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» Identities involving sums and products

n k n
ZZ%=—H+(R+1)Z% (n>1)
k=1

k=1 1i=1

» |dentities about the Fibonacci numbers

n _ 1)k

= FiFi Foa

» Identities with orthogonal polynomials, double exponential
sequences, ...

» Routines are desired which not only prove but also find such
identities.
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Typical Combinatorial Inequalities

» Inequalities involving sums and products

n n+1
3k+4 2 1
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» Inequalities about the Fibonacci numbers
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=1 k n+2

> Inequalities like
(3 V8)7 = (3 9) n=
k=1 k=1

» “Combinatorial” here just means that the inequality depends
on a discrete parameter n. Inequalities like sinx < z (z > 0)
are out of scope.
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Known Algorithms for Proving ldentities

» Summation Algorithms

Gosper's algorithm

Zeilberger's algorithm

Sister Celine's algorithm

Karr's algorithm

... variations and generalizations of those ...

vV vy vy VvYy

» Generating Function Algorithms (remember Paule’s talk)

» Today: An algorithm for proving identities, which is applicable
to a much larger input class.
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Proof by Induction: Outline

>

Note: Proving an identity A = B amounts to testing zero
equivalence of A — B.
Task: Given a sequence (fy,), prove that

Yn>0:f,=0.
Idea: Find an N > 0 such that
(Vn>0:f,=0) < (fo=fi=---= fnv_1=0).

Then zero equivalence of (f,,) can be decided by just
evaluating the sequence at the first N points.
Clearly: Every N > 0 with

Vn>0: (fn-fn-i—l = fatN-1=0 = fn—I—N:O)
does the job.
Proof: If N has this property and fy =--- = fy_1 = 0 then
f =0 by induction. If not fo =---= fy_1 =0, then f £0
anyway.
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Proof by Induction: Use Knowledge
» Method: try for N =1,2,3,... whether

Vn>0:(fo=for1="=forn =0 = foynt1=0)
Stop as soon as this is the case and output the

corresponding N.
» Sufficient: if

Vag,...,zny xp=x1=--=xny_1=0 = 2y =0
then N certainly qualifies.

» But: This can hardly be true for any N, if zg,...,zN are
independent.

» Here, we need not assume that xg,...,zn be independent! If
(fn) is defined via recurrence equations, then these equations
give rise to known polynomial relations

p1(zo0s- -, oN) = = pm(z0,...,2N) =0
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Proof by Induction: Use Knowledge and Computer Algebra

» Thus we may deliver an N with

Vro,...,ant1:(pr==pm=z0=x1=---=2N =0)
- .TNJ,_]_:O

» In other words, an N with

TN4+1 € Rad(pl, ey Pm,y X0y - ,xN).

» This can be decided using Grobner Bases. (]
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Example: Cassini's Identity

> Let's prove F2,, — FF0 = (—1)".
» Introduce some variables x;, y; with the correspondence

2~ (Fovi) i~ (D" (1=0,1,2,3,...)
» Then we know
To =21 +2Tg, T3I=2T2+T1, Tg=2x3+ T2 ...
Y1 = —Yo, Y2 = —Y1, Y3 = —y2,
» First iteration (N = 0):
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Example: Cassini's Identity

> Let's prove F2,, — FF0 = (—1)".
» Introduce some variables x;, y; with the correspondence
2~ (Fovi) i~ (D" (1=0,1,2,3,...)
» Then we know
Ty =x1+ X0, T3=T2+T1, T4=T3+ T2, ...
Y1 = —Yo, Y2 = —Y1, Y3 = —Y2,
» First iteration (N = 0):
x% — ToT2 — Y1 é Rad{xy — x1 — xo,y1 + Yo, y2 +y1) false.
» Second iteration (N = 1):
75 — 1173 — Y2 ¢ Rad (27 — wox2 — 1, 72 — #1 — o,
T3 — T2 — T1,Y1 + Yo, Y2 + Y1) true.
» The proof is completed by checking the claim for n = 0.
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When is the Method Applicable?

» This class of sequences is really big!

» It contains many special sequences such as
n, Fn, Fm, Fp, Pyx), L(z), C)'(x),
» It satisfies important closure properties such as
+,,—,/, X, M, K, affine transforms

» Theorem. For all sequences from this class, the algorithm
described before terminates (i.e., a value N is always found).

» In particular: Zero equivalence is decidable for this class.
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Known Algorithms for Proving Inequalities

» None.

» Today: A method for proving inequalities, which succeeds for
a great many instances.
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» Note: Proving an inequality A > B amounts to testing
positivity of A — B.
» Task: Given a sequence (f,), prove that

VYn>0:f,>0.
» ldea: Find an N > 0 such that
(Vn>0:f,>0) < (fo>0Af1>0A"--Afn_1>0).
» Clearly: Every N > 0 with
Vn>0:(fn>0A A fpan-1>0 = foin >0)

does the job.

» Proof: If N has this property and fo > 0,..., fy—1 > 0 then
f > 0 by induction. If not fo >0,..., fy_1 >0, then f #0
anyway.
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Proof by Induction: Use Knowledge
» Method: try for N =1,2,3,... whether
Vn>0:(fn >0A A fayn >0 = foiny1 >0)

Stop as soon as this is the case and output the
corresponding N.
» Sufficient: if

Vag,...,xny 290 >0Ax21 >0A---ANxzy_1>0 = axny >0

then N certainly qualifies.

» Again, this will be false if xg, ...,z are independent
variables.

» Again, we assume knowledge (e.g., defining recurrences)
about (f,) to be given, and extend the hypothesis accordingly.

» This knowledge may be anything that gives rise to polynomial
(in)equalities for the x;.
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Proof by Induction: Use Knowledge and Computer Algebra

» Thus we may deliver an N with

V:Eo,...,mNH:(p1§0,...pm§0,xo>0,...xz\/>0)
- xN+1>0

for certain explicit polynomials p1, ..., pm.

» This can be decided using Cylindrical Algebraic
Decomposition. [l

» The method can be applied to the same class of sequences as
the identity prover explained before.
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» Let's prove (z+1)" > 1+ nz for z > =1, n > 0.
» Introduce some variables x;, y; with the correspondence

zi~(z+ )" yi~n+i (1=0,1,2,3,...)
» Then we know
x1=(2z+1Dxo, x2=(2+1)z1, 23=(2+4+1)22, ...
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Example: Bernoulli's Inequality
» Let's prove (z+1)" > 1+ nz for z > =1, n > 0.
» Introduce some variables x;, y; with the correspondence
i~ (+D)" yi~n+i (i=0,1,2,3,...)
» Then we know
x1=(2z+1Dxo, x2=(2+1)z1, 23=(2+4+1)22, ...
y1 =9 +1, y2=v1+1, B=y2+1
» First iteration (N = 0):
Vxo,yo,2: 2> —1 = x9g > 1+1ypz false.
» Second iteration (N = 1):
V2o, Yo, X1,Y1,2: 2 > —1ANzg > 1+ yoz Az = (2 + 1)z
ANy1=vy+1 = 21 >1+y12 true

» The proof is completed by checking the claim for n = 0.
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Example: Bernoulli’'s Inequality

> Let's have a look at the functions (z + 1)" — (1 + nz) for
n=1273...:

60

20

» The picture suggests that Bernoulli's inequality already holds
for z > —2. Is this true?
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Example: Bernoulli’'s Inequality

» Apply the method:

» N =0...false.
» N =1... false.
» N =2.. false.
» N =3.. . true.

» Now it only remains to check n =0,1,2:
» n=20:1>10K.
» n=1 z+1>24+10K.
> n=2: 224+224+1>1+220K. 0O.

» Conclusion: We have generalized Bernoulli's inequality.
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Some Computational Theoretic Remarks

» Is this a Decision Procedure?
» No. There are examples where the procedure does not
terminate.
» But a decision procedure is too much to hope for.
» If a decision procedure existed, we could also decide
In : f, = 0 (root finding), by simply applying the algorithm to
f2>0.
> Already for small classes of sequences, subincluded in ours, it is
open whether root finding is decidable.
» Then, is it a Semi Decision Procedure?
> Also not.
» Because it can be semidecided that an inequality does not hold
(enumerate all n > 0 in search of a counterexample)
» Together with a semi decision procedure for proving
inequalities, we would obtain a decision procedure.
» Then, What is it?
> It's just a method that often succeeds.



