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I Identities with orthogonal polynomials, double exponential
sequences, . . .

I Routines are desired which not only prove but also find such
identities.
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I “Combinatorial” here just means that the inequality depends
on a discrete parameter n. Inequalities like sinx < x (x ≥ 0)
are out of scope.
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Known Algorithms for Proving Identities

I Summation Algorithms
I Gosper’s algorithm
I Zeilberger’s algorithm
I Sister Celine’s algorithm
I Karr’s algorithm
I . . . variations and generalizations of those . . .

I Generating Function Algorithms (remember Paule’s talk)

I Today: An algorithm for proving identities, which is applicable
to a much larger input class.
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Proof by Induction: Outline

I Note: Proving an identity A = B amounts to testing zero
equivalence of A − B.

I Task: Given a sequence (fn), prove that

∀n ≥ 0 : fn = 0.

I Idea: Find an N ≥ 0 such that

(∀n ≥ 0 : fn = 0) ⇐⇒ (f0 = f1 = · · · = fN−1 = 0).

Then zero equivalence of (fn) can be decided by just
evaluating the sequence at the first N points.

I Clearly: Every N ≥ 0 with

∀n ≥ 0 : (fn = fn+1 = · · · = fn+N−1 = 0 =⇒ fn+N = 0)

does the job.
I Proof: If N has this property and f0 = · · · = fN−1 = 0 then

f ≡ 0 by induction. If not f0 = · · · = fN−1 = 0, then f 6≡ 0
anyway.
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Proof by Induction: Use Knowledge

I Method: try for N = 1, 2, 3, . . . whether

∀n ≥ 0 : (fn = fn+1 = · · · = fn+N = 0 =⇒ fn+N+1 = 0)

Stop as soon as this is the case and output the
corresponding N .

I Sufficient: if

∀x0, . . . , xN : x0 = x1 = · · · = xN−1 = 0 =⇒ xN = 0

then N certainly qualifies.
I But: This can hardly be true for any N , if x0, . . . , xN are

independent.
I Here, we need not assume that x0, . . . , xN be independent! If

(fn) is defined via recurrence equations, then these equations
give rise to known polynomial relations

p1(x0, . . . , xN ) = · · · = pm(x0, . . . , xN ) = 0
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Proof by Induction: Use Knowledge and Computer Algebra

I Thus we may deliver an N with

∀x0, . . . , xN+1 : (p1 = · · · = pm = x0 = x1 = · · · = xN = 0)

=⇒ xN+1 = 0

I In other words, an N with

xN+1 ∈ Rad〈p1, . . . , pm, x0, . . . , xN 〉.

I This can be decided using Gröbner Bases. ¤
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Example: Cassini’s Identity

I Let’s prove F 2
n+1 − FnFn+2 = (−1)n.

I Introduce some variables xi, yi with the correspondence

xi ∼ (Fn+i) yi ∼ ((−1)n+i) (i = 0, 1, 2, 3, . . . )

I Then we know

x2 = x1 + x0, x3 = x2 + x1, x4 = x3 + x2, . . .

y1 = −y0, y2 = −y1, y3 = −y2, . . .

I First iteration (N = 0):

x2
1 − x0x2 − y1

?∈ Rad〈x2 − x1 − x0, y1 + y0, y2 + y1〉 false.

I Second iteration (N = 1):

x2
2 − x1x3 − y2

?∈ Rad〈x2
1 − x0x2 − y1, x2 − x1 − x0,

x3 − x2 − x1, y1 + y0, y2 + y1〉 true.

I The proof is completed by checking the claim for n = 0.
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the same way.

I Recurrence scheme:

fn+1 = ratf (gn, gn+1, hn, hn+1, fn)

gn gn+1 gn+2 gn+3 gn+4 . . .
hn hn+1 hn+2 hn+3 hn+4 . . .
fn fn+1 fn+2 fn+3 fn+4 . . .
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When is the Method Applicable?

I This class of sequences is really big!

I It contains many special sequences such as

n, Fn, F2n , FFn
, Pn(x), Lα

n(x), Cm
n (x), . . .

I It satisfies important closure properties such as

+, ·,−, /, Σ, Π, K, affine transforms

I Theorem. For all sequences from this class, the algorithm
described before terminates (i.e., a value N is always found).

I In particular: Zero equivalence is decidable for this class.
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Known Algorithms for Proving Inequalities

I None.

I Today: A method for proving inequalities, which succeeds for
a great many instances.
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positivity of A − B.
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Proof by Induction: Outline

I Note: Proving an inequality A > B amounts to testing
positivity of A − B.

I Task: Given a sequence (fn), prove that

∀n ≥ 0 : fn > 0.

I Idea: Find an N ≥ 0 such that

(∀n ≥ 0 : fn > 0) ⇐⇒ (f0 > 0 ∧ f1 > 0 ∧ · · · ∧ fN−1 > 0).

I Clearly: Every N ≥ 0 with

∀n ≥ 0 : (fn > 0 ∧ · · · ∧ fn+N−1 > 0 =⇒ fn+N > 0)

does the job.

I Proof: If N has this property and f0 > 0, . . . , fN−1 > 0 then
f > 0 by induction. If not f0 > 0, . . . , fN−1 > 0, then f 6> 0
anyway.
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Proof by Induction: Use Knowledge

I Method: try for N = 1, 2, 3, . . . whether

∀n ≥ 0 : (fn > 0 ∧ · · · ∧ fn+N > 0 =⇒ fn+N+1 > 0)

Stop as soon as this is the case and output the
corresponding N .
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corresponding N .

I Sufficient: if

∀x0, . . . , xN : x0 > 0 ∧ x1 > 0 ∧ · · · ∧ xN−1 > 0 =⇒ xN > 0

then N certainly qualifies.
I Again, this will be false if x0, . . . , xN are independent

variables.
I Again, we assume knowledge (e.g., defining recurrences)

about (fn) to be given, and extend the hypothesis accordingly.
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Proof by Induction: Use Knowledge

I Method: try for N = 1, 2, 3, . . . whether

∀n ≥ 0 : (fn > 0 ∧ · · · ∧ fn+N > 0 =⇒ fn+N+1 > 0)

Stop as soon as this is the case and output the
corresponding N .

I Sufficient: if

∀x0, . . . , xN : x0 > 0 ∧ x1 > 0 ∧ · · · ∧ xN−1 > 0 =⇒ xN > 0

then N certainly qualifies.
I Again, this will be false if x0, . . . , xN are independent

variables.
I Again, we assume knowledge (e.g., defining recurrences)

about (fn) to be given, and extend the hypothesis accordingly.
I This knowledge may be anything that gives rise to polynomial

(in)equalities for the xi.
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Proof by Induction: Use Knowledge and Computer Algebra

I Thus we may deliver an N with

∀x0, . . . , xN+1 : (p1 Q 0, . . . pm Q 0, x0 > 0, . . . xN > 0)

=⇒ xN+1 > 0

for certain explicit polynomials p1, . . . , pm.

RISC-Linz Manuel Kauers



Inequalities Computer Algebra Proofs for Combinatorial Inequalities and Identities

Proof by Induction: Use Knowledge and Computer Algebra

I Thus we may deliver an N with

∀x0, . . . , xN+1 : (p1 Q 0, . . . pm Q 0, x0 > 0, . . . xN > 0)

=⇒ xN+1 > 0

for certain explicit polynomials p1, . . . , pm.
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Proof by Induction: Use Knowledge and Computer Algebra

I Thus we may deliver an N with

∀x0, . . . , xN+1 : (p1 Q 0, . . . pm Q 0, x0 > 0, . . . xN > 0)

=⇒ xN+1 > 0

for certain explicit polynomials p1, . . . , pm.

I This can be decided using Cylindrical Algebraic

Decomposition. ¤
I The method can be applied to the same class of sequences as

the identity prover explained before.
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I Let’s prove (z + 1)n ≥ 1 + nz for z ≥ −1, n ≥ 0.
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I Let’s prove (z + 1)n ≥ 1 + nz for z ≥ −1, n ≥ 0.
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I Then we know

x1 = (z + 1)x0, x2 = (z + 1)x1, x3 = (z + 1)x2, . . .
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RISC-Linz Manuel Kauers



Inequalities Computer Algebra Proofs for Combinatorial Inequalities and Identities

Example: Bernoulli’s Inequality

I Let’s prove (z + 1)n ≥ 1 + nz for z ≥ −1, n ≥ 0.
I Introduce some variables xi, yi with the correspondence
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I Then we know
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y1 = y0 + 1, y2 = y1 + 1, y3 = y2 + 1, . . .

I First iteration (N = 0):

∀x0, y0, z : z ≥ −1 =⇒ x0 ≥ 1 + y0z false.
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Example: Bernoulli’s Inequality

I Let’s prove (z + 1)n ≥ 1 + nz for z ≥ −1, n ≥ 0.
I Introduce some variables xi, yi with the correspondence

xi ∼ (z + 1)n+i yi ∼ n + i (i = 0, 1, 2, 3, . . . )

I Then we know
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∧ y1 = y0 + 1 =⇒ x1 ≥ 1 + y1z
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Example: Bernoulli’s Inequality

I Let’s prove (z + 1)n ≥ 1 + nz for z ≥ −1, n ≥ 0.
I Introduce some variables xi, yi with the correspondence

xi ∼ (z + 1)n+i yi ∼ n + i (i = 0, 1, 2, 3, . . . )

I Then we know

x1 = (z + 1)x0, x2 = (z + 1)x1, x3 = (z + 1)x2, . . .

y1 = y0 + 1, y2 = y1 + 1, y3 = y2 + 1, . . .

I First iteration (N = 0):

∀x0, y0, z : z ≥ −1 =⇒ x0 ≥ 1 + y0z false.

I Second iteration (N = 1):

∀x0, y0, x1, y1, z : z ≥ −1 ∧ x0 ≥ 1 + y0z ∧ x1 = (z + 1)x0

∧ y1 = y0 + 1 =⇒ x1 ≥ 1 + y1z true.

I The proof is completed by checking the claim for n = 0.
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Example: Bernoulli’s Inequality

I Let’s have a look at the functions (z + 1)n − (1 + nz) for
n = 1, 2, 3, . . . :
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Example: Bernoulli’s Inequality

I Let’s have a look at the functions (z + 1)n − (1 + nz) for
n = 1, 2, 3, . . . :

7−−−−−−−−−−−−−−−−−−−→
7−−−−−−−−−−−−−−−−−−−−−−−−−→

-4 -2 2 4

-40

-20

20

40

60

I The picture suggests that Bernoulli’s inequality already holds
for z ≥ −2. Is this true?
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I N = 1. . .
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.
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Example: Bernoulli’s Inequality

I Apply the method:
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I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1 OK.
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1 OK.
I n = 1: z + 1 ≥ z + 1
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1 OK.
I n = 1: z + 1 ≥ z + 1 OK.
I n = 2: z2 + 2z + 1 ≥ 1 + 2z
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Example: Bernoulli’s Inequality

I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1 OK.
I n = 1: z + 1 ≥ z + 1 OK.
I n = 2: z2 + 2z + 1 ≥ 1 + 2z OK. ¤.
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I Apply the method:
I N = 0. . . false.
I N = 1. . . false.
I N = 2. . . false.
I N = 3. . . true.

I Now it only remains to check n = 0, 1, 2:
I n = 0: 1 ≥ 1 OK.
I n = 1: z + 1 ≥ z + 1 OK.
I n = 2: z2 + 2z + 1 ≥ 1 + 2z OK. ¤.

I Conclusion: We have generalized Bernoulli’s inequality.
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I Pn+1(x)2 − Pn(x)Pn+2(x) ≥ 0 (for −1 ≤ x ≤ 1)
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I . . .
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Some Computational Theoretic Remarks

I Is this a Decision Procedure?
I No. There are examples where the procedure does not

terminate.
I But a decision procedure is too much to hope for.
I If a decision procedure existed, we could also decide

∃n : fn = 0 (root finding), by simply applying the algorithm to
f2

n
> 0.

I Already for small classes of sequences, subincluded in ours, it is
open whether root finding is decidable.

I Then, is it a Semi Decision Procedure?
I Also not.
I Because it can be semidecided that an inequality does not hold

(enumerate all n ≥ 0 in search of a counterexample)
I Together with a semi decision procedure for proving

inequalities, we would obtain a decision procedure.

I Then, What is it?
I It’s just a method that often succeeds.
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