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ABSTRACT
We consider symbolic sums which contain subexpressions
representing unspecified sequences. Existing symbolic sum-
mation technology is extended to sums of this kind. We show
how this can be applied in the systematic search for general
summation identities. Both, results about the non-existence
of identities of a certain form, and examples of general fami-
lies of identities which we have discovered automatically are
included in the paper.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.2.1 [Discrete Mathe-
matics]: Combinatorics—Recurrences and difference equa-

tions

General Terms
Algorithms

Keywords
Symbolic Summation, Difference Fields

1. INTRODUCTION
The focus of this paper is on summation identities involv-

ing expressions like Xk that stand for unspecified sequences

(or generic sequences). Such summation identities remain
true for any interpretation of Xk as a particular sequence,
i.e., we may put Xk = fk for any sequence (fk)k≥0. A simple
example for such an identity is

n�
k=0

(Xk+1 − 1)
k�

i=0

Xi =
n+1�
k=0

Xk − X0. (1)
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If particular rational functions are substituted for Xk in
this identity, we obtain precisely the indefinite hypergeo-
metric summation identities that are found by Gosper’s al-
gorithm [9, 16]. (Subtle exceptions may arise owing to
the singularities of a particular rational function, see [4,
2]. These are ignored throughout the present paper.) We
may say that Gosper’s algorithm precisely solves the task of
writing a given hypergeometric term � k

i=0 Xk in the form

(Yk+1 − 1) � k

i=0 Yi for a specific rational function Yk, or it
proves that this is impossible.

In the present paper, we mainly study definite summation
identities involving unspecified sequences. A sum is called
definite if the summand depends not only on the summation
index k but also on the summation bound n. A simple
example is

n�
k=0

Xn+k = X0 +
n−1�
k=0

(X2k+1 + X2k+2 − Xk)

Again, the identity holds for every sequence in place of the
symbol Xk. The interest in identities of this type was not
so much raised by examples arising from practice. The con-
sideration of summation identities involving unspecified se-
quences Xk is rather motivated because the presence of Xk

in summation identities reveals some structural information
about summation in general and summation algorithms in
particular. The use of unspecified sequences makes it pos-
sible to search for (families of) “nice” summation identi-
ties in a more systematic way. For instance, it is possi-
ble to automatically derive criteria for finding particular se-
quences (fk)k≥0, which, in place of Xk, lead to a further
simplification of the sum.

An earlier paper of ours [12] contains an algorithm for
indefinite summation with unspecified sequences. In Sec-
tion 2 we discuss how this algorithm can be extended to
definite summation via the creative telescoping method [26].
This algorithm was implemented and incorporated into the
second author’s summation package Sigma [22]. With this
implementation, we searched for general definite summation
identities involving unspecified sequences. It turned out that
only very few general identities exist. An explanation for
this phenomenon is provided in Section 3, where we show
that a certain class of definite sums does not admit creative
telescoping recurrences at all.

This negative result suggests that the search for nontrivial
general summation identities has to be focused on more com-
plicated expressions, such as nested sum expressions. Even



in this enlarged domain, general definite sums which admit
simplification are rare. Some new identities, which we have
found by experimenting, are presented in Section 4.

2. SUMMATION IN DIFFERENCE FIELDS

2.1 PLDEs and Summation
A fundamental role in summation algorithms is played by

parameterized linear difference equations (PLDEs): Given
certain sequences a0, . . . , am and f0, . . . , fr : � → � , where

� is a field, the goal is to find a sequence g and constants
c0, . . . , cr such that

a0g + a1Eg + · · · + amEmg = c0f0 + · · · + crfr, (2)

where E denotes the shift operator (Ef)k := fk+1.
Indefinite summation provides the most special situation.

Here, we aim at eliminating the summation quantifier from� n

k=0 fk with fk independent of n. If g is a solution of (2)
with m = 1, r = 0, a0 = −1, a1 = 1, f0 = f (telescoping
equation), then we have

� n

k=0 fk = gn+1−g0 (with c0 = 1).
Less straightforward are definite sums. These are sums

of the form Sn =
� n

k=0 fn,k, where fn,k may depend on
both, the summation index k and the bound n. For such
sums, telescoping normally fails. Therefore, we try a differ-
ent strategy. We proceed in two steps: First, we compute a
recurrence equation for the sum by means of creative tele-

scoping [26], and in a second step we solve that recurrence.
In creative telescoping, we consider k as the independent
variable and n as constant, and we solve

Eg − g = c0f0 + c1f1 + · · · + crfr (3)

with fi = fn+i,k (another special case of (2)). If no solu-
tion exists, we increase r and try again. Once a solution
(c0, . . . , cr, g) is found, we can derive a recurrence for the
original sum S by summing the equation over k. This re-
currence is of the form

a0S + a1ES + · · · + arE
rS = f

(another special case of (2)) for certain a0, . . . , ar, f which
originate from c0, . . . , cr, and g in (3). Now n is considered
as independent variable, and k is no longer present in ai or f .
Solving this equation for S delivers an explicit representation
for the definite sum.

This general summation strategy is explained in detail
for hypergeometric summation in [19]. Implementations of
these algorithms are available since long [18, 1]. The same
technique is applicable for more general expressions.

Example 1. Consider the definite sum Sn =
� n

k=0 fn,k

with fn,k = kXn+k, where Xn+k denotes a generic sequence.
Creative telescoping is applied for r = 0, 1, 2, 3, . . . in turn,
until a solution is found. Choosing, for instance, r = 2, we
have to find constants c0, c1, c2 and some gn,k such that

gn,k+1 − gn,k = c0fn,k + c1fn+1,k + c2fn+2,k

= c0kXn+k + c1kXn+k+1 + c2kXn+k+2.

It is easily checked that a solution is given by (c0, c1, c2, g) =
(1,−2, 1, (k − 1)Xn+k+1 − kXn+k). Summing the equation
over k from 0 to n and compensating for the missing terms
gives the recurrence

Sn − 2Sn+1 + Sn+2 = fn

with

fn = −(−Xn+1 + (n + 1)X2n+1

+ (n + 2)X2n+2 − (n + 1)X2n+3 − (n + 2)X2n+4).

Next, we have to solve this recurrence. The homogeneous
equation obviously has the solutions 1 and n, and it turns
out that the inhomogeneous equation has

� n

k=1

� k

i=1 fi−2

as a particular solution. Comparison of two initial values
reveals the representation

Sn =

n�
k=1

k�
i=1

fi−2. (4)

This can be simplified further, as we will see below (Exam-
ple 3).

This summation process can be carried out computation-
ally in the general setting of difference fields [22]. A differ-
ence field is a pair ( � , σ) where σ : � → � is a field automor-
phism. The elements of a difference field are understood as
formalizations of sequences, and the automorphism σ should
act on the field elements like the shift operator (Ef)k = fk+1

acts on the corresponding sequences. The elements c ∈ �
with σ(c) = c form a subfield � of � , called the field of

constants. In the language of difference fields, the problem
of solving parameterized linear difference equations reads as
follows:

GIVEN: A difference field ( � , σ) with constant field �
and elements a0, . . . , am ∈ � and f0, . . . , fr ∈ � .

FIND: All tuples (c0, . . . , cr, g) ∈ � r+1 × � such that

a0g + a1σ(g) + · · · + amσm(g) = c0f0 + · · · + crfr. (5)

It is easy to check that all the solutions (c0, . . . , cr, g) of a
parameterized linear difference equation form a vector space
over � , and we want to compute a basis of this vector space.
Of course, it might be that there do not exist solutions in
the given field � . In this case, it is of interest to construct a
bigger field where there exists a “nice” solution. This will be
used in Section 4 for deriving criteria on the Xk that make
a given sum summable in closed form.

Algorithms for solving PLDEs are available for several
types of difference fields ( � , σ). For the simplest case of a
constant field, i.e., � = � , the solution of a PLDE is im-
mediate by linear algebra. In the remainder of this section,
we will outline solution algorithms for free difference fields
and ΠΣ-extensions. Difference fields constructed from free
difference fields by ΠΣ-extensions are the appropriate fields
for the summation problems we want to consider later in
this paper.

2.2 Solving PLDEs in free difference fields
All difference fields used in this paper are constructed

as (iterated) difference field extensions over some constant
field � . A difference field extension of some difference field
( � , σ) is a difference field ( � , σ′) where � is a subfield of �
and σ′| � = σ. In this paper, all difference field extensions
will be obtained by adjoining one or more transcendental el-
ements t, t′, t′′, . . . to the ground field � and extending the
definition of the shift σ to this extended field � (t, t′, t′′, . . . ).

Following Cohn [6], we define the free difference field ex-
tension of a difference field ( � , σ) (by a difference variable x)
to be the field

� 〈x〉 := � (. . . , x−2, x−1, x0, x1, x2, . . . ).



The shift σ is extended from � to � 〈x〉 by the definition
σ(xi) := xi+1 (i ∈ � ). We understand here that the set
{ xi : i ∈ � } is algebraically independent over � . A dif-
ference variable x is an appropriate algebraic representation
of an unspecified sequence Xk [11]. By capital letters (Xk,
Yk+3, etc.) we denote subexpressions which appear in a sym-
bolic sum and which denote an unspecified sequence. The
corresponding lowercase letters (x0, y3, etc.) will be used in
the corresponding difference field representation.

Difference fields which are constructed by iterated free
extensions of the constant field � , e.g., � = � 〈x〉〈y〉, are
called free difference fields. Free difference fields are very
easy to deal with computationally, because for each f ∈

� 〈x〉 \ � , the forward and backward shift σ(f) and σ−1(f)
both must contain some variable xi which does not appear
in f itself. This makes it possible to devise a solving algo-
rithm based on simple cancellation considerations. We have
already described such an algorithm in an earlier paper [12],
and refrain here from repeating its details.

2.3 Solving PLDEs in ΠΣ∗-Extensions
In his seminal paper, Karr [10] has introduced the notion

of ΠΣ-fields for representing nested sum and product expres-
sions in difference fields. A simplified version of these fields
are the ΠΣ∗-fields [20]. These are difference fields which
are obtained from a constant field � by adjoining formal
sums or products. To be precise, ( � (t), σ) is called a ΠΣ∗-
extension of a difference field ( � , σ), if both difference fields
share the same field of constants, t is transcendental over � ,
and σ(t) = t+r for some r ∈ � (then t represents a sum) or
σ(t) = r · t for some r ∈ � (then t represents a product). A
ΠΣ∗-field is a difference field ( � (t1, . . . , te), σ) which is ob-
tained from a constant field � by repeated ΠΣ∗-extensions.
In short, we say that ( � (t1, . . . , te), σ) is a (nested) ΠΣ∗-
extension of ( � , σ) if all the ti are ΠΣ∗-extensions.

It is known how to solve PLDEs in ΠΣ∗-fields [25]. Here,
we are interested in difference fields which are obtained by
building a tower of ΠΣ∗-extensions on top of a free difference
field.

Example 2. For representing the sum from Example 1
above, we choose the difference field ( � 〈x〉(k), σ), where
( � 〈x〉, σ) is a free difference field and σ(k) = k + 1. In
this field, fn+i,k+j = (k + j)X(n+i)+(k+j) (i, j ∈ � ) is rep-
resented by (k + j)xi+j . The creative telescoping equation
admits a solution (c0, c1, c2, g) in the same field (compare
Example 1). The recurrence obtained for the whole sum,
however, requires besides n and Xn the representation of
X2n and X2n+1. We take ( � 〈x〉〈y〉〈z〉(n), σ) with x, y, z
free (representing Xn, X2n, and X2n+1, respectively) and
σ(n) = n + 1. The solutions 1 and n of the homogeneous
equation can be represented in the same field, but for repre-
senting a particular solution, we have to change to the bigger
field ( � 〈x〉〈y〉〈z〉(n)(t1)(t2), σ), which is a ΠΣ∗-extension
of the original one [3, 20]. Here σ(t1) = t1 + σ−1(f) and
σ(t2) = t2 + σ(t1), where

f = −(−x1 + (n + 1)z0 + (n + 2)y1 − (n + 1)z1 − (n + 2)y2).

A particular solution is then t2 (compare again Example 1).

Subsequently, let � be a field of constants, � be obtained
from � by extension of zero or more free difference variables,
and � be obtained from � by zero or more ΠΣ∗-extensions,
say � = � (t1, . . . , te). In such a field, PLDEs can be solved

very much as in ΠΣ∗ fields. Let � (t) be a ΠΣ∗-extension
of � . We outline a method which reduces the problem of
solving a PLDE in � (t) to solving several PLDEs in � . Only
a rough overview is given, some remarks on technical details
and pointers to literature are given in the end of the section.

Reduction I (denominator bounding). Compute a nonzero
polynomial d ∈ � [t] such that for all ci ∈ � and g ∈ � (t)
with (5) we have dg ∈ � [t]. Then it follows that

a0

d
g′ + · · · +

am

σm(d)
σm(g′) = c0f0 + · · · + crfr (6)

for g′ ∈ � [t] if and only if (5) with g = g′/d.

Reduction II (degree bounding). Given such a denomina-
tor bound, it suffices to look only for ci ∈ � and polynomial
solutions g ∈ � [t] with (5). Next, we compute a degree
bound b ∈ � 0 for these polynomial solutions.

Reduction III (polynomial degree reduction). Given such
a degree bound one looks for ci ∈ � and gi ∈ � such that (5)

holds for g =
� b

i=0 git
i. This can be achieved as follows.

First derive the possible leading coefficients gb by solving a
specific PLDE in ( � , σ), then plug its solutions into (5) and

recursively look for the remaining solutions g =
� b−1

i=0 git
i.

Thus one can derive the solutions of a PLDE over ( � (t), σ)
by solving several PLDEs in ( � , σ).

As already worked out in [12], this reduction leads us to a
complete algorithm that solves PLDEs for m = 1. Moreover,
in [25] based on results from [5, 21, 23, 12] we show that
this reduction delivers a method that eventually produces
all solutions for the higher order case m ≥ 2.

Finally, we mention a refined version of parameterized
telescoping (5) (m = 1, a0 = −1, a1 = 1). If no solution
exists in � , we can decide if there exists a solution in a
ΠΣ∗-extension of � where the sums and products are not
more deeply nested than the original expressions in the fi.
If � is a ΠΣ-field, this problem has been solved in [24]. Also
this algorithm carries over if � contains free variables; see
Remark 4 for details.

Example 3. Applying our refined telescoping algorithm to
the sum (4) gives the identity

n�
k=0

kXn+k = (n + 1)

n�
k=1

Xk−1 −

n�
k=1

kXk−1

− (n + 2)
n�

k=1

X2k−2 + 2
n�

k=1

kX2k−2

− (n + 1)
n�

k=1

X2k−1 + 2
n�

k=1

kX2k−1 + nX2n.

Despite being more lengthy, this representation is preferred,
because it only contains indefinite sums.

Remark 1. (Denominator bounding) It was shown in [12]
that a denominator bound d can be computed if m = 1. For
the case m ≥ 2 this problem is not completely solved: For
Σ∗-extensions we still can compute a denominator bound,
but if t is a Π-extension, we find the denominator bound
only up to a power of t. The corresponding algorithms can
be found in [21, Algorithm 1] by combining certain subprob-
lems solved in [12, Corollary 1, Theorem 2, Theorem 4].



Remark 2. (Degree bounding) A degree bound can be
computed if m = 1. For the case m ≥ 2 we have algorithms
only for various special cases [23].

Remark 3. (Degree reduction) Following the reduction re-
cursively, one can solve PLDEs in � (t) if one can com-
pute all the needed denominators (Reduction I) in � [t] and

� (t1) . . . (ti−1)[ti], the degree bounds (Reduction II) in � [t]
and � (t1) . . . (ti−1)[ti], and all the resulting PLDEs in �
obtained by recursive application of Reduction III. Here the
following remarks are in place.
(1) If � is the constant field, solving PLDEs in � reduces
to linear algebra [25, page 805]. Also if � is a free difference
field, PLDEs can be solved; see Section 2.2.
(2) If m = 1, degree and denominator bounds can be com-
puted in � [t] and � (t1) . . . (ti−1)[ti]; see Remarks 1 and 2.
Hence we get a complete algorithm for solving PLDEs.
(3) If m ≥ 2, denominator and degree bounds can be com-
puted only partially so far. But, as worked out in [25, The-
orem 5.3], the reduction leads to a recursive enumeration
procedure that eventually outputs all solutions of a given
PLDE in � (t).

Remark 4. (Refined telescoping) We obtain the algorithm
for this problem by combining results from [21, 23, 24, 12].
Namely, there are algorithms for computing denominator
and degree bounds which have the additional property that
they are extension-stable; this follows by [21, Thm. 10], [23,
Thm. 17], and the fact that one can handle certain sub-
problems in � ; see [12, Theorems 1, 3, 4]. Using this fact,
we obtain an algorithm that solves the refined telescoping
problem; see [24, Thms. 6, 8].

3. NEGATIVE RESULTS
With an implementation of the algorithm described in the

previous section, we have searched for variations of the def-
inite sum

� n

k=0 kXn+k of Example 1. These experiments
have led us to the following theorem, which gives an explicit
a priori criterion for which sequences fn,k a linear recurrence
for the general definite sum

� n

k=0 fn,kXn+k is found.

Theorem 1. Let ( � , σ) be a difference field with constant

field � , and let f0, . . . , fr ∈ � . Then there exist c0, . . . , cr ∈
� and g ∈ � 〈x〉 with

σ(g)− g = c0f0x0 + c1f1x1 + · · · + crfrxr

if and only if there exist b0, . . . , br ∈ � with

b0σ
r(f0) + b1σ

r−1(f1) + · · · + brfr = 0.

Proof. Suppose first that f0, . . . , fr are such that there
exist b0, . . . , br ∈ � with

b0σ
r(f0) + b1σ

r−1(f1) + · · · + brfr = 0. (7)

Then ck := bk (k = 0, . . . , r) and

g := a0x0 + a1x1 + · · · + ar−1xr−1,

where ak = −
� k

i=0 biσ
k−i(fi) are as required: We have

σ(g) − g = −a0x0 +

r−1�
k=1

(σ(ak−1) − ak)xk + σ(ar−1)xr

= b0f0x0 + · · · + brfrxr,

because

−a0 = b0f0

σ(ak−1) − ak = −

k−1�
i=0

biσ
(k−1)−i+1(fi) +

k�
i=0

biσ
k−i(fi)

= bkfk (k = 1, . . . , r − 1)

σ(ar−1) = −

r−1�
i=0

biσ
r−i(fi)

(7)
= brfr.

This proves the first implication. Now, assume that there
exist c0, . . . , cr ∈ � and g ∈ � 〈x〉 such that

σ(g)− g = c0f0x0 + c1f1x1 + · · · + crfrxr. (8)

The element g is a rational function in xi (i ∈ � ) with
coefficients in � . However, g can have neither a nontrivial
denominator nor a nonlinear term w.r.t. the xi, because then
σ(g) − g would have nontrivial denominator or a nonlinear
term as well. Furthermore, g must be free of all xi with
i < 0 or i ≥ r, for otherwise σ(g) − g would contain some
xi with i < 0 or i > r in mismatch with the right hand side
of (8). Thus g can only have the form

g = a0x0 + a1x1 + · · · + ar−1xr−1

for certain ai ∈ � . Now

σ(g) − g = −a0x0 +
r−1�
k=1

(σ(ak−1) − ak)xk + σ(ar−1)xr,

and comparing coefficients of xk (k = 0, . . . , r − 1) with the
right hand side of (8) gives

a0 = −c0f0

a1 = σ(a0) − c1f1 = −(c0σ(f0) + c1f1)

...

an−1 = σ(ar−2) − cr−1fr−1 = −

r−1�
i=0

ciσ
(r−1)−i(fi).

Comparing finally the coefficient of xr gives

crfr = σ(ar−1) = −
r−1�
i=0

ciσ
(r−1)−i+1(fi),

and therefore we must have

c0σ
r(f0) + c1σ

r−1(f1) + · · · + crfr = 0,

as claimed.

For obtaining a recurrence equation of the definite sum
Sn :=

� n

k=0 fn,kXn+k via creative telescoping, we choose
f0 = fn,k, f1 = fn+1,k,. . . , fr = fn+r,k (or more precisely,
corresponding difference field elements). Thus the above
theorem states that a recurrence for Sn is found via creative
telescoping if and only if the antidiagonal sequences fi−k,k

(i ∈ � ) are all solutions of a single homogeneous linear re-
currence whose coefficients are constant with respect to k:

Corollary 1. Creative telescoping delivers a recurrence

for a definite sum
� n

k=0 fn,kXn+k, where fn,k is free of Xk,

if and only if there exist constants b0, . . . , br such that

b0fn,k+r + b1fn+1,k+r−1 + · · · + brfn+r,k = 0

for all n and k.



Similar criteria can be obtained for sums of the form

Sn =
n�

k=0

fn,kXan+bk

for any fixed a, b ∈ � . For a = 1, b = −1, we find the
criterion that c0, . . . , cr ∈ � and g ∈ � 〈x〉 with

σ(g)− g = c0f0x0 + c1f1x−1 + · · · + crfrx−r

exist iff there exist b0, . . . , br ∈ � with

b0f0 + b1σ(f1) + · · · + crσ
r(fr) = 0,

If gcd(a, b) = 1 (which we may assume without loss of gener-
ality by the substitution X ′

i := Xgcd(a,b)i) and |a| > 1, then
a recurrence exists only in the trivial case fn,k ≡ 0. The
case |a| = 1, |b| ≥ 0 leads to a restriction on the summand
similar as the one stated above. The arguments for all these
variations are fully analogous to the proof given above.

The theorem provides a means to obtain creative telescop-
ing recurrences without actually executing the algorithm de-
scribed in Section 2.1.

Example 4. Consider once more the definite sum Sn =� n

k=0 kXn+k of Example 1. In the notation of the theorem,
we have fn,k = k, so we immediately obtain the recurrence

gn,k+1 − gn,k = kXn+k − 2kX(n+1)+k + kX(n+2)+k,

where

gn,k = (k − 1)Xn+k+1 − kXn+k.

Summing on k from 0 to n + 2 leads to the same inhomoge-
neous recurrence which we obtained before.

The more interesting implication of Theorem 1 and Corol-
lary 1 is of course that which allows us to definitely exclude
the existence of creative telescoping recurrences for sums of
a certain shape. For instance, the following results follow
immediately.

Corollary 2. For the following definite sums, no recur-

rence can be found via creative telescoping.

1.
� n

k=0 r(k)Xn+k for any r ∈ � (k) \ � [k],

2.
� n

k=0

�
n

k � Xn+k,

3.
� n

k=0 r(k) � k

i=1 Xn+i for any r ∈ � (k) \ � [k].

For the first two sums, the statement follows from the fact
that rational functions and the binomial coefficients do not
form solutions of homogeneous recurrence equations with
constant coefficients. The third sum can be brought to the
form of Corollary 1 by putting Yk := � k

i=0 Xi, for then

n�
k=0

r(k)

k�
i=1

Xn+i =

n�
k=0

r(k)Yn+k/Yn =
1

Yn

n�
k=0

r(k)Yn+k,

and the factor 1/Yn, which is independent of k, does not
affect the existence of a recurrence. The possibility of such
substitutions extends the range of Corollary 1. In order to
find nontrivial examples, it is necessary to focus on sums
with more complicated summands.

4. POSITIVE RESULTS
We present in this section some general identities which we

have found by using the algorithm described in Section 2.1.
To our knowledge, most of these identities are new. The
examples are separated into indefinite and definite sums.

4.1 Indefinite summation

Example 5. For the sum
� a

k=1(−1)k
� k

j=1 Xj we find the
representation

a�
k=1

(−1)k

k�
j=1

Xj =
1

2

�
(−1)a

a�
k=1

Xk +
a�

k=1

(−1)kXk � .
Specializing Xj gives the following identities.
• Xj := 1

j
:

a�
k=1

(−1)kHk =
1

2
(−1)aHa +

1

2

a�
k=1

(−1)k

k
;

Ha =
� a

k=1
1
k

denotes the harmonic numbers.

• Xj :=
�

n

j−1 � , a := n + 1; see [27, Thm. 4.2]:

n�
k=0

(−1)k+1
k�

j=0

�
n

j � =
1

2
(−1)n+12n.

Example 6. We find

a�
k=1

(−1)k
�
n

k �
k�

j=1

Xj =

1

n

�
(n − a)

�
n

a � (−1)a

a�
k=1

Xk +
a�

k=1

(−1)kk
�
n

k � Xk � .

In particular, in the special case a = n and Xj = 1
jm

where m ≥ 1 we obtain the following simplification. By [13,
Prop. 2.1] we get

n�
k=1

(−1)k

km−1

�
n

k � = −
1

(m − 1)!
Bm−1(. . . , (i − 1)!H

(i)
N , . . . )

where Bm(. . . , xi, . . . ) are the complete Bell polynomials [7]
and

H(s)
n =

n�
k=1

1

ks
, s > 0

are the generalized harmonic numbers. Hence we arrived at
the representation

n�
k=1

(−1)k
�
n

k � H
(m)
k = −

1

n(m − 1)!
Bm−1(. . . , (i−1)!H(i)

n , . . . );

see [15, Thm. 3]. The first instances are:

a�
k=1

(−1)k
�
n

k � Hk = −
1

n
,

a�
k=1

(−1)k
�
n

k � H
(2)
k = −

1

n
Hn,

a�
k=1

(−1)k
�
n

k � H
(3)
k = −

1

2n
(H2

n + H(2)
n ).



Further indefinite summation identities are

a�
k=1

(−1)k
� k�

j=1

Xj −
Xk

2 � 2

=
1

2
(−1)a

� a�
k=1

Xk � 2
−

1

4

a�
k=1

(−1)kX2
k ,

a�
k=1

� k�
j=1

Xj + Xk(k − 1) � 2

= a
� a�

k=1

Xk � 2
−

a�
k=1

kX2
k +

a�
k=1

k2X2
k .

4.2 Definite summation and summability cri-
teria

Example 7. Similarly as in Examples 1 and 3 we find (and
prove) with our difference field machinery the identity

n�
k=0

� k�
i=0

Xn−i � 2

= 2
n�

k=0

Xk

k�
j=0

jXj−1 +
n�

k=0

X2
k +

n�
k=0

kX2
k .

Namely, starting with Sn =
� n

k=0

� � k

i=0 Xn−i � 2

we can

compute by creative telescoping the recurrence

− Xn+1Sn+2 + (Xn+1 + Xn+2)Sn+1 − Xn+2Sn

= −Xn+1Xn+2

�
(n + 2)Xn+1 + (n + 3)Xn+2 � .

Next, we solve this recurrence relation and find the solutions
1,

� n

k=0 Xk for the homogeneous version and the particular
solution

Pn =
n�

k=0

Xk

k�
i=0

�
iXi−1 + Xi + iXi � ;

since Sn = Pn for n = 0, 1, it follows that Pn = Sn for
all n. Finally, applying our indefinite summation algorithm,
we get the simplification

Sn = Pn = 2
n�

k=0

Xk

k�
j=0

jXj−1 +
n�

k=0

X2
k +

n�
k=0

kX2
k .

Example 8. Consider the definite sum

Sn :=
n�

k=1

�
n

k �
k�

j=1

Xj .

With our refined creative telescoping algorithm we can com-
pute the recurrence

Sn+1 − 2Sn =
n�

k=0

�
n

k � Xk+1. (9)

In the next step we would like to solve this recurrence. For
applying our algorithms, we first have to express the definite
sum

Cn :=

n�
k=0

�
n

k � Xk+1

in terms of ΠΣ∗-expressions. To this end, we would nor-
mally compute a recurrence for that sum and afterwards
solve it. However, no recurrence can be found in this case.

(This can also be seen with Corollary 1, because Cn =� n

k=0

�
n

k � Xn+1−k after reversing the order of summation).
Therefore, we try to specialize Xk in such a way that Cn

can be written in a simple form (e.g., can be represented
in form of a ΠΣ∗-extension) and that the solutions of (9)
are nice. Note that (9) gives us a recipe for discovering nice
identities. We may therefore consider (9) as a summability

criterion for the sum Sn.

• Xk = 1
k
: We get easily the identity Cn = 2n+1−1

n+1
and find

the general solution

c2n + 2n
�
Hn −

n�
k=1

1

k2k �
for (9). By choosing c = 0 we obtain

n�
k=1

�
n

k � Hk = 2n
�
Hn −

n�
k=1

1

k2k � ;

see [17, Equ. (41)].
With the same strategy we get the following identities.

• Xk = 1
k2 :

n�
k=1

�
n

k � H
(2)
k = 2n

� n�
k=1

� k

j=1
2j

j

k2k
−

n�
k=1

Hk

k2k � .

• Xk = (k − 1)!:

n�
k=1

�
n

k �
k�

j=1

(j −1)! = 2n
� n�

k=1

k!

k2k
+

n�
k=1

k!
k�

j=1

1
j!

k2k
−

n�
k=1

1

k2k � .

Example 9. We attack the sum

Sn :=
n�

k=1

�
n

k � 2
k�

j=1

Xj

as in the previous example. First, we compute the recur-
rence

(n + 1)Sn+1 − 2(2n + 1)Sn =
n�

k=0

(3n − 2k + 1)
�
n

k � 2
Xk+1.

Looking at this summability criterion we find the following
identities.
• Xk = 1

k
; see [8, Equ. 2.26]:

n�
k=1

�
n

k � 2
Hn =

�
2n

n � (2Hn − H2n).

• Xk = 1
k2 :

n�
k=1

�
n

k � 2
H

(2)
k =

�
2n

n � (2H(2)
n − 3

n�
k=1

1

k2
�
2k

k � ).

Example 10. We compute for

Sn =

n�
k=0

Xk

n−k�
i=1

Yi

the recurrence

Sn+1 − Sn =
n�

k=0

XkYn−k+1.



With this summability criterion we find the following iden-
tities.
• Xk = 1

k!
, Yk = 1

(k−2)!
:

n�
k=0

1

k!

n−k�
j=1

1

(j − 2)!
=

1

2

n−1�
k=1

2k

(k − 1)!
.

• Xk = Hk, Yk = 1
k
; see [14, Chapter 1.2.7, Exercise 22]:

n�
k=0

HkHn−k = 2n(1 − Hn) + (n + 1)H2
n − (n + 1)H(2)

n .

5. CONCLUSION
The extension of symbolic summation algorithms to free

difference fields allows one the discovery of general fami-
lies of summation identities, depending on unspecified se-
quences. We have illustrated in this paper how the ΠΣ-
theory for nested sum expressions can be extended, and we
have found several general identities with the modified sum-
mation algorithms. We have also indicated (Section 3) that
interesting relations can only be found for sums whose sum-
mand exceeds a certain level of sophistication; if it is too
simple, then only trivial relations remain.

Though our extension itself is not very difficult, it should
be remarked that it is based on a highly developed machin-
ery for generating and solving recurrence equations with dif-
ference fields. Without using, for instance, algorithms that
can optimize the nesting depth of sum expressions, we would
hardly have been able to find any of the nontrivial examples
in Section 4. Once general identities like those of Section 4
are available, they may be specialized in such a way that
well-developed theories and/or algorithms can be applied for
further processing. Example 6 points into that direction.
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