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Abstract

In a study on quartic integrals, Moll met a specialized family of Jacobi polynomials. He
conjectured that the corresponding coefficient sequences are log-concave. In this paper we
settle Moll’s conjecture by a non-trivial usage of computer algebra.

1 Introduction

Victor Moll begins his “personal story” [8] with the remark,

(. . . ) It was even more of a surprise to discover that new things can still be said today
about the mundane subject of integration of rational functions of a single variable
and that this subject has connections with branches of contemporary mathematics as
diverse as combinatorics, special functions, elliptic curves, and dynamical systems.

In this article we want to add another essential ingredient to his story, namely computer algebra.
In Section 2 we will show how recently developed procedures can be used to retrieve observations
which in Moll’s original approach were derived with classical methods. In Section 3 we demonstrate
that computer algebra can do even more, namely, by proving his log-concavity conjecture with
a combination of various algorithms. In the Conclusion we briefly comment on a much stronger
version of his conjecture.

2 Setting the Stage

Moll’s starting point is the following double sum representation of a quartic integral.

Theorem 1 Let a > −1 and let m be a natural number. Then
∫

∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a + 1)m+1/2
Pm(a)

where

Pm(a) =
∑

j,k

(

2m + 1

2j

)(

m − j

k

)(

2k + 2j

k + j

)

(a + 1)j(a − 1)k

23(k+j)
. (1)
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The proof is elementary and employs Wallis’ integral formula; details are given in [2, Thm. 7.2.1].
Obviously, Theorem 1 gives a description of the quartic which for specific m can be computed in
a finite number of steps. The remainder of Moll’s article [8] discusses how further information
about the family of polynomials Pm(a) can be obtained. For instance, expanding Pm(a) as

Pm(a) =

m
∑

l=0

dl(m)al,

inspection quickly leads to the following positivity conjecture on the coefficients.

Proposition 1 For 0 ≤ l ≤ m, we have dl(m) > 0.

2.1 P � (a) and Ramanujan’s Master Theorem

Moll found a remarkable proof of Prop. 1. Namely, he was able to reformulate the problem in
such a way that Ramanujan’s Master Theorem could be invoked to prove the following alternative
representation for the Pm(a).

Theorem 2 Let m be a natural number. Then

Pm(a) = 2−2m
∑

k

2k

(

2m− 2k

m − k

)(

m + k

k

)

(a + 1)k. (2)

For further details, see [2, Thm. 7.9.1].1 Obviously, Theorem 2 immediately implies positivity of
the coefficients, i.e., the correctness of Proposition 1. In particular, after applying the binomial
theorem one obtains the following single sum representation for the dl(m).

Proposition 2 For l, m ≥ 0,

dl(m) = 2−2m
m

∑

k=l

2k

(

2m − 2k

m − k

)(

m + k

k

)(

k

l

)

. (3)

In addition, a reformulation of the sum representation (2) allows to identify the Pm(a) within
the mathematical knowledge base. Namely, rewriting it into standard hypergeometric format,
Pm(a) = 2−2m

(

2m
m

)

2F1(−m, m + 1; 1
2 − m; a+1

2 ), reveals that the Pm(a) are nothing but special
instances of Jacobi polynomials; i.e.,

Pm(a) = P (α,β)
m (a) with α = m + 1

2 and β = −
(

m + 1
2

)

. (4)

2.2 Positivity using computer algebra

In this subsection we demonstrate that computer algebra allows to prove Proposition 1 in a
completely routine fashion.

To this end we represent dl(m) as a triple sum,

dl(m) =
∑

j,s,k

(−1)k+j−l

23(k+s)

(

2m + 1

2s

)(

m − s

k

)(

2(k + s)

k + s

)(

s

j

)(

k

l − j

)

, (5)

which is immediate from (1); see Theorem 7.3.1 in [2] after replacing s by s−j and then k by k+s.
Note that despite summing over all integers j, s, k the sum is finite owing to the finite supports of
the binomials involved.

1In [1], identity (2) is derived directly from the integral representation in Thm. 1 via change of variables and
table look-up.
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The first step is to derive with the RISC package MultiSum [10] a suitable recurrence for the dl(m).
MultiSum is an implementation of Wegschaider’s algorithm which is an extension of multivariate
WZ summation [11]. After loading the package into Mathematica by

In[1]:=
���

MultiSum �m
MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard Zimmermann) –
c© RISC Linz – V2.02β (02/21/05)

we input the summand of the triple sum (5):

In[2]:= � = ( � 1) � + ���
	�� 23( � + 
 ) Binomial[2 � + 1 � 2 � ]Binomial[ ��������� ]Binomial[2( � + � ) ��� + � ]
Binomial[ ����� ]Binomial[ ��������� ];

With the next command we determine candidate sets of shifts possibly arising in recurrences for
f =: Fl,m,k,s,i:

In[3]:= regions = FindStructureSet[ �����������! "�#� 1 � 0  "���$�
�%�����& "��� 0 � 1 � 0  "� 1];
In[4]:= Length[regions]

Out[4]= 9

This means, we obtain nine such candidate sets. For the second one in this list we compute a
summand recurrence as follows:

In[5]:= FindRecurrence[ �'���$�����! "���$�
�%�����& "� regions[[2]] � 1 � WZ ( True]

Out[5]= ) −4(l + m)Fl−1,m,k−1,s−1,j−1 − 2(2l + 4m + 3)Fl,m,k−1,s−1,j−1 + 4(m + 1)Fl,m+1,k−1,s−1,j−1

= ∆j * (2k +6s−7)Fl−1,m,k−1,s−1,j−1 +2(2l +4m+3)Fl,m,k−1,s−1,j−1 −4(m+1)Fl,m+1,k−1,s−1,j−1 +
+∆k * (−2k + 4l + 4m − 6s + 7)Fl−1,m,k−1,s−1,j−1 − 4(k − l + s)Fl−1,m,k,s−1,j−1

+(−2k + 4l + 4m − 2s + 7)Fl,m,k−1,s−1,j + 4(k + m + 2s)Fl,m,k−1,s,j

−4(k − l)Fl,m,k,s−1,j − 4(m + 1)Fl,m+1,k−1,s,j +
+∆s * (2k + 6s − 7)Fl−1,m,k−1,s−1,j + (2k + 4m + 2s − 1)Fl,m,k−1,s−1,j − 4(m + 1)Fl,m+1,k−1,s−1,j +$,

In the output, ∆i denotes the forward difference operator, e.g.,

∆k

(

(k − l + s)Fl,m,k,s,j

)

= (k + 1 − l + s)Fl,m,k+1,s,j − (k − l + s)Fl,m,k,s,j .

Note: Since Fl,m,k,s,j is hypergeometric w.r.t. each of the variables, any shift of Fl,m,k,s,j is
a rational function multiple of Fl,m,k,s,j . Consequently, after dividing both sides by Fl,m,k,s,j

the correctness check of Out[5] reduces to checking an equality of rational functions. – Since
f = Fl,m,k,s,j has finite support w.r.t. the variables j, k, and s, we can sum both sides of Out[5]
to obtain a recurrence for the sum dl(m) =: SUM(l, m). This is done automatically by

In[6]:= SumCertificate[%]

Out[6]= {−2(l + m)SUM(l − 1, m) + (−2l − 4m − 3)SUM(l, m) + 2(m + 1)SUM(l, m + 1) = 0}

In other words, we have that for 0 ≤ l ≤ m + 1,

2(m + 1)dl(m + 1) = 2(l + m)dl−1(m) + (2l + 4m + 3)dl(m). (6)

This recurrence implies positivity of the dl(m).

2.3 Identifying P � (a) using computer algebra

In this subsection we demonstrate that computer algebra allows to identify the Pm(a) in a com-
pletely routine fashion. This means, tools like Ramanujan’s Master Theorem can be completely
avoided. (Note: The conditions that make the Master Theorem applicable are in general non-
trivial to check.)

Continuing the session above, we now compute a recurrence purely in l:
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In[7]:= SumCertificate[FindRecurrence[ �����������! ���� �
�%�����& "� regions[[1]] � 1 � WZ ( True]]

Out[7]= (−l + m + 2)(l + m − 1)SUM(l − 2, m) − (l − 1)(2m + 1)SUM(l − 1, m) + (l − 1)lSUM(l, m) = 0

In other words, we have that for 0 ≤ l ≤ m + 1,

−(−2 + l − m)(−1 + l + m)dl−2(m) − (l − 1)(2m + 1)dl−1(m) + (l − 1)ldl(m) = 0. (7)

Note that in contrast to (6) this does not imply positivity of the dl(m). However, it enables to
identify Pm(a) as a special instance of Jacobi polynomials. To this end, using the RISC package
GeneratingFunctions [7] we convert (7) to a differential equation for Pm(a) which is nothing but
the ordinary generating function of the dl(m) for fixed m.

After loading the package into Mathematica by

In[8]:=
���

GeneratingFunctions �m
GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.68 (07/17/03)

we first input the recurrence (7)

In[9]:= rec = ( � ( � 2+ ��� � )( � 1+ � + � )
�
[ � 2+ � ] � ( � 1+ � )(1+2 � )

�
[ � 1+ � ]+( � 1+ � ) � � [ � ] == 0);

The conversion to a differential equation for Pm(a) =: P (a) is done automatically as follows:

In[10]:= RE2DE[rec � � [ � ] ��� [ � ]]

Out[10]= (m + m
2)P (a) − (1 + 2a + 2m)P ′(a) − (a2 − 1)P ′′(a) = 0

Finally we recall the differential equation for Jacobi polynomials y(a) := P
(α,β)
m (a),

m(m + α + β + 1)y(a) − (α − β + (α + β + 2)a)y′(a) − (a2 − 1)y′′(a) = 0,

and compare the parameters,

In[11]:= Solve[ ��� + � == 0 ���!��� == 1 + 2 �!��� + � + 2 == 2  "���	� �
�  ]
Out[11]= ) ) α → 1

2
(2m + 1), β → − 1

2
− m ,",

Checking that Pm(0), P ′

m(0) and the initial values y(0), y′(0) of y(a) = P
(α,β)
m (a) with α = m + 1

2
and β = −(m + 1

2 ) coincide, we can conclude (4).

Remarks

1. Owing to (5) the values Pm(0) and P ′

m(0) are hypergeometric double sums and thus can be
evaluated with the package MultiSum.

2. Taking the standard 3-term recurrence for Jacobi polynomials would fail since this one
usually is derived under the assumption that the parameters α and β are independent of m.

2.4 Further recurrences for d � (m)

In this subsection we compute further recurrences for dl(m) which will be needed in the next
section. The MultiSum package would be powerful enough to continue to work with (5), but for
the sake of simplicity we will use the representation (3).

In[12]:= � = 2 � � 2 
 Binomial[2 ��� 2 �
��� � � ]Binomial[ � + ���%� ]Binomial[ �
��� ];
In[13]:= FindRecurrence[ �
�%�$�! "��� �� "� 1 � NumericalCheck ( True][[3]]

Out[13]= −4(l − m)(m − 1)m2
Fm,k−2 + (l + m − 1)(4m − 5)(4m − 3)mFm−2,k−2

−2(m − 1)(8m2 − 4l2 − 8m + 3)mFm−1,k−2

= ∆k * 4m2(l − m)(m − 1)Fm,k−2 − m(l + m − 1)(4m − 5)(4m − 3)Fm−2,k−2

+ 2m(m − 1)(−4l2 + 12m2 − 14m + 5)Fm−1,k−2 + 4m(l − m)(m − 1)(2m − 1)Fm,k−1

− 2(m − 1)(−4m3 + 4m2 + 4l2m + 2km − 3m − 2kl + l)Fm−1,k−1 +
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In[14]:= SumCertificate[%] � � Simplify

Out[14]= (l + m − 1)(4m − 5)(4m − 3)SUM(m − 2) − 2(m − 1)(−4l
2 + 8m

2 − 8m + 3)SUM(m − 1)
−4(l − m)(m − 1)mSUM(m) = 0

Note that here g = Fm,k. In other words, after replacing m by m + 2 we have for 0 ≤ l ≤ m + 1

4(l − m − 2)(m + 1)(m + 2)dl(m + 2) = (l + m + 1)(4m + 3)(4m + 5)dl(m) (8)

− 2(m + 1)(−4l2 + 8m2 + 24m + 19)dl(m + 1).

Finally, we derive another mixed recurrence, which is a counterpart to (6):

In[15]:= regions = FindStructureSet[ �
���$�!���� "��� 1 � 2  "��� �� "��� 1  "� 1];
In[16]:= Length[regions]

Out[16]= 6

This means, we obtained six candidate regions for a mixed recurrence. For the second one in the
list we compute a summand recurrence as follows:

In[17]:= FindRecurrence[ �
�%�$�!���� "��� �� "� regions[[2]] � 1 � WZ ( True]

Out[17]= ) (2l − 4m − 5)(2l − 2m − 3)(l + m)Fm,l−1,k

+2(l − 1)l(2l − 2m − 3)Fm,l,k

−2(2l − 2m − 3)(l − m − 2)(m + 1)Fm+1,l−1,k

= ∆k * (2l − 2m − 3)(l + m)(−2l + 4m + 5)Fm,l−1,k

−2l(2l2 − 2ml − 5l − 2m2 − 2k − 2km − 2m + 1)Fm,l,k

−2(m + 1)(−2l2 + 4ml + 7l − 4m2 + 2k + 2km − 11m − 8)Fm+1,l−1,k +$,
In[18]:= SumCertificate[%]

Out[18]= {(2l−4m−5)(l+m)SUM(m, l−1)+2(l−1)lSUM(m, l)−2(l−m−2)(m+1)SUM(m+1, l−1) = 0}

In other words, after replacing l by l + 1, we have for 0 ≤ l ≤ m,

−2(2l − 4m − 3)(l + m + 1)dl(m) + 4(l − m − 1)(m + 1)dl(m + 1) − 4l(l + 1)dl+1(m) = 0. (9)

3 Proof of the Log-Concavity Conjecture

In addition to his positivity observation, Proposition 1, Moll observed that the sequence dl(m)
is a candidate for being log-concave. The exact statement of his conjecture, proved below, is as
follows.

Theorem 3 For 0 < l < m, we have

dl−1(m)dl+1(m) ≤ dl(m)2. (10)

In this section, we prove this theorem by first deriving a sufficient condition on the sequence
dl(m), which implies the log-concavity of dl(m). Then, we employ again computer algebra tools
for proving this sufficient condition.

3.1 Derivation of a Sufficient Condition

In a first step, we use the recurrence equations (9) and (6) in order to eliminate the shifts in l

from (10) at the cost of introducing shifts in m. This gives the equivalent formulation

−
(

16m3 + 16lm2 + 40m2 + 28lm + 33m + 9l + 9
)

dl(m)2

− 4(m + 1)
(

2l2 − 4m2 − 7m − 3
)

dl(m + 1)dl(m) (11)

+ 4(l − m − 1)(m + 1)2dl(m + 1)2 ≤ 0.
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Using Cylindrical Algebraic Decomposition (CAD) [4, 3], we compute in the second step an equiv-
alent condition for the negation of (11), interpreting m, l, dl(m), and dl(m + 1) as independent
real variables M, L, D0, D1, respectively, and taking into account the knowledge 0 < l < m and
dl(m) > 0 (Prop. 1).

In[19]:= CylindricalDecomposition[ � 0 ��� ��� ��� 0 � 0 ��� 1 � 0 �$� (16
� 3 + 16

��� 2 + 40
� 2 +

28
���

+33
�

+9
�

+9) � 2
0 � 4(

�
+1) * 2 � 2 � 4

� 2 � 7
� � 3 + � 1 � 0+4(

� � � � 1)(
�

+

1)2 � 2
1 � 0  "��� � � � ��� 0 ��� 1  ]

Out[19]= M > 1
2

+
√

2 ∧ Root 	 4#13 − 3#1 − 4M
2 − 4M&, 1 
 < L < M ∧ D0 > 0 ∧

3−2L2+M(4M+7)−
√

L(4L3−3L−4M(M+1))

2(M+1)(M−L+1)
D0 < D1 <

3−2L2+M(4M+7)+
√

L(4L3−3L−4M(M+1))

2(M+1)(M−L+1)
D0

In other words, we obtain that the formula

0 < l < m ∧ dl(m) > 0 ∧ dl(m + 1) > 0 ∧ ¬(11) (12)

is equivalent over the reals to the formula

m > 1
2 (1 + 2

√
2) ∧ Root(−4m− 4m2 − 3X + 4X3, 1) < l < m ∧ dl(m) > 0

∧ p1(l, m) −
√

p2(l, m)

p3(l, m)
dl(m) < dl(m + 1) <

p1(l, m) +
√

p2(l, m)

p3(l, m)
dl(m), (13)

where

p1(l, m) = 3 − 2l2 + m(4m + 7),

p2(l, m) = l(4l3 − 3l − 4m(m + 1)),

p3(l, m) = 2(m + 1)(m − l + 1).

The symbol Root(−4m − 4m2 − 3X + 4X3, 1) denotes the algebraic function which maps m to
the smallest real root of the polynomial −4m − 4m2 − 3X + 4X3. The graph of this function is
depicted in Figure 1 as a dotted curve. It divides the set of all points (m, l), 0 ≤ l ≤ m, under
consideration into the sets

S− := { (m, l) : 0 < m ≤ 1
2 +

√
2 ∨ 0 < l ≤ Root(−4m− 4m2 − 3X + 4X3, 1) } and

S+ := { (m, l) : m > 1
2 +

√
2 ∧ Root(−4m − 4m2 − 3X + 4X3, 1) < l < m }

of points below and above this graph, respectively.

From the output (13), it follows that the log-concavity condition (10) cannot be violated at all for
the points (m, l) ∈ S−. And, in addition, for some point (m, l) ∈ S+, it is violated if and only if

p1(l, m) −
√

p2(l, m)

p3(l, m)
dl(m) < dl(m + 1) <

p1(l, m) +
√

p2(l, m)

p3(l, m)
dl(m) (14)

for this point. In order to complete the proof for all 0 < l < m, it is therefore sufficient to show

dl(m + 1) ≥ p1(l, m) +
√

p2(l, m)

p3(l, m)
dl(m) (15)

for all (m, l) ∈ S+. Because then the violating condition (14) can never become true, and thus
there does not exist any counterexample to the log-concavity condition for 0 < l < m.

For reasons to be explained in Section 3.2, we are not pleased with the square root expression
√

p2(l, m) in (15). It would be preferable to have a condition of the form dl(m+1) ≥ rat(l, m)dl(m)
for some rational function rat(l, m). In order to achieve this form, observe that it is sufficient to
prove the modified condition

dl(m + 1) ≥ p1(l, m) +
√

p2(l, m) + u(l, m)

p3(l, m)
dl(m) (16)
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Figure 1: The points (m, l) under consideration.

for a polynomial u(l, m) which is nonnegative for 0 < l < m.

The idea is now to choose u(l, m) in such a way that p2(l, m) + u(l, m) becomes a square. It turns
out that u(l, m) = 4l2 + 4l3 + 4lm(m + 1) is a good choice, because u(l, m) ≥ 0 and

p2(l, m) + u(l, m) = l2(2l + 1)2.

Hence, (16) turns into the stronger condition

dl(m + 1) ≥ 4m2 + 7m + l + 3

2(m + 1 − l)(m + 1)
dl(m) , (17)

which is stronger than (15) because p3(l, m) > 0 for the l, m in question.

Summarizing, if (17) is true for (m, l) ∈ S+, then also (15) is true, and then (14) can never become
true. But (14) is true for every possible counterexample to (11), so we are save to conclude that no
counterexample to (11) exists. Hence, since (11) is equivalent to (10), the log-concavity of dl(m)
is established as soon as we have shown the boxed condition (17) above.

3.2 Proof of the Sufficient Condition

We now prove that (17) is true for all 0 < l < m. Let us denote this condition by Φ(l, m). The
proof is by induction on m. We begin by showing the following induction step formula:

∀ m ∈ � ∀ l ∈ � :
(

0 < l < m ∧ Φ(l, m)
)

⇒ Φ(l, m + 1).

This formula states that whenever Φ(l, m) is true for some bullet (m, l) in Figure 1, then it is also
true for its right neighboring bullet (m + 1, l). Applying the three term recurrence (8) to express
dl(m + 2) in terms of dl(m) and dl(m + 1), Φ(l, m + 1) is found to be equivalent to

dl(m + 1) ≥ (m + l + 1)(4m + 3)(4m + 5)

2(m + 1)(m + 1 − l)(4m + 4l + 5)
dl(m).

Using, as earlier, real variables M, L, D0, D1 for representing m, l, dl(m), dl(m + 1), we can now
prove the induction step formula by another application of CAD:

In[20]:= CylindricalDecomposition[
Implies[ � 0 � 0 && � 1 � 0 && 0

� � � �
&&

� 1 � � 0(4
� 2 + 7

�
+
�

+ 3) � (2( � + 1 � �
)(
�

+ 1)) �
� 1 � � 0(

�
+
�

+1)(4
�

+3)(4
�

+5) � (2( � +1)(
�

+1 � � )(4
�

+4
�

+5))] �
� � 0 ��� 1 � � � �  ]

7



Out[20]= True

This computation takes only fractions of a second of computation time, and it is in fact not hard to
verify the statement by hand. We want to remark, however, that the computation time critically
depends on the variable ordering supplied as second argument to the CylindricalDecomposition
command: If we had, for instance, chosen {M, L, D0, D1} as variable order, the computation would
have taken more then forty minutes. But in either case, the computation returns “True” and this
proves the induction step.

The proof is completed by showing, as base of the induction, that Φ(l, m) is true for all the bullets
(l, m) right below the diagonal, i.e., that Φ(m, m + 1) is true for all m ≥ 1. Using the recurrences
or the sum representations for dl(m), it is easy to obtain the special values

dm(m + 1) = 2−m−2(2m + 3)

(

2m + 2

m + 1

)

, dm(m + 2) =
(m + 1)(4m2 + 18m + 21)

2m+4(2m + 3)

(

2m + 4

m + 2

)

(cf. Prop. 7.5.1 in [2]). Using these values, a straightforward computation now confirms that

Φ(m, m + 1) ⇐⇒ dm(m + 2)

dm(m + 1)
≥ 2m2 + 8m + 7

2(m + 2)
⇐⇒ m

2(2m + 3)(m + 2)
≥ 0,

which is evident for m ≥ 1. �

The method we applied for proving the truth of Φ(l, m) can be applied more generally for in-
equalities about quantities that can be defined via recurrence equations [5]. An implementation
for univariate sequences that carries out the individual steps automatically is contained in the
SumCracker package [6].

4 Moll Conjectured Much More

Define the operator L which maps a sequence al to the sequence

Lal := al−1al+1 − a2
l .

Then log-concavity of al amounts to positivity of Lal. If the sequence Lal is not only positive but
also log-concave, then we say that al is 2-log-concave. In general, we say that al is k-log-concave
if Lkal is positive, and that al is ∞-log-concave if Lkal is positive for every k ≥ 1.

Moll has conjectured that the coefficients dl(m) are not only log-concave but even ∞-log-concave.
This remains an open problem. Infinite log-concavity is open even for simpler sequences such
as the binomial coefficient sequence

(

m
l

)

(compare Project 7.9.3 in [2]). Here, we find that the
k-log-concavity condition can always be brought into the form

ratk(m, l)

(

m

l

)(2k)

≥ 0

for some rational functions ratk(m, l) which can be easily determined for each particular value
of k. Applying again CAD, we were able to confirm that

(

m
l

)

is k-log-concave for k = 0, 1, 2, 3, 4, 5.
For k ≥ 6 it is hopeless to apply CAD, because the complexity of this algorithm is sensitive
towards the degree of the polynomials appearing in the inequalities, and the degrees of numerator
and denominator of ratk(m, l) grow exponentially in k. For k = 6, the degrees of numerator
and denominator are 133 and 196, respectively. As for the ∞-log-concavity, we do not see how
currently available methods in symbolic computation could help in proving this conjecture.

Concerning the k-log-concavity of the original sequence dl(m), we have tried to apply the proof
technique of Section 3 to establish 2-log-concavity, i.e.,

(

dl(m)2 − dl−1(m)dl+1(m)
)2 −

(

dl−1(m)2 − dl−2(m)dl(m)
)(

dl+1(m)2 − dl(m)dl+2(m)
)

≥ 0.
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The recurrences (9) and (6) can again be used for obtaining an equivalent statement involving
only shifts in m but no shifts in l. This statement is polynomial in the dl(m + i) of degree 4. As a
consequence, the condition corresponding to (13) is much more complicated. It involves algebraic
functions of degree up to 15, and it would require more than thirty pages to print it here. Under
these circumstances, we have little hope that a proof of 2-log-concavity could be completed along
these lines. – Not to mention that a human reader would have hard times to digest it.

Note. All RISC software packages mentioned in this paper are available online at

http://www.risc.uni-linz.ac.at/research/combinat/software/

Acknowledgement. We thank Carsten Schneider for computational support using his package
Sigma [9].
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