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Abstract

We describe the Mathematica package ZET that provides functions for decid-
ing zero equivalence of a very large class of sequences. After specifying the
class of admissible sequences, we give a thorough introduction to the usage of
the package.

Contents
1 Introduction 2
2 Installation and System Requirements 2
3 A Quick start 3
4 Mathematical Background 4
4.1 Admissible Sequences . . . . ... ..o 4
4.2 Sequences of Variables . . . . ... ... ... o L. 5
4.3 Analytical vs. Algebraic Correctness . . . . . . ... ... ... ... 5
5 User Manual 5
5.1 Definition of Sequences . . . . . . ... oL 6
5.1.1 Form of the Recurrence . . . ... ... ... ... .. .... 6
5.1.2 Inmitial Values . . . . . .. .. ... L oL 7
5.1.3 Definition of free sequences . . . . . .. ... ... .. 8
5.1.4 Overwriting and Extending Definitions . . . . . . . . ... .. 8
5.1.5 Failing Definitions . . . . . . ... ... ... ... o, 10
5.1.6 Removing Definitions . . . . ... ... ... L0 11
5.2 Input by High-Level Expressions . . . . ... ... ... ....... 11
5.2.1 Built-in Atomic Expression . . . . ... ... ... ... ... 11
5.2.2 Built-in Closure Properties . . . . . .. ... ... ...... 12
5.2.3 Prettyprinting . . . .. ... oo 0oL 13
5.3 Evaluation of Sequences . . . . . . . . ... ... 14
5.4 Deciding Zero Equivalence . . . . . . ... ..o 14
5.4.1 The Zero Equivalence Test and Proving Identities . . .. .. 14

* Partially supported by the Austrian Science Foundation (FWF) grant F1305 and the German
Academic Exchange Service (DAAD) grant D/03/40515



5.4.2 Options . . . . ... e 16

5.5 Additional Functions . . . . . . . . .. ... o 16
5.5.1 Automated Proof Generation (Experimental) . . . . ... .. 16

5.5.2  Some Sum Manipulation Tools . . . ... ... ... ..... 17

6 Internals and Technicalities 18
6.1 The sequence database . . . . . . . .. ... ... 18
6.2 BugParade . .. ... ... ... 20

A Example Gallery 21
Al Exercise 6.61 . . . . . .. ... 21
A2 Exercise 5.93 . . . . . Lo 21
A.3 The Christoffel-Darboux identity for orthogonal polynomials . . . . 22
A4 Exercise 5.12 . . . .. oL 23
A.5 Disproving, Order messages, and Startpoints . . . . . ... ... .. 23

B Automatically Generated Proofs 25
B.l Gaul’sum. . . .. .. ... 25
B.2 The multinomial theorem for exponent 2 . . . . . . . .. .. ... .. 26
B.3 An automated disproof . . . . . .. ... oL 27

C Summary of Functions 28

1 Introduction

This document describes the Mathematica package ZET which provides an imple-
mentation of a new algorithm for proving zero equivalence of certain sequences.
This algorithm and its theoretical background is described elsewhere [4, 5].

In this document, we do not repeat theoretical aspects that are dealt with in the
original papers. Rather, we want to provide a user manual for our Mathematica
package. Theoretical aspects (such as the definition of admissible sequences in
Section 4) are only included as far as they are of importance for the user.

The package is meant as a prototype implementation of our algorithm, and although
we carefully tested it, we cannot guarantee its correctness in all circumstances. Any
user encountering an unexpected behavior is encouraged to send a bug report to
manuel@kauers.de.

How to read this manual: After some notes on installation and system requirements
(Section 2), we present a first tour showing how to handle a number of common
example situations with the package (Section 3). After that, we define in Section 4
the class of sequences that can be dealt with by the package. The next section,
Section 5, provides a comprehensive survey of the functionality of the package.
Section 6 contains some implementation notes which will not be of interest for most
users. Some additional material is enclosed as an appendix.

2 Installation and System Requirements

There is no complication concerning installation of the package. Just put the pack-
age file into a directory where Mathematica is able to find it. A choice that should



always work is the directory from which Mathematica is started, i.e., the directory

After Mathematica has been started, the package has to be loaded. You may use
the command

In[1]:= << Zet.m
for loading the package. (This should be the first thing you do in a session in which

you want to use the package.) If Mathematica succeeds in finding the package, it
will print a copyright note of the following form:

Zet Package by Manuel Kauers — (© RISC Linz — V 0.1 (04-02-16)

Otherwise, it will print a message.

Get::noopen : Cannot open Zet.m

Out[1]= $Failed

The package has been developed and tested for Mathematica 5. Probably it will
also run under later versions of Mathematica 4 (e.g., under 4.2), but we do not
expect it to run under older versions of Mathematica.

3 A Quick start

After the package has been installed and loaded into Mathematica (see the previous
Section), functions for defining sequences and proving their equality are available.
The function for proving the equality of two sequences is IdenticalQ. It takes the
equation to be proven as an argument. In addition, it is necessary to specify the
induction variable by the option ForAll. IdenticalQ returns True, False, or the
symbol Unknown. Examples are in order.

In[2]:= Identica]Q[Zi == in(n+1),ForAll - n]
i=1

Oout[2]= True
n
In[3]:= IdenticalQ[Zi == 1n(n —1),ForAll — n]
i=1
Out[3]= False
Note that ZET redefines Mathematica’s Sum function such that no attempts are

made in order to compute symbolic sums. Yet it is still possible to evaluate sums
if the bounds are integers. A similar remark holds for products.

In[4]:= Sum[i, {4, 1,n}] // InputForm
Out[4]= Sumls, {3,1,n}]
In[5]:= Sum[z, {i, 1, 20}]
Out[5]= 210
A lot of sequences can be entered in terms of usual expressions, but it is also possi-

ble to define additional sequences using the command DefineSequence. Definitions
made with this command are stored in a global database, and can be used both in



In[6]:=

In[7]:=

In[8]:=

Out[8]=

Identical@ and in the definition of further sequences. For example, the sequence
f(n) =37, g(i) where g(n) is defined by the recurrence

n

g(n+3) =2n’g(n+2) +2"g(n) + > _ -, =g(2)=n
=0

s._.

may be defined by the commands

DefineSequence[g[n + 3] == 2n’g[n + 2] + 2"g[n] + > _ 1/i,g[1] == Pi, g[2] == Pi]

DefineSequence[f[n] == Zg[l]]

We may use undefined sequences in the definition of another sequences. It is then
assumed that the undefined sequence bears no algebraic relation (recurrence) with
other sequences. This feature is useful for proving identities in an undetermined
number of variables, see [5] for theoretical details.

Sequences from the database can not only be used for proving identities, but they
can also be evaluated at integer points. The function GetValue takes an expression
in terms of defined sequences as input and returns the evaluation of that expression
where the running variable takes a value that is specified in the form of an option.
Example:

GetValue[f[n],n — 10]

208093905664

o + 41260445127 + 3394452635¢[0)]

Note that it did not matter that we specified only two initial values in the defini-
tion of g, although three are necessary for a unique definition of a sequence by a
recurrence of order three. ZET inserts symbolic values at undefined points.

4 Mathematical Background

Before specifying the previously introduced commands in a more rigorous manner,
we first provide some mathematical underpinnings about the objects that we are
able to deal with.

4.1 Admissible Sequences

Admissible sequences are defined by certain difference ideals [2] over the field of
rational numbers (or some transcendental or algebraic extension thereof).

The set of admissible sequences may be defined by structural induction as follows. If

(fi(n)o2y,...,(fs(n))22, are admissible sequences (s > 0 fixed; s = 0 establishes
the induction base), if p is a polynomial in the indeterminates z1,. .., (s41)(r41)—1
(r > 0 fixed), and if the sequence (f(n))22, satisfies the recurrence
f(n+r):p(f1(n)7f1(n+1)7 """ ,f1(7’L+T—1),f1(n+T),
fQ(n)7f2(n+1)7 """ ,fg(?’L+T—1),f2(TL+T),
: : (%)
fsn), fs(n+1), ...... Jfsm+r=1), fs(n+7r),
f(n), fn+1), ...... fln+r-1))



or the recurrence f(n + r) = 1/p where p takes the same arguments as above, then

(f(n))2, is also admissible.

The class of admissible sequences is obviously closed under arithmetic operations,
indefinite sums and products. It is further closed under taking continuants (useful
for defining continued fractions), contains doubly exponential sequences like 23"
and so on.

In the original paper [4], admissible sequences are called nested polynomially recur-
rent reflecting the fact that the defining recurrence of admissible sequence need not
be linear, and that the defining recurrences may depend on sequences that have
been defined before (structural induction).

4.2 Sequences of Variables

It is also possible to handle an extended class of admissible sequences. The class
of extended admissible sequences is defined by structural induction as follows. If
(un)2, is a sequence of indeterminates, each u,, algebraically independent of all
others, then the sequence of the u,, is extended admissible. Furthermore, as before,
if (f1(n))S2q, ..., (fs(n))s; are extended admissible sequences (s > 0 fixed), p is
a polynomial in the indeterminates 1, ...,T(s41)(r41)—1 (r > 0 fixed), and the
sequence (f(n))SL, satisfies the recurrence (x) or the recurrence f(n +r) = 1/p
where p takes the same arguments as in (x), then (f(n))22, is also admissible.

Example: The sequence (f(n))52,; with f(n) = Y1, #, is extended admissible.

n=1

4.3 Analytical vs. Algebraic Correctness

The use of extended admissible sequences introduces a complication: The algorithm
of [4] does not terminate for these sequences in general. It does terminate in many
cases in practice, and in these cases its result is fully correct. However, if it doesn’t
terminate, nothing can be said about whether the conjectured identity does or does
not hold.

There is a way to force termination [5]. Sloppily speaking, the key idea is not to
compute in a ring Q[f1, f2,- - ., fm] of sequences, but to compute in the ring

Q(fla“~7fs)[fs+17~-~afm]

where the sequences of variables are considered as part of the ground field. It can
be shown that this modification recovers the termination of the proving algorithm.

The disadvantage of using the field Q(f1,..., fs) is that it allows to divide by
polynomials in fq,..., fs during the algorithm, and hence the proof of an iden-
tity depending on a free sequence x1,z2,... may not be valid for all instances of
Z1,%2,.... This is a common phenomenon in symbolic algorithms. We say that
the algorithm is “algebraically correct” but not necessarily “analytically.” It can
be shown, however, that if the algorithm proves an identity “algebraically correct,”
then this identity holds for almost all instances. Here “almost all” means that the
exceptions form a set of measure zero. On the other hand, if the algorithm returns
False, then the identity is, of course, definitely false.

Both versions of the algorithm are implemented in the package. See the documen-
tation of the proving commands for further information.

5 User Manual

We proceed by a complete description of the functionality provided by the package.



5.1 Definition of Sequences

The package maintains a global database of sequences. The user may add additional
sequences to this database by the command DefineSequence. This command takes
a number of equations defining the sequence as arguments. A sequence is defined
by a recurrence or by initial values or, most commonly, by both.

The recurrence is to be given in the form
name[variable + order] == recurrence
where

e name is a symbol. The sequence will be entered to the database under this
name.

e variable is a symbol. This symbol has only a meaning while defining the se-
quence and it will be forgotten afterwards. (Such variables are called “dummy
variables” in the Mathematica book.)

e order is a nonnegative integer. For all occurrences of name[variable + ¢] on
the right hand side, ¢ must be less than order.

e recurrence is the right hand side of the recurrence defining the sequence. It
has to be of the form described in Section 4, or at least it must be able to
transform it into such a form.

Initial values are given in the form
name[point] == value
where

e name is as above.
e point is an integer for which a special value of the sequence is to be defined.

e value is the value which the sequence takes at the specified point.

The definition of a sequence may consist of zero or one recurrence and zero or more
specifications of initial values. If a recurrence is given, it has to be given as the first
argument.

5.1.1 Form of the Recurrence

The recurrence may be any expression that can successfully be turned into a defining
difference polynomial. This is, according to Section 4, definitely possible, if the right
hand side of the recurrence is a polynomial in (possibly shifted) sequences which
are already in the database and of lower shifts of the sequence to be defined.

Subexpression f[variable 4+ i] where ¢ is an integer but no sequence named f has
been defined before, will cause the definition of a free sequence with name f. If a
free sequence is introduced to the database, the user will be informed about this
step by a message.

Example:

In[1]:= DefineSequence[f[n + 1] == f[n] + z[n]]

Zet:defarbitrary : Definition involves undefined function symbol z which will be regarded as free.



In[2]:=

In[3]:=

In[1]:=
In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=
In[5]:=

Out[5]=

In[6]:=
In[7]:=

Out[7]=

The right hand side of the recurrence can refer to other (!) sequences also in shifts
higher than order. The DefineSequence command knows how to transform such
defining relations into the required form.

Example:

DefineSequence[g[n + 2] == f[n + 3] * g[n] + z[n — 1]]

Here f[n + 3] is internally replaced by f[n+ 2]+ z[n + 2] in order to ensure that the
right hand side of the recurrence does not contain higher shifts as 2. Afterwards,
the negative shift in z[n — 1] is removed by shifting the whole recurrence by one to

the right. Finally, the relation g[n + 3] == (f[n + 3] + z[n + 3]) * g[n + 1] + z[n] will
be written into the database as definition of g.

In addition to previously defined sequences, the right hand side of a recurrence
may involve more sophisticated expression for which DefineSequence knows how to
translate them into defining relations. Section 5.2 lists these constructions. An
example of such a definition is

DefineSequence[h[n + 1] == h[n Z ?‘[[Z e 2 4 23"]
5.1.2 Initial Values

The DefineSequence command accepts an unlimited number of initial conditions as
arguments after the recurrence. The initial conditions are given in the form

name[i] == value

where name is the name of the sequence being defined, ¢ is an integer, and value
is the desired value of the sequence at the point i. The value can be an arbitrary
Mathematica expression. It will not be processed any further by ZET.

Example: The following line defines the “tribonacci sequence.”

DefineSequence[f[n+3] == f[n]+ f[n+1]+ f[n+2], f[1] == 1, f[2] == 1, f[3] == 1]
GetValue[f[n],n — 300]

344203782539585012495369721641758209041253476700346210912685312761

The sequence f[n] is not defined for n < 1:
GetValue[f[n],n — —7]

f1=7]

Without specifying any initial values, an evaluation of the sequence is not possible:

DefineSequence[g[n + 3] == g[n] + g[n + 1] + g[n + 2]]
GetValue[g[n],n — 300]

9(300]

We may, however, give only partial information about the initial values:
DefineSequence[h[n + 3] == h[n] + h[n + 1] + h[n + 2], h[1] == 1, h[3] == 1]
GetValue[h[n],n — 300]

44754767250487885471777906 + 24332675219681431451788241h[2]

The “missing” initial values will be padded by symbolic values.



In[8]:=

Out[8]=

In[1]:=
In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=

Out[4]=

In[1]:=

Note that the initial values, if specified at all, must come after the recurrence,
otherwise the definition call remains unevaluated.

DefineSequence[h[1] == 1, h[n + 3] == h[n] + h[n + 1] + h[n + 2], h[3] == 1]

DefineSequence[h[1] == 1, h[n + 3] == h[n] + h[n + 1] + h[n + 2], h[3] == 1]

5.1.3 Definition of free sequences

A free sequence, or a sequence of indeterminates, is a sequence for which no re-
currence is specified. An identity involving a free sequence (x,)%2, is interpreted
as being valid for any sequence in place of (2,)2 ;. See Sections 4.2 and 4.3 for

n=1-"
details.
Free sequences may still have specific values at certain specific points. This makes
it possible to prove identities that hold, say, for all sequences (z,)52; with z17 =
0. Such sequences are defined using DefineSequence without specifying a defining
recurrence.

Example:
DefineSequence[a[5] == 19, a[19] == 5]
GetValue[a[n],n — 5]

19
GetValue[a[n],n — 15]
af15]
GetValue[a[n],n — 19]
)

If a sequence has neither specific values nor a defining recurrence, it cannot be
defined using DefineSequence. Such “completely free” sequences are created au-
tomatically when the definition of another sequence involves a name for which no
sequence information is available in the database. A warning informs the user that a
symbol is understood as a free sequence. Once defined, the free sequence remains in
the database and its use in subsequent definitions will not cause a warning message
any more.

See the definition of f in Section 5.1.1 for an example.

5.1.4 Overwriting and Extending Definitions

Sequences stay in the database until the end of the Mathematica session or until a
ClearDefinitions[] is raised. Despite of this, it is possible to define a new sequence
using a name that has already been used before. If the definition is successful,
the binding of the name to the old sequence will be released, and the user will be
informed about this by a warning.

It is important to note that overriding a definition only affects the usage of the
name in future definitions, but past definitions remain as they are. This is because
overridden sequences do remain in the database, just their name has been removed.

Example: Let f be the sequence of the tribonacci numbers and F(n) = Y7, f(n).
DefineSequencelfn-+3] == fnl+f[n+11+f[n+2], f[1] == 1, f[2] == 1, f[3] == 1



In[2]:= DefineSequence[F[n] == z”: jadl
=1

In3]:= GetValue[F[n],n — 250]
Out[3]= 754318419046334600679914454791421846795201163712517505845557838462
In[4]:= GetValue[f[n],n — 250]

outid]=  344203782539585012495369721641758209041253476700346210912685312761

If we now redefine f as the sequence of Fibonacci numbers, this will not affect the
definition of F, although the definition of F' contained the symbol f.

In[5]:= DefineSequence[f[n + 2] == f[n + 1] + f[n], f[0] == 0, f[1] ==1]
Zet::overdef : Old definition of f has been replaced by the new one.

Inf6]:= GetValue[F[n],n — 250]
outle]l=  754318419046334600679914454791421846795201163712517505845557838462
In[7]:= % == Out[3]
Out[7]= True
In[8]:= GetValue[f[n],n — 250]
Out[8]= 78963258261317305092827389436343328936862686758 76375
In[9]:= % == Out[4]
Out[9]= False
n
inf10]= Get Value[»  f[i],n — 250]
=1
Out[10]= 20672849399056463095319772838289364792345825123228623
In[11]:= % == Out[3]
Out[11]= False
If a definition for a sequence with name f is stated and a sequence with this name
is already in the database, the old definition will usually be overridden. It might
be, however, that the new definition is consistent with the old definition. This is
the case when the two sequences evaluate to the same values on the intersection of
their domains of definition. In this case, for efficiency reasons, both sequences will
share one entry of the database, and the larger domain of definition will be used for
both of the sequences. This is called the extension of a definition. For the matter of

extending a definition, it is irrelevant whether the extended sequence has the same
name as the extending sequence or not.

Example: The Fibonacci sequence f from above is as yet undefined for negative
integers:

in[12]:= GetValue[f[n],n — —2]

out[12]= f[-2]



We can define the sequence g of Fibonacci numbers starting at n = —1. If we

specify g[—2] = —1 and g[—1] = 1, then f[n] and g[n] will have the same values for
n > 0. Hence the definition of f will be extended and g will become a synonym
for f.

in[13]:= DefineSequence[g[n + 2] == g[n + 1] + g[n], g[—2] == —1,¢[-1] == 1]

In[14]:= GetValue[g[n],n — —2]
Out[14]= -1
In[15]:= GetValue[f[n],n — —2]

Out[15]= -1

Extension of definitions works also in the other direction: If we let h[n] be the
sequence of Fibonacci numbers starting at n = 10, then the definition will be
automatically extended to the range n > —2 due to the already existing definitions
of f and g.

In[16]:= DefineSequence[h[n + 2] == h[n + 1] + h[n], h[10] == 55, h[11] == 89]

In[17]:= GetValue[h[n],n — —2]

Out[17]= -1

Note that it is not sufficient that the recurrences agree for extending a definition:
also the evaluation has to be the same:

in[18]:= DefineSequence[F[n + 2] == F[n + 1] + F[n], F[1] == 7, F[2] == §]
In[19]:= GetValue[F[n],n — —2]

Out[19]= F[-2]
In[20:= GetValue[F'[n],n — 10] == GetValue[f[n],n — 10]

Out[20]= False

5.1.5 Failing Definitions

The definition of a sequence may fail. In case of a failure, a warning is raised and
DefineSequence returns the value $Failed. (In case of success, it returns the value
Null.)

An attempt to define a sequence will fail if the recurrence is not of the required
form. It is of the required form if it can be transformed into the shape specified
in Section 4.1, i.e., into a difference polynomial possibly involving other (extended)
admissible sequences.

Example: Sin[1/n] is not an appropriate right hand side.
In[1]:= DefineSequence[f[n] == Sin[1/n]]

Zet::unable : Unable to convert definition to algebraic recurrence.
Out[1]= $Failed
If a definition for f failed, possibly existing other definitions for f remain untouched.

If f was not defined before, it will also be undefined afterwards.

Note, by the way, that the following definition goes through:

10



In[2]:=

In[3]:=

Out[3]=

In[4]:=

Out[4]=

In[1]:=

DefineSequence[f[n] == Sin[n]]

Zet::defarbitrary : Definition involves undefined function symbol Sin which will be regarded as free.
The reason is that ZET does not know about the special meaning of the symbol Sin
in Mathematica. See Section 5.2 for a list of expressions which are known to ZET.

Using sophisticated expressions as described in Section 5.2, it is important that ZET
has to have a chance to transform the given expression into an algebraic recurrence.
For instance, when using the summation symbol, the sum must not be definite, for
ZET doesn’t know how to deal with definite sums.

DefineSequence[f[n] == Sum[1/(i + n), {3, 1,n}]]

Zet::definite : Definite Sum encountered. No algebraic relation can be found.

$Failed

It is also not allowed that the sequence which is currently being defined appears in
the summand:

DefineSequence[f[n] == Suml[i * f[i]?, {i,1,n — 1}]]

Zet::contains : Recurrence not admissible: f must not appear within Sum

$Failed

5.1.6 Removing Definitions

It is not possible to remove single definitions from the database in an other way
than overwriting definitions by new definitions. (This does actually not remove a
definition but only changes the binding of a name to a different definition.)

It is possible to remove all definitions in one go by means of the ClearDefinitions]]
command. This command takes no arguments and resets the database to the initial
state which it had immediately after loading the package.

5.2 Input by High-Level Expressions

Though in theory the right hand side of a recurrence must be of the form described
in Section 4.1, it is also possible to specify sequences using certain high-level con-
structions, if ZET knows how to translate them into the required from.

Example: If the sequence f(n) is already defined, the definition
DefineSequence[F[n] == Z jadl
i=1

will internally cause the definition of a sequence with a temporary name, say t, by
tin+1) =t(n)+ f(n+1), (1) = f(1). After that, the recurrence in the original
definition is replaced by F'[n] == ¢[n], which is of the appropriate form and has the
desired meaning.

We shall investigate in this section for which high-level constructions this is possible
(resp. implemented). The same set of high-level constructions applies not only to
the recurrence argument of DefineSequence but also to most other functions of ZET,
e.g., the proving functions to be discussed later.

5.2.1 Built-in Atomic Expression

ZET knows how to translate the following expressions into recurrences. We suppose
that the running variable of the sequence under consideration is n.

11



the term n itself as well as any expression « independent of n
a®*? where « is independent of n and a, b € Z; also Exp[an + b]
(an + b)! (factorial) if a € N,b € Z

RaisingFactorial[z,an+b] if a € N,b € Z and z independent of n. The raising
factorial 297 *? is defined as

an+b
x“"“’:H(a:-i—i—l) (n € N)

=1

FallingFactorial[z,an + ] if a € N,b € Z and z independent of n. The falling
factorial 227t% is defined as

an+b
xwzn(x—i—i—l) (n € N)
i=1

Binomial[an + b, cn + d] (the binomial coefficient) for a,c € N, a > ¢, b,d € Z

Harmonic[an + b], (harmonic number H(n) := Y1, 1/i) if a € N, b € Z; also
Harmonic[r, an + b] (harmonic number of the rth kind, H(™(n) := 37 1/i
if r € Z) where r € Z.

Fib[n] if 4 is a constant

Fib[n] the sequence of Fibonacci numbers; also a
a" "+ if a,b,c,d, e, f are independent of n and ¢ is an integer
Gammalan + b] (the Gamma function) if a € Q and b is independent of n

Gammalan + b, z] (the incomplete Gamma function) if ¢ € Q and b,z are
independent of n

5.2.2 Built-in Closure Properties

As opposed to the previously listed expressions, it is also possible to construct new
sequences from sequences already defined and/or definable by reference to the list
above.

In the list below, we assume that f and g are sequences which are known to the
database, and that n is the running variable of the sequence. Then the following
expressions can be turned into recurrences by ZET.

fIn] + glnl, fIn] * glnl, fIn]/gln], f[n]* if a € Z,
Sum(f[i], {4, a,bn + c¢}] where b € N, a,c € Z, and 7 is a symbol.
Product[f[i], {7, a,bn + c¢}] where b € N, a,c € Z, and i is a symbol.

Cfrac[f[i], {i,a,n + c}] where a,c € Z and i is a symbol. This defines the
continued fraction

Cfrac[f[¢], {é,a,n +c}] = %f[@] = fla] + ! 1
- fla+1]+-
. 1
fln+c—-1]+ fintd

12




o flabtd + €] if a,b,c,d,e are independent of n, b° is an integer, and f is
defined by a C-finite recurrence. This is the case if the defining relation for f
has the form

flnt+r)=ar1f(n+r—1)+---+arf(n+1)+aof(n)
for some fixed r € N and constants «ag,...,a,_1 independent of n.

Note that the above closure properties may well be combined with each other,
mutually nested, or whatever. A complicated and meaningless example is

_ Sum[Sum[Binomial[2i, ] x 22 {i 1,k}] * k!, {k,1, n}]]

ini):= DefineSequence[f[n] == (215 + Sum[1/Harmonic[i], {i, 1, n}]
In[2:= GetValue[f[n],n — 8]

358575441241676656301769785112578965098674338850712600

Outl= 2471228054398042993540635846577150202003

The functions Sum, Product and Cfrac also support nested iterators in analogy to
the Table function of Mathematica. This allows to type, for example,

Sum[f[l], {¢,1,n}, {5, 1,3}, {k, 1,5}, {1, 1, k}],
instead of the more tedious expression
Sum[Sum[Sum[Sum[f[!],{l, 1, k}], {k,1,5}],{J, 1,4}], {¢, 1,n}].

Likewise for Product and Cfrac. Recall that according to Mathematica’s convention,
the outermost iterator has to be stated first.

5.2.3 Pretty printing

It is worth noting that the ZET package redefines function symbols such as Sum and
Product in order to prevent them from being evaluated. This makes it possible to
prove identities like }-7" , ¢ = in(n + 1) without that Mathematica itself evaluates
the left hand side to the right hand side and nothing remains to be proven for ZET.

In order to remind the user that, say, Sum is no longer a function but only a symbol,
their appearance has also been changed. Summation and product signs have been
replaced by capital sigma and capital pi, respectively.

In[1]:= Sum[f[d], {7, 1,n}]

Outft]= > fll
=1

In[2]:= << Zet.m

| Zet Package by Manuel Kauers — @ RISC Linz — V 0.1 (04-02-16)

In[3]:= Sum|[f[é], {z,1,n}]

Out[3]= .%1 fli]

Further pretty printing is defined for

e Product[f[i], {¢,1,n}] — appears as I}~ f[i]
e Cfrac[f[i],{i,1,n}] — appears as K}, f[i]
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In[1]:=

In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[1]:=

Out[1]=

Fib[n] — appears as F[n)]

Harmonic[n] — appears as H[n]

Harmonic[r,n] — appears as H™) [n]

RaisingFactorial[a, n] — appears as a™

FallingFactorial[a, n] — appears as a

5.3 Evaluation of Sequences

The function GetValue admits the evaluation of a sequence at a given integer point.
This function expects as a first argument an expression which is an admissible right
hand side for a recurrence in DefineSequence, i.e., some expression which is built up
of sequences in the database and known atomic expressions (Section 5.2.1) by means
of known closure properties (Section 5.2.2). The running variable and the integer
which should be substituted for it are specified by an option “variable — point.”

Example:

n ¢ J k
DefineSequence[f[n] == Z Z Z Z 1/1]

i=1 j=1 k=1 (=1

GetValue[f[n],n — 150] // Timing

{0 04Second 2831310667393933652581438949350085399328696611613766191618657727927
. ? 1280597361239530116161982520711799208053839773728194575324000

Observe that the evaluator at the core of GetValue is very efficient, plain Mathe-
matica needs much more time for doing the same job:
150 i

k
>3 "1/1// Timing

i=1 j=1 k=1 |=1

{86 07Second 2831310667393933652581438949350085399328696611613766191618657727927
. ’ 1280597361239530116161982520711799208053839773728194575324000

5.4 Deciding Zero Equivalence

We now turn to the functions that implement the proving algorithm.

5.4.1 The Zero Equivalence Test and Proving Identities

Let e1, e2 be expressions with a free variable n. We want to decide if e; = es for all
n > 0. If ey, e5 are such that we can say

DefineSequence[el[n] == e;]; DefineSequencele2[n] == e3];

where el, e2 are new symbols, then we can decide whether e, ey are identical by
means of the function IdenticalQ. This function takes as an argument an equation
e1 == ey where e, es are as above, and it expects the option ForAll to point to the
variable in which these sequences are given.

Examples:
IdenticalQ[Suml][i, {¢,1,n}] == n * (n + 1)/2, ForAll — n)

True

14



In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=

Out[4]=

In[5]:=

In[6]:=

In[7]:=

Out[7]=

In[8]:=

Out[8]=

IdenticalQ[Sum][i, {7,1,k}] == k * (k + 1)/2,ForAll — k]
True
IdenticalQ[Sum][i, {7, 1,n}] == n * (n — 1)/2, ForAll — n)

False

The IdenticalQ function internally calls ZeroQQ on the difference of the two sides
of the equation. Zero(Q) takes one expression as argument and the same options
as IdenticalQ. It returns True or False, depending on whether the given expression
vanishes identically.

It is worth noting that the procedure is guaranteed to terminate no matter if the
result is True or False.

Example: Consider the sequence (f(n))S2, defined by

fn)=@m=3)(n -7 (-D*+ [[(-1)").
= k=1

k=1

We have f(n) =0forn=1,2,3,4,5,6,... and we may assume f(n) = 0 for all n.
Is this true?

ZeroQ[(n —3)(n —7) Z(—l)’“(l + H(—l)k), ForAll — n, MaxOrder — Infinity]
k=1 k=1

False

Indeed, it turns out that f(11) = —64 # 0. (See pages 16 and 24 for an explanation
of the MaxOrder option.)

A synonym for both ZeroQ and IdenticalQ is Prove. This function takes the same
options as ZeroQ and IdenticalQ do. Its first argument may or may not be an
equation, if it’s not, then zero equivalence of the argument is tested.

No termination is guaranteed if the query involves free sequences. A warning is
raised in this event.

Example:

DefineSequence[p[k + 2] == a[k + 2] * p[k + 1] + p[k], p[-2] == 0, p[-1] == 1]
Zet::defarbitrary : Definition involves undefined function symbol ¢ which will be regarded as free.
DefineSequence[g[k + 2] == alk + 2] * ¢[k + 1] + ¢[k], ¢[-2] == 1,p[-1] == 0]
IdenticalQ[p[i + 1] * g[i] — p[i] * q[i + 1] == (=1)*, ForAll — i]

Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.
True

IdenticalQ[p[i + 1] * g[i — 1] — p[i — 1] % ¢[i + 1] == —(=1)" % a[i + 1], ForAll — {]
Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.

Zet::maxorder : Maximum order 6 reached without having found an answer

Unknown

The identity queried in line 8 is as correct as the one in line 7, but the algorithm
fails to terminate here owing to the appearance of the free sequence a. It could have
failed to terminate in line 7 as well, because it suffices that the a appears in the
definition of p and ¢ (hence the warning also here), but by coincidence it succeeds
here.
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In line 8, the proving engine gave up after reaching the threshold order 6, and
it returned the value Unknown. We will see next how this threshold and other
parameters can be modified via options, and how it can be requested that free
sequences are regarded as field elements, ensuring termination of the algorithm
(Section 4.3).

5.4.2 Options

The proving commands IdenticalQ, ZeroQ, and Prove accept the following options:

e ForAll — the running variable for all values of which the identity is to be
proven. This option is obligatory.

e From — smallest point for which the identity is claimed. The default value
for this option is 1. It is assumed that the option points to an integer.

e MaxOrder — the number of iterations after which to give up. If the al-
gorithm does not find an answer (proof or counterexample) after that many
iterations, it prints a warning and returns the value Unknown. This option
defaults to 5.

e OrderMessage — True to indicate that a progress report should be printed
at the beginning of each iteration of the prover’s main loop. This option
defaults to False.

e Field — boolean value specifying whether free sequences should be put
into the ground field or left in the polynomial ring. This option defaults to
False. If a query involves free sequences and this option is set to False, then
the proving algorithm may fail to terminate, and an according message will
be raised.

e CheckInitialValues — boolean value indicating if the base of the induction
should be checked. If set to True, the prover returns True if the induction
step has been found, and Unknown otherwise. The default is False.

e StartOrder — nonnegative integer ¢ requesting the prover to omit the first
1 iterations of the proving algorithm and start directly with the ¢th iteration.
This option defaults to 0.

e GroebnerBasis — name of the function to be used for performing Grébner
basis computations. By default, Mathematica’s built-in GroebnerBasis com-
mand is used, but it might be useful to change to a faster implementation.
Any function that fulfills the specification of Mathematica’s GroebnerBasis
function may replace it.

5.5 Additional Functions

Some additional tools are provided by the ZET package. These are described next.

5.5.1 Automated Proof Generation (Experimental)

There is an experimental function which allows not only to prove or disprove an
identity, like ZeroQ and IdenticalQ do, but which justifies the result also by provid-
ing the user with a rigorous mathematical proof.
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In[1]:=

Out[1]=

In[2]:=

In[3]:=

Out[3]=

The function Proof takes the same arguments as IdenticalQ and ZeroQ do, in addi-
tion it requires the specification of a function for computing cofactors, its name to
be declared by the option Cofactors. This function should take three arguments p,

{p1,p2,...}, {x1,%2,...}, where p,p1,pa, ... are polynomials in x1, 3, ... and and
p belongs to the ideal generated by pi, p2,.... The function should return a list of
polynomials {c1, o, ...} such that ). ¢;p; = p. The ¢; are called the cofactors of p
wrt. p1,pa,.... It is assumed that the function for computing the cofactors accepts

the same options as the GroebnerBasis command.

Unfortunately, Mathematica does not provide an appropriate function for comput-
ing cofactors by itself. But the author’s Gb package for Mathematica, providing an
interface to Jean-Charles Faugere’s Gb library for fast Grébner basis computation,
does contain such a function.

Suppose now that a function for cofactor computation is available. Then it is
possible to construct proof objects by means of the Proof function. For example,

we can create a proof object for our favorite example identity.
n

myldentity = » i == in(n +1)
i=1
n

Z == in(n+1)

p = Proof[myIdentity, ForAll — n, Cofactors — (...)];

It is a good idea not to look at a proof object directly, as it is an ugly expression
containing the information of the proof in a Mathematica-readable format.

Head[p]

Proof

For transforming a proof object into a human readable form, there exists as yet a
function TeXify which takes a proof object and a string as arguments, and which
writes IATEX code into the file whose name is specified by the string argument. Two
examples for such automatically generated proofs are provided in the appendix (see
page 25).

The author considers the Proof function as an experimental toy for playing around,
but not as principal part of the package. It is not decided if the Proof function will
be kept in future releases of the package.

A possible application of the idea of proof objects is to implement brothers and
sisters of TeXify which are able to transform the proof into the form of an automatic
proof checker, but we are not willing to waste too much time into implementations
of this kind.

5.5.2 Some Sum Manipulation Tools

ZET is unable to handle definite sums directly. A definite sum is a sum in which
the bounding index appears in the summand. The difficulty is that such sums
F(n) = Y7_, f(n,k) does not necessarily obey the simple relation F(n + 1) =
F(n)+ f(n,n+1). More delicate techniques are necessary to compute a recurrence
that may serve as defining relation for a definite sum, but such techniques are not
implemented in ZET.

However, in some simple instances it is possible to make definite sums indefinite
by just applying basic arithmetic laws to the sum. This is particularly useful for
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treating polynomial identities. A standard example is
n
Z (n + k)* —n221+2n2k+2k‘2
k=1 k=1

Rewritings of the above shape can be automatically carried out by the package’s
function MakeDefiniteSumsIndefinite which takes any expression as first argument
and attempts to rewrite it in terms of indefinite sums by applying basic rewrite
rules. Note that this method may run for a long time already for input of moderate
size, and that there is no guarantee that the output is indeed indefinite.

The option Simplify (True or False, False by default) indicates if simplification rules
should be applied during the computation. This may help to avoid expression swell,
but sometimes increases the runtime.

6 Internals and Technicalities

This section describes some internal details which will most probably not be of any
interest for most users. They are mainly included for the sake of completeness.

6.1 The sequence database

Definitions of sequences are maintained in an internal database. Every entry of this
database consists of the following data:

e A unique identification integer for the sequence, called the “id”. Ids are not
necessarily assigned consecutively.

e A defining relation in terms of a difference polynomial. A sequence is free iff
its defining relation is the zero polynomial.

e A startpoint. This specifies the smallest integer for which the sequence is
defined, according to the initial values given in its definition. If no initial
values are specified, the startpoint takes the value —Infinity.

e An evaluator. This is a function that efficiently computes the value of a
sequence at an integer point by repeatedly applying the defining recurrence
until the initial values are reached.

e An order. This is the maximum shift occurring in the defining relation of the
sequence.

e An effective order. This is the difference between minimum and maximum
shift occurring in the defining relation of the sequence.

A list of names under which the sequence is known to the user.

The defining relations of the sequences in the database are elements of an m-fold
polynomial difference ring F{y™ y® ... y(™} [2]. They are represented inter-
nally by means of the package private variable t: t[i, j] represents the ith shift of
yU), where j refers to the id of the sequence.

Similarly, the evaluators are implemented by means of the package private vari-
able T. The expression T, j] is defined such as to evaluate to the value of the
sequence with id j at the point i. It remains unevaluated if the queried function
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value is not available. It is GetValue’s task to replace subexpressions T'[¢, j] by user
readable function symbols after an evaluation process.

The maintainance of the sequence database proceeds via a couple of Get and Set
functions. All this is package private and invisible for the user.

Get functions

Each of these functions has the option DefinelfUndefined which is by default True
for Getld and False for the other functions. In this case, reference to an undefined
sequence defines this sequence to be free. If set to False, the data base is left
unchanged and $Failed is returned if the element did not exist.

o Getld[name] — The unique id of the sequence with the given name.
o GetRelation[id] — Gives the defining relation of the specified sequence.
o GetStartpoint[id] — Gives the startpoint of a sequence, possibly —Infinity.

o GetOrder[id] — Gives the order of the specified sequence, i.e. the maximum
number m such that ¢[m,id] occurs in the defining relation. The order of 0 is
—Infinity.

o GetEffectiveOrder[id] — Gives the effective order of the specified sequence,
i.e. the difference m — n where m is the maximum number such that t[m,id]
occurs in the defining relation and n is the minimum number such that t[n, id]
occurs in the defining relation. The effective order of free sequences is 0.

e GetNames[id] — Gives the names associated to the specified sequence.

Set functions

Each of these functions has the option OverwriteMessage which is by default set to
False. If set to True, a message is raised if existing information is overridden.

e AddDefinition[id, listOfNames, definingRelation, startpoint] — Adds a defini-
tion to the database.

o SetRelation[id, defrel] — (re)defines the defining relation for the specified se-
quence.

o SetStartpoint[id, defrel] — (re)defines the startpoint of the specified sequence.

o SetNames[id, listOfNames] — (re)defines the names associated to the specified
sequence.

o AddNames[id, listOfNames] — associates additional names to a particular

sequence, removing bindings of the names to other sequences.

Further functions

e RemoveNames[listOfNames] — removes the associations of the given names
to their sequences.

e RemoveDefinition[id] — Removes a definition from the database. Caution:
Calls of this function may lead to dangling references. Only the raw entry is
removed, all other entries will remain unchanged.
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e RemoveDefinitionIfUseless[id] — removes the entry corresponding to the se-
quence with the given id unless there are other sequences whose defining
relation contains a term ¢[_, id].

o GetFreshId[] — a free id that can be used for the next definition.

e Maximumld — maximum id in use

6.2 Bug Parade

The package is in a very early stage, and though it is continuously tested by the
author, we are sure that it contains a lot of additional bugs.

At the time of writing, no bugs are known.

If you happen to encounter an unexpected behavior while using the package, in
particular if you succeed in proving something which is wrong or in disproving
something which is true, please send a detailed bug report to manuel@kauers.de.
When doing so, don’t forget to include the package version you are using. This data
is printed when you load the package.
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Appendix

A Example Gallery

A.1 Exercise 6.61

Exercise 6.61 in [3] asks for a proof of the identity

~ 1 TFib@2"-1)
D Fib(2F) — 3= Fib(27)

where Fib(n) denotes the nth Fibonacci number. As the Fibonacci sequence is
C-finite, we can directly enter the requested identity into ZET:

LN | Fib[2" — 1
In[1]:= IdenticalQ[Z Fhod == 3 - M, ForAll — n)
k=0

ib[2*] Fib[27]
Out[1]= True

This is a full solution of the exercise.

A.2 Exercise 5.93

711}[;(’” i) for
arbitrary x1,xs,... and arbitrary . ZET is not able to find the requested closed
form, but once the answer

Exercise 5.93 in [3] asks for a closed form of the indefinite sum Y, _;

k
ill;ll(xi-i-a) B l(ﬁ Ty + _1)
k T Ty
k=1 [T z: k=1
i=1

is conjectured, ZET is able to prove it effortlessly.

k
MGell+a) | o«
1=1 z[k] + @
n[1]:= Identi IQ[E — == ”7—1 ,ForAll — n]
! entica Pt .l;llx[i] a(k—l o[k] ) ©

Zet::defarbitrary : Definition involves undefined function symbol z which will be regarded as free.

Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.

Out[1]= True

The first warning says that there is no defining relation available for the function
symbol z. This message is raised when z is inserted into the database. As a
consequence, the proving algorithm may not terminate, as indicated by the second
warning.

By coincidence, it did terminate in this particular example. In case it didn’t, we
could force termination by using the Field option.

k
Hetlre) ) oo
In[2]:= IdentlcalQ[Z _ ( H x[ k 1) ,ForAll — n, Field — True]

k=1 ali] k=1

':l?*

=1
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Out[2]= True

The first warning from before doesn’t appear because z is already in the database,
and the second warning doesn’t appear because there is no danger of nontermination
due to the usage of the Field option.

A.3 The Christoffel-Darboux identity for orthogonal polyno-
mials

Given two sequences (¢;)2,, (A\;)$2,, the sequence of univariate polynomials in z
defined by the recurrence

Pria(z) = (2 — cny2) Pogr (2) — A2 Pa(z),  p-1(x) =0,po(z) =1

constitutes a family of orthogonal polynomials [1].
For any family of orthogonal polynomials, we have the Christoffel-Darboux identity

i p 33 pn+1 (x)pn (u) — Pn (x)pn+l (u)
k+1 n+1 :
k= IT N (x—u) IT N
i=1 i=1

ZET is able to prove this identity in full generality. We take Q(x,u) as field of
constants where z and u are transcendental elements, and we define two sequences
(Pr(u)S2_q, (Pp(x))SL_, by the recurrence above. (ci)fil, (As)52, will be treated
as free sequences.

In[1]:= DefineSequence[pz[n + 2] == (x — c[n + 2]) * pz[n + 1] — A[n + 2] * pz[n],

pal—1] == 0, pz[0] == 1]

Zet::arbitrary : Definition involves undefined function symbol ¢ which will be regarded as free.

Zet::arbitrary : Definition involves undefined function symbol A which will be regarded as free.

In2]:= DefineSequence[pu[n + 2] == (u — ¢[n + 2]) * pu[n + 1] — A[n + 2] * pu[n],

pu[-1] == 0, pu[0] == 1]
ulk] * pr[k] z[n + 1] x pu z[n] * puln + 1
] od = Zpkﬂp[ _ pa[n + 1]+ puln] nfl[] pufn +1].
=5 T (@ =) TL M)
In[4]:= Ident1calQ[cd ForAll — n, Field — True]
Out[4]= True

In[5]:= IdenticalQ[cd, ForAll — n)

Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.

Out[5]= True

There is also the following confluent version of the Christoffel-Darboux identity:

— pr(2)? _ Pn(@)Phis () — prya (@)pn (@)

k41 n+1
k=0 TT X\ I N
i— i=1

This version can also be verified by ZET. A recurrence for the derivatives p/,(z) can
be found by differentiating the recurrence for p,(z).
Inf6]:= DefineSequence[
Dpz[n + 2] == pr[n + 1]+ (z - ¢[n + 2]) ¥ Dpz[n + 1] — A[n + 2] * Dpz[n],
Dpz[—1] == 0, Dpz[0] == 0]
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i7)— TdenticalQ) ]ﬁml[k] __ pz[n] x Dpx[n +TH_1 pz[n + 1] * Dpz[n]

= i

Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.

,ForAll — n)

out[7]= True

A.4 Exercise 5.12

The next example is taken form [1], Exercise 5.12. It asks to prove the identity

k
(—1)]’3+1 [Ty

alm) _ N~ e
o) °+;%2(k—1)x2(k)

where 7r; and 35 denote the continuants defined by the recurrences

psl (n + 2) = Tp42301 (n + 1) + Yny2901 (TL) pal (0) = Zo, %1(1) = ZoT1 + Y1
%2(’)1 + 2) = .Z'n+2%2(n + ].) + yn+2%2(n) J{Z(O) = ]., %2(1) =21

where g, z1,... and y1,y2,... are arbitrary sequences.
We have ZET do the exercise.
In[1]:= DefineSequence[
kl[n + 2] == z[n + 2] x k1[n + 1] + y[n + 2] x k1[n],
k1[0] == =[0], k1[1] == z[0] * 2[1] + y[1]];
Zet::defarbitrary : Definition involves undefined function symbol y which will be regarded as free.
Zet::defarbitrary : Definition involves undefined function symbol z which will be regarded as free.
In[2]:= DefineSequence[
k2[n + 2] == z[n + 2] x k2[n + 1] + y[n + 2] * k2[n],
k2[0] == 1,k2[1] == z[1]];
k
n -1 k+1 .

. =1
n3]:= — = ————— ForAll
In[3] IdentlcalQ[kz[n] x[0] + kEZI K20k = k2l orAll — n]

Zet::arbitrary : Conjecture involves arbitrary sequences. Algorithm may not terminate.

Out[3]= True

A.5 Disproving, Order messages, and Startpoints

ZET is also able to discover that an identity does not hold if this is the case. Unless
in obvious examples, this requires much more resources in general.

Example: Consider the “identity”
(n=3)n—7) 3 (-D*(1+ [[(=D)¥) =0
k=1 k=1

which holds for n = 1,2,3,4,5,6,... Does it hold for all n?

)= id = (n — 3)(n —7) > _(-1) (1 +11 (_1)k) ==0;
k=1 k=1
In[5]:= IdenticalQ[id, ForAll — n)
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Out[5]=

In[6]:=

Out[6]=

In[7]:=

Out[7]=

In[8]:=

Out[8]=

In[9]:=

Out[9]=

Zet::maxordex : Maximum order 6 reached without having found an answer

Unknown

ZET’s proving algorithm consists of a main loop which iterates until a proof has
been found. It is known that this loop will eventually terminate, but it is now known
how many iterations are necessary. The higher this number is, the more time will
be spent for each single iteration, and it becomes more and more unlikely that an
answer is found in the user’s lifetime. Therefore, ZET has a threshold number and
it gives up once the number of iterations exceeds this bound. This has happened in
the example above.

The option MaxOrder redefines the threshold number. It may be set to an arbitrary
integer, or to the value Infinity.

IdenticalQ[id, ForAll — n, MaxOrder — Infinity]

False

The OrderMessage option enables to print progress report messages.

IdenticalQ[id, ForAll — n, MaxOrder — Infinity, OrderMessage — True]
Considering order 0. ..
Considering order 1. ..
Considering order 2. ..
Considering order 3. ..
Considering order 4. ..
Considering order 5. ..
Considering order 6. ..
Considering order 7. ..
Considering order 8. ..
Considering order 9. ..

False

If it is known for some reason that the number of iterations will be greater than,
say, 5, then time can be saved by skipping the first iterations of the loop. The
option StartOrder specifies the first iteration to be tried.
IdenticalQ[id, ForAll — n, MaxOrder — Infinity,
OrderMessage — True, StartOrder — 5]
Considering order 5. ..
Considering order 6. ..
Considering order 7. ..
Considering order 8. ..
Considering order 9. ..

False

Another strategy for saving time is to ask for proving the identity from a starting
point different from 1 on. In our particular example, this runs much faster than the
previous calls because the starting point is closer to a counterexample.

IdenticalQ[id, ForAll — n, From — 10]

False
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The From option is also useful for proving identities which are valid only from some
point on. For example, proving

n

k
[k —=3)> Fib(i) =0
=1

k=1

will not work, because this identity does not hold for all n € IN. It does, however,
hold for n > 3.

n

In[10]:= ¢ = H(k —3) % i Fib[i];
In[11]:= Zer(f(SEt, ForAll —1>:;L]

Out[l1]= False
In[12]:= ZeroQ[¢t, ForAll — n, From — 3]

Out[12]= True

B Automatically Generated Proofs

The following proofs were automatically generated by the calls of the form
k
In[13]:= TeXify[Proof[Zi = 1k(k + 1), ForAll — k, Cofactors — function], file]

1=1
B.1 Gaufy’ sum

Theorem The identity

Zk:i _k(+k)

i=1 2
holds for all k£ > 1. More precisely, we consider the sequence (f1(k))¢2, defined by
the recurrence relation

—k— k> =2 f1(k)+ 2 falk)
2

=0, (1)
where

L+ k+ f2(k) - o(1+ k) =0, fo(1) =1, (2)
and we claim that f;(k) =0 for all k > 1.

Proof We proceed by induction on k. As base of the induction, observe the
following evaluations
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For the induction step, suppose there exists a k > 1 such that fi(k) = 0. We will
show that this implies f1(1 + k) = 0.

Assume otherwise. Then we can define X = 1/f1(1 + k). Equations (1)—(2) hold
for all £ > 1, so they also hold for k£ + 1, k + 2, ... This immediately implies

—2-3k—K2-2fi(1+k)+2fo(1+k)

- — 0. 3)

Multiplying Eq. (1) by X gives

— (X (k+ k2 +2fi(k) — 2 fo(K)))
2

=0. (4)
Multiplying Eq. (2) by —X gives
— (X 1+4+k+ falk)— f2(1+k))) =0. (5)
Multiplying Eq. (3) by —X gives
X (2+43k+k+2fi(1+Fk)—2f(1+k))

3 =0. (6)
Furthermore: Multiplying f1(k) = 0 from the induction hypothesis by X gives
X fi(k) =0 (7)

Finally, multiplying X = 1/f1(1 + k) by —f1(1 + k) and subtracting the left hand
side gives

1-Xfil+k)=0. (8)
Adding up equations (4)—(8) gives, after some simplification,
1=0,

contradicting the assumption f1(1+k) # 0. Hence, f1(1+k) = 0, and this completes
the proof.

B.2 The multinomial theorem for exponent 2

Theorem The identity
n 2 n —141 n n
(1 + Zm) =1+23 (a:(i) > x(j)) 23 el + ) (x(i)Q)

holds for all n > 1. More precisely, we consider the sequence (f1(n))2, defined by
the recurrence relation

—f1(n) = fa(n) =2 fa(n) + fa(n)* =0, 1)

where

—~
—
~—

N
—~
[\

2(1+n)°+ fo(n) — fo(1+n) =0, fo(1)==
f3(n) = fa(l+n) +z(1 +n) fa(n) =0, f3(1)=0, (
x(1+n)+ fan) — fa(l+n) =0, f.(1)==z

and we claim that f(n) =0 for all n > 1.

w
N N N

Proof We proceed by induction on n. As base of the induction, observe the
following evaluations
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For the induction step, suppose there exists a n > 1 such that fi(n) = 0. We will
show that this implies f1(1 +n) =0.

Assume otherwise. Then we can define X = 1/f;(1 + n). Equations (1)—(4) hold
for all n > 1, so they also hold for n + 1, n + 2, ... This immediately implies

A +n) = fo(14+n) =2 f3(1+n)+ fs(1 +n)* =0. (5)
Multiplying Eq. (1) by X gives
— (X () + folm) +2 fo(n) = fam)*) ) =0. (6)
Multiplying Eq. (2) by X gives
X (2(1+n) + fo(n) = fo(1+n)) =0. (7)
Multiplying Eq. (3) by 2 X gives
2X (fs(n) — fs(1+n)+x(1 +n) fa(n)) =0. (8)

Multiplying Eq. (4) by — (X (2(1+n) + fa(n) + fa(1 +n))) gives
(X @4 m) + fuln) = fa(0+0) (@1 +0) + fal) + (L4 m) =0 (9)
Multiplying Eq. (5) by —X gives
X (A +n) + L +n)+2f5(1+n) - f1(l+n)’) =0. (10)
Furthermore: Multiplying f; (n) = 0 from the induction hypothesis by X gives
X fi(n) =0 (11)

Finally, multiplying X = 1/f1(1 + n) by —f1(1 + n) and subtracting the left hand
side gives

1-X fi(14+n)=0. (12)
Adding up equations (6)—(12) gives, after some simplification,
1=0,

contradicting the assumption f;(14+n) # 0. Hence, f1(14+n) = 0, and this completes
the proof.

B.3 An automated disproof

Theorem The identity

(=5+n) (—4+n) (-3+n) (-2+n) (-14+n)=0
does not hold for all n > 1.
Proof We have the counterexample

lhs(6) = 120 # 0 = rhs(6).
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C Summary of Functions

We summarize the most important parts of the specification of the functions defined
by the package. For details, consult the main part of this documentation.

o ClearDefinitions||

Removes all definitions from the database.

e DefineSequence[rec, inity, inits, . . . |

Adds a new definition to the database. The sequence may be defined by a
recurrence and/or initial values.

If a recurrence is given, it has to be the first argument.

If the recurrence is missing or no initial value is given, the sequence will
evaluate to symbolic values.

Sequences without defining recurrence and without initial values are implicitly
defined when they appear for the first time on the right hand side of a recur-
rence. A warning is printed in order to inform the user about the introduction
of a free sequence.

If the definition fails because the recurrence cannot be translated into an
appropriate internal format, a corresponding warning message is raised, and
the function call returns the value $Failed.

o GetValue[expr, var — value]
Evaluates expr, considered as a sequence in var at the point var = value.

The expression ezpr has to be such that a call
DefineSequence[newname[var] = expr]

successful.

If expr involves sequence which can not be evaluated because they are free
or not enough initial values are given, then the evaluation will be done in a
(possibly partially) symbolic fashion.

o IdenticalQ[ezpr, == expr,, ForAll — var]

Tests if ezpr; and expr,, considered as sequences in var, are identical on the
natural numbers.

The ForAll option is obligatory, further options are listed on page 5.4.2.
This function internally calls ZeroQ on expr; — erpr, with the supplemented
set of options.

o MakeDefiniteSumsIndefinite|ezpr|

Attempts to apply rewrite rules to the given expression expr in order to write
definite sums in terms of indefinite sums.

This is very elementary, it applies basic algebraic laws like the distributive
law for pulling factors independent of the summation variable out in front of
the sum, etc. In general, this method fails, but in case of simple polynomial
expressions it proved useful.

The option Simplify, when set to True, causes the application of rewrite rules
for simplifying the result during the computation. This can reduce the ex-
pression swell considerably.
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e Prooffexpr, == expr,, ForAll — var, Cofactors — function|
Constructs a proof object proving the identity expr; = expr, for all var.
The proof object may be used by functions like TeXify for further processing.

Proof objects are available also if the identity to be proven does not hold. In
this case, the proof consists of a counterexample.

The options ForAll and Cofactors are obligatory. The meaning of the latter is
described on page 16, while the former specifies the running variable, e.g., n.
In addition, all options accepted by IdenticalQ and ZeroQ are admissible also
for the Proof function.

e Prove[ezpr, ForAll — var]

Synonym for
IdenticalQ[ezxpr, ForAll — var]

if expr is an equation (- == _), and for
ZeroQ[ezpr,ForAll — var]
otherwise.

o TeXify[proof, filename]
Creates a human readable form of a proof object composed by the Proof
function in form of a ITEX document whose code is written into the file with
the specified filename.

o ZeroQ[expr, ForAll — var]
Synonym for IdenticalQ[ezpr == 0, ForAll — var]
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