable, and that zero equivalence can be decided. Furthermore, for the
computation of a Jordan decomposition (Line 2 in Alg. 1), we need to be able to compute
absolute factorizations of univariate polynomials in k[X]. The algebraic closure k̄ also has
to be a computable field. Line 11 of Algorithm 2 requires to decide whether an element
of k̄ is an integer. All these requirements can be accommodated for most fields k that
might be of interest. More restrictive is the final requirement, originating from line 9: We
have to be able to compute the set {s ∈ � : a = bs} for given a, b ∈ k̄. An algorithm
for this purpose was given by Abramov and Bronstein [1]. This algorithm is applicable
whenever k is such that it can be decided for any given x ∈ k whether x is transcendental
or algebraic over

�
, and that for any two elements x, y ∈ k it can be decided whether

these elements are algebraically independent over
�

. Ge’s algorithm [8] gives rise to an
efficient alternative if k is a single algebraic extension of

�
, i.e., if k =

�
(α) for some

algebraic number α.

3.3 Summary

Lemma 2 reduces the shift equivalence problem for C-finite sequence to solving a matrix
equation, and this matrix equation can be solved by means of Algorithm 1. Putting things
together, we thus obtain the following algorithm for solving the shift equivalence problem
for C-finite sequences.

Algorithm 3

INPUT: f1, f2 :
�

→ k C-finite, specified by annihilating operators L1, L2 ∈ k[E] and
initial values
OUTPUT: all s ∈ � such that f1 = Esf2

1 function cfiniteSE(f1, f2)
2 L := gcd(L1, L2) ∈ k[E]
3 if L · f1 6= 0 or L · f2 6= 0 then return ∅

the electronic journal of combinatorics 13 (2006), #R00 9

4 Let r := deg(L) and C ∈ kr×r be the companion matrix of L
5 return solveMatrixEquation(C, (f1(0), . . . , f1(r − 1)), (f2(0), . . . , f2(r − 1)))

3.4 Examples

Example 1 Let f1, f2 : � →
�

be defined by

f1(n + 3) = 5f1(n + 2) − 8f1(n + 1) + 4f1(n), f1(0) = 0, f1(1) = −16, f1(2) = −64,

f2(n + 3) = 2f2(n + 2) + 4f2(n + 1) − 8f2(n), f2(0) = 1
4
, f2(1) = 7

16
, f2(2) = 3

4
.

In operator notation, we have

(E3 − 5E2 + 8E − 4)
︸ ︷︷ ︸

=:L1

·f1 = 0, (E3 − 2E2 − 4E + 8)
︸ ︷︷ ︸

=:L2

·f2 = 0.

The greatest common divisor of these operators is

L := gcd(L1, L2) = E2 − 4E + 4 = (E − 2)2,

and it can be checked that L · f1 = L · f2 = 0.
Computing the Jordan decomposition of the companion matrix, we find

C :=

(
0 1
−4 4

)

=

(
0 1/2
−2 1

)
−1

·

(
2 1
0 2

)

·

(
0 1/2
−2 1

)

=: T−1JT.

Applying T to the vectors of initial values leads to

ū =

(
0 1/2
−2 1

) (
0

−16

)

=

(
−8
−16

)

, v̄ =

(
0 1/2
−2 1

) (
1/4
7/16

)

=

(
7/32
−1/16

)

.

It remains to determine s ∈ � such that
(
−8
−16

)

=

(
2 1
0 2

)s (
7/32
−1/16

)

. (2)

Since J consists of a single Jordan block of size two, we have a unique solution candidate:

s = 2
(−8

−16
−

7/32

−1/16

)

= 8

Indeed, (2) is fullfilled for s = 8, and it follows that f1 = Esf2 if and only if s = 8.

Example 2 Consider f1, f2 :
�

→
�

defined via

f1(n + 3) = −f1(n + 2) + f1(n + 1) + f1(n), f1(0) = 0, f1(1) = 0, f1(2) = 4,

f2(n + 3) = −f2(n + 2) + f2(n + 1) + f2(n), f2(0) = 8, f2(1) = 8, f2(2) = 4.

the electronic journal of combinatorics 13 (2006), #R00 10

We have L · f1 = L · f2 = 0 for

L = E3 + E2 − E − 1 = (E + 1)(E − 1)2 ∈ k[E].

Computing the Jordan decomposition of the companion matrix, we find

C :=





0 1 0
0 0 1
−1 1 1





=





1/4 −1/2 1/4
−1/4 1/2 3/4
−1/2 0 1/2





−1 



−1 0 0
0 1 1
0 0 1









1/4 −1/2 1/4
−1/4 1/2 3/4
−1/2 0 1/2



 =: T−1JT.

Applying T to the vectors of initial values leads to

ū = T





0
0
4



 =





1
3
2



 , v̄ = T





8
8
4



 =





−1
5
−2



 .

It remains to find s ∈ � such that





1
3
2



 =





−1 0 0
0 1 1
0 0 1





s 



−1
5
−2



 .

The matrix J consists of two Jordan blocks which have to be considered separately. The
first block has length 1, and it restricts the solutions to the set

S1 := { s ∈ � :
1

−1
= (−1)s } = 1 + 2 �

of all odd integers. The second block has length 2, so it leads to the unique solution
candidate

s = 1(3
2
− (−5

2
)) = 4.

Since S1 ∩ {4} = ∅, it follows that the two sequences f1 and f2 are not shift equivalent.

4 Shift Equivalence of P-finite Sequences

The algorithm for the P-finite case consists of a case distinction: either the question can be
reduced to a shift equivalence problem for C-finite sequences, and then Algorithm 3 above
can be applied, or it is possible to determine a finite number of candidate solutions s,
which can be checked one ofter the other.

Contrary to the C-finite case, for a general operator L ∈ k(n)[E], it is no longer the
case that L · f = 0 ⇐⇒ L · (Es · f) = 0. The following definition is made in order to
repair this deficiency.

the electronic journal of combinatorics 13 (2006), #R00 11

Definition 4 For A = a0(n) + a1(n)E + · · ·+ ar(n)Er ∈ k(n)[E] and s ∈ k, we define

A(s) = a0(n + s) + a1(n + s)E + · · ·+ ar(n + s)Er.

With this definition, we can formulate the following generalization of Lemma 1.

Lemma 3 Let f1, f2 :
�

→ k be annihilated by L1, L2 ∈ k(n)[E], respectively.

1. For all s ∈ � and all L ∈ k(n)[E], we have L ·f1 = 0 if and only if L(s) ·(Es ·f1) = 0.

2. If there exists some s ∈ � with f1 = Es · f2, then L · f1 = L · f2 = 0 for L :=
gcrd(L1, L

(s)
2).

Proof.

1. Let s ∈ � and L = l0(n) + l1(n)E + · · ·+ lr(n)Er ∈ k(n)[E]. Then

L · f1 = 0 ⇐⇒ ∀n ∈
�

: l0(n)f1(n) + · · · + lr(n)f1(n + r) = 0

⇐⇒ ∀n ∈
�

: l0(n + s)f1(n + s) + · · ·+ lr(n + s)f1(n + s + r) = 0

⇐⇒ ∀n ∈
�

: l0(n + s)(Es · f1)(n) + · · ·+ lr(n + s)(Es · f1)(n + r) = 0

⇐⇒ L(s) · (Es · f1) = 0.

2. Let s ∈ � such that f1 = Esf2. Then, by part 1, L
(s)
2 · f1 = 0. By assumption,

L1 · f1 = 0, hence (SL1 + TL
(s)
2) · f1 = 0 for any S, T ∈ k(n)[E]. As it is possible

to choose S, T ∈ k(n)[E] such that SL1 + TL
(s)
2 = L, it follows that L · f1 = 0. For

the same reason, L · f2 = 0. �

4.1 The degenerate Case

Let L1, L2 ∈ k(n)[E] be given. We may extend the ground field k by a new transcen-
dental element s, commuting with E, and consider L1, L2 as elements of k(s)(n)[E],

with coefficients free of s. In this setting we can form L
(s)
2 for symbolic s and consider

L := gcrd(L1, L
(s)
2). It turns out that the coefficients of L neither contain s nor n:

Lemma 4 Let L1, L2 ∈ k(n)[E].

1. deg(gcrd(L1, L
(s)
2)) > 0 for infinitely many s ∈ � if and only if deg(gcrd(L1, L

(s)
2)) >

0 where L1, L
(s)
2 are viewed as elements of k(s)(n)[E].

2. If L1, L
(s)
2 are viewed as elements of k(s)(n)[E], then L := gcrd(L1, L

(s)
2) belongs

to k[E].

Proof.

the electronic journal of combinatorics 13 (2006), #R00 12

1. Consider the resultant res(L1, L
(s)
2) ∈ k(s)(n). By Prop. 1, a nontrivial gcrd appears

precisely for those values of s where the resultant vanishes. Since the resultant is a
rational function in s over a field of characteristic zero, it can only have infinitely
many integer roots if it is identically zero. Then, however, already the gcrd over
k(s)(n) must be nontrivial, again by Prop. 1.

2. Since L is a right divisor of L1 and L1 does not involve s, also L is free of s.
Furthermore, we have that L(−s) = gcrd(L

(−s)
1 , (L

(s)
2)(−s)) = gcrd(L

(−s)
1 , L2) is a

right divisor of L2 ∈ k(n)[E] and therefore it is free of s, too. But L and L(−s) can
be simulaniously free of s only if they are also free of n. �

The degenerate case happens if L := gcrd(L1, L
(s)
2) (computed in k(s)(n)[E]) is already

an annihilator for both f1, f2. In this case, the sequences f1, f2 are C-finite and we can
proceed with Algorithm 3.

4.2 The nondegenerate Case

The nondegenerate case happens if L := gcrd(L1, L
(s)
2) (computed in k(s)(n)[E]) is not

an annihilator of f1, f2. In this case, in view of Lemma 3, part 2, it is necessary for every
solution s ∈ � of the shift equivalence problem that gcrd(L1/L, L

(s)
2 /L) is nontrivial. By

Prop. 1, this happens precisely for the integer roots of

res(rquo(L1, L), rquo(L
(s)
2 , L)) ∈ k(s, n),

where rquo(A, B) denotes the right quotient of A ∈ k(s)(n)[E] by B ∈ k(s)(n). By
Lemma 4, it follows that the resultant is not identically zero, for otherwise L would not
be the greatest common right divisor of L1 and L

(s)
2 . Thus the resultant can only have

finitely many roots in the integers, and the shift equivalence problem can be solved by
trying each of them.

Alternatively, the values s for which rquo(L1, L) and rquo(L
(s)
2 , L) have a nontrivial

greatest common right divisor could also be obtained by an efficient algorithm due to
Glotov [11].

4.3 Summary

Putting things together, we obtain the following algorithm for solving the shift equivalence
problem for P-finite sequences.

Algorithm 4

INPUT: f1, f2 :
�

→ k, specified by annihilating operators L1, L2 ∈ k(n)[E] and suffi-
ciently many initial values.
OUTPUT: all s ∈ � such that f1 = Esf2

1 function pfiniteSE(f1, f2)

2 L := gcrd(L1, L
(s)
2) // computed in k(s)(n)[E]

the electronic journal of combinatorics 13 (2006), #R00 13

3 if L · f1 = 0 and L · f2 = 0 then

4 return cfiniteSE(f1, f2) // specifying L as ann. operator of both f1 and f2

5 R(s) := res(rquo(L1, L), rquo(L
(s)
2 , L)) ∈ k(s)(n)

6 C := {s ∈ � : R(s) = 0}; S := ∅
7 forall s ∈ C do

8 if f1 = Esf2 then S := S ∪ {s}
9 return S

4.4 Examples

Example 3 Let f1, f2 :
�

→
�

be defined via

L1 · f1 = 0, f1(0) = 0, f1(1) = −16, f1(2) = −64,

L2 · f2 = 0, f2(0) = 1
4
, f2(1) = 7

16
, f2(2) = 3

4
,

where

L1 := (n + 1)E3 − (5n + 4)E2 + 4(2n + 1)E − 4n,

L2 := nE3 − (5n + 1)E2 + 4(2n + 1)E − 4(n + 1).

Computing L := gcrd(L1, L
(s)
2) in

�
(s)(n)[E], we obtain

L = E2 − 4E + 4,

and since L · f1 = L · f2 = 0, we may proceed as in Example 1, obtaining that f1 = Esf2

if and only if s = 8.

Example 4 Let f1, f2 :
�

→
�

be defined via

L1 · f1 = 0, f1(0) = 5, f1(1) = 125
8

, f1(2) = 209
4

,

L2 · f2 = 0, f2(0) = 5, f2(1) = 5
2
, f2(2) = 5.

where

L1 := (n + 6)(n + 1)E3 − (6n2 + 33n + 7)E2 + (9n2 + 30n − 49)E − (2n − 3)(n + 4),

L2 := (n + 4)2E3 − 2(3n2 + 18n + 28)E2 + 3(3n2 + 9n + 4)E − 2n(n + 2).

We have gcrd(L1, L
(s)
2) = 1 when computing in

�
(s)(n)[E], and 1 obviously does not

annihilate f1 or f2, so we are in the nondegenerate case. The resultant reads

res(L1, L
(s)
2) = −3(s − 2)2(27n7 + 18sn6 + 549n6 − 108s2n5 − 72sn5 + 3276n5

− 162s3n4 − 2304s2n4 − 3714sn4 − 1722n4 − 63s4n3 − 2196s3n3

− 15753s2n3 − 29847sn3 − 50634n3 − 513s4n2 − 8976s3n2 − 32808s2n2

− 34370sn2 − 26246n2 − 213s4n + 699s3n + 53200s2n + 227440sn

+ 353172n + 3222s4 + 60336s3 + 237486s2 + 205572s − 95040).

The last factor is irreducible, so the resultant has the only integer root s = 2. Comparing
initial values confirms that f1 = Esf2 if and only if s = 2.

Acknowledgement. I would like to thank Carsten Schneider for helpful discussions.

the electronic journal of combinatorics 13 (2006), #R00 14

References

[1] Sergei A. Abramov and Manuel Bronstein. Hypergeometric dispersion and the orbit
problem. In Proceedings of ISSAC’00, pages 8–13, 2000.

[2] Sergej A. Abramov. On the summation of rational functions. Zh. vychisl. mat. Fiz,
pages 1071–1075, 1971.

[3] Manuel Bronstein. On solutions of linear ordinary difference equations in their coef-
ficient field. Journal of Symbolic Computation, 29:841–877, 2000.

[4] Manuel Bronstein and Marko Petkovšek. An introduction to pseudo-linear algebra.
Theoretical Computer Science, 157(1):3–33, 1996.

[5] Marc Chardin. Differential resultants and subresultants. In Proceedings of FCT’91,
volume 529 of Lecture Notes in Computer Science, pages 1–10, 1991.

[6] Frédéric Chyzak and Bruno Salvy. Non-commutative elimination in Ore algebras
proves multivariate identities. Journal of Symbolic Computation, 26:187–227, 1998.

[7] Richard M. Cohn. Difference Algebra. Interscience Publishers, John Wiley & Sons,
1965.

[8] Guoqiang Ge. Algorithms related to multiplicative representations of algebraic num-
bers. PhD thesis, U.C. Berkeley, 1993.

[9] Jürgen Gerhard. Modular algorithms for polynomial basis conversion and great-
est factorial factorization. In Proceedings of the 7th Rhine Workshop of Computer
Algebra, pages 125–141, 1999.

[10] Jürgen Gerhard. Modular Algorithms in Symbolic Summation and Symbolic Integra-
tion, volume 3218 of LNCS. Springer, 2004.

[11] Peter E. Glotov. An algorithm of searching the greatest common divisor for ore
polynomial with polynomial coefficients depending on a parameter. Programming
and Computer Software, 24(6):275–283, 1998.

[12] William Gosper. Decision procedure for indefinite hypergeometric summation. Pro-
ceedings of the National Academy of Sciences of the United States of America, 75:40–
42, 1978.

[13] Curtis Greene and Herbert S. Wilf. Closed form summation of C-finite sequences.
Transactions of the American Mathematical Society, 2006. to appear.

[14] Michael Karr. Summation in finite terms. Journal of the ACM, 28:305–350, 1981.

[15] Michael Karr. Theory of summation in finite terms. Journal of Symbolic Computa-
tion, 1(3):303–315, 1985.

the electronic journal of combinatorics 13 (2006), #R00 15

[16] Ziming Li. A Subresultant Theory for Linear Differential, Linear Difference, and Ore
Polynomials, with Applications. PhD thesis, RISC-Linz, 1996.

[17] Ziming Li. A subresultant theory for Ore polynomials with applications. In Proceed-
ings of ISSAC’98, pages 132–139, 1998.

[18] Christian Mallinger. Algorithmic manipulations and transformations of univariate
holonomic functions and sequences. Master’s thesis, J. Kepler University, Linz, Au-
gust 1996.

[19] Yiu-Kwong Man and Francis J. Wright. Fast polynomial dispersion computation and
its application to indefinite summation. In Proceedings of ISSAC’94, pages 175–180,
1994.

[20] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34:480–
508, 1933.

[21] Peter Paule. Greatest factorial factorization and symbolic summation. Journal of
Symbolic Computation, 20:235–268, 1995.

[22] Peter Paule and Volker Strehl. Symbolic summation – some recent developments. In
Computer Algebra in Science and Engeneering – Algorithms, Systems, and Applica-
tions, pages 138–162, 1995.

[23] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipula-
tion of generating and holonomic functions in one variable. ACM Transactions on
Mathematical Software, 20(2):163–177, 1994.

[24] Carsten Schneider. A collection of denominator bounds to solve parameterized linear
difference equations in ΠΣ-extensions. In Proceedings of SYNASC’04, pages 269–282,
2004.

[25] Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge Studies in
Advanced Mathematics 62. Cambridge University Press, 1999.

[26] Doron Zeilberger. A holonomic systems approach to special function identities. Jour-
nal of Computational and Applied Mathematics, 32:321–368, 1990.

the electronic journal of combinatorics 13 (2006), #R00 16

