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ABSTRACT

We present an algorithm for proving certain families of poly-
nomial identities in which the number of variables appears as
a parameter. Typically, indefinite sums and products (pos-
sibly nested) are used for defining such polynomial identi-
ties, but in principle the definition of the problem may be
given in terms of arbitrary polynomial recurrences (possibly
nonlinear). An implementation of our algorithm in Mathe-
matica was able to verify identities appearing in textbooks,
which, to our knowledge, were previously not accessible by
any symbolic method. A collection of examples is included
in the paper.

Categories and Subject Descriptors

1.1.2 [Computing Methodologies|: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms
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1. INTRODUCTION

Plenty of automated tools have been successfully applied
to handle various sorts of problems with a fixed number of
variables. Zeilberger’s pioneering work [14, 13], for instance,
has meanwhile been successfully extended to an amazing
generality [3, 2]. However, all this is still concerned with a
fixed number of variables only. There are almost no tech-
niques available for the case where the number of unknowns
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is itself unknown. In [15], Zeilberger pointed out that the
next major step to be done is the development of algorithms
for proving identities in which the number of variables itself
is unspecified. The goal of this paper is to contribute to
the this subject, albeit at a very modest level of polynomial
identities.

It has been suggested in [9, 15] to employ the theory of
symmetric functions (see, e.g., [11, 7]) for proving polyno-
mial identities of this kind. For example, the identity

n
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can be expressed in terms of the classical symmetric poly-
nomials
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as p1(n)® = pa(n) + 2e2(n). Stembridge’s package SF [12]
can be used to automatically prove this identity by bring-
ing —p1(n)? + p2(n) + 2e2(n) to a normal form with re-
spect to, e.g., the basis ei,e2,... Indeed, the command
toe (-p1°2+p2+2xe2) for doing this returns 0, thus proving
identity (1) for arbitrary n.

A different approach for proving identities in arbitrary
many variables, applicable to a much wider class of objects,
is presented in this paper. The algorithm we will describe
is an adaption of the algorithm for proving classical identi-
ties in one discrete indeterminate which we presented in [6].
This algorithm proceeds by computing a natural number &
such that the identity is true for all n € N if and only if it
holds for the first k£ values. Already in the original paper we
mentioned that the algorithm can be applied to problems
involving a sequence (z,)5~; of indeterminates. However,
as opposed to the new version presented here, the variation
given in [6] does not terminate in general.

Both, the original algorithm and the modified version pre-
sented here, are quite elementary applications of basic no-
tions of difference algebra [4]. We will briefly introduce the
necessary concepts of this field in Section 2. Then, in Sec-
tion 3, we review the results of [6]. The main contribution
of the current paper is a generalization of these results. This
generalization, which can be applied to prove a wide range
of polynomial identities in an arbitrary number of variables,
is presented in Sections 4 and 5. A collection of simple
examples, which have been successfully tackled by an im-



plementation of our algorithm in a Mathematica package, is
provided in Sections 4.4 and 5.3. The examples mainly serve
illustrative purposes and are indeed also not hard to prove
by hand. However, it is noteworthy that no other known
symbolic method applies to any of them.

2. BASIC NOTIONS FROM DIFFERENCE
ALGEBRA

We introduce some basic concepts from difference alge-
bra. Our notation deviates only slightly from the original
notation used in [4].

A commutative ring 9B together with a distinguished au-
tomorphism s: B — B is called a difference ring. The au-
tomorphism s is called the shift operator on 9. Difference
rings, which are actually fields, are called difference fields.
If B is a difference ring and a € B, then we also write
sa, s’a,... for s(a),s(s(a)),... .

Let § be a difference field, m € N. By §{t1,t2,...,tm}
we denote the m-fold polynomial difference ring over § con-
sisting of all polynomials in ¢;, st;, $%ti,... (i = 1,...,m)
with coefficients in §. The set { s’t; : 4 € No,j = 1,...,m}
of formal shifts is algebraically independent. The elements
of F{t1,...,tm} are called difference polynomials. The or-
der of a difference polynomial p is the maximum number r
such that s"t; appears in p for some . The quotient field
Q(F{t1,...,tm}) is denoted by F(t1,...,tm). The notations
Slt1, ..., tm] and F(t1,. .., tm) refer to the usual polynomial
ring in t¢1,...,t, and its quotient field, respectively.

We view §{t1,...,tm} as a polynomial ring in infinitely
many variables. By F{t1,...,tm}x (k € IN) we denote the
kth restriction of F{t1,...,tm}, defined as the set of all
difference polynomials p € F{t1,...,tm} whose order is at
most k. F{t1,...,tm}x is viewed as a polynomial ring over
§ in m(k+1) variables. Its quotient field is consequently de-
noted by F(t1,...,tm)r. This latter object is closely related
to what is called difference kernel in [4].

Now, consider the difference ring B := §F{t1,...,tm} for
some difference field §. For a set S C B, (S) denotes the
polynomial ideal generated by S in 9B (written (S) in [4]).
By (S)) we denote the difference ideal of S, defined as the
smallest polynomial ideal of B containing S and being closed
under s (written [S] in [4]). We define (S)x := (S) N B, and
{(SPr = {SHNB. Note that (S)x and {(S)r are themselves
ideals in Bj. However, {S)« is of course not a difference
ideal because the restriction By, is not a difference ring. Also
note that (S)x is finitely generated, and that by

(SHr = (SUsSU---Us* Sy N By

we can easily obtain a finite ideal basis for {(S) from a
finite basis of (S).

3. IDENTITIES IN ONE FREE VARIABLE

In this section, we briefly summarize the results of [6]. By
F we denote an algebraically closed field of characteristic
zero. We will first define the class C of nested polynomially
recurrent sequences. Then we will show how zero equiva-
lence can be decided for this class.

3.1 Admissible Sequences

We consider the class C = C(F) of sequences in §. C is
inductively defined as follows. If fi,..., fm € C (s > 0) and

if (f(n))sX; is a sequence in § which obeys a recurrence of
the form

f(n+r)=p or  f(n+r)=1/p (2)

where p is a polynomial expression in fi(n), fi(n+1), ...,
f1(’/L+’I‘), f2(n)7 R fz(n+1"), ----- ) fm(n), ) fm(n+1“)
and f(n),..., f(n+r—1) with coefficients in §. The number
r is called the order of the recurrence. Note that the base
of the induction is given for s = 0.

We call C the class of nested polynomially recurrent se-
quences, reflecting the facts that the defining recurrence of
one sequence may involve other sequences (the fi,...,fm
above), and that the polynomial p may involve nonlinear
terms in f like f(n)f(n +1).

As pointed out in [6], the class C contains plenty of fre-
quently appearing sequences, e.g., holonomic sequences, and
it enjoys some useful closure properties. For instance, C is
closed under field operations and under taking indefinite
sums, products, and continued fractions. In addition to
common sequences, C also contains such peculiar sequences
as (Fib(2"))%2; or (2F ()22, where Fib(-) denotes the Fi-
bonacci sequence (or, more generally, any sequence obeying
a C-finite recurrence; see, e.g., [14], Section 2.1.2 for a defi-
nition of C-finite).

3.2 The Zero Equivalence Test in ¢

The elements of C can be modeled by a finitely gener-
ated difference ideal of a multivariate polynomial difference
ring. The recurrences of a sequence f € C and the sequences
occurring in the definition of f (transitively) form a suit-
able basis: If the fi,..., fm are represented by the variables
t1,...,tm and f itself is to be represented by t,,+1 then the
defining recurrence (2) translates into the basis elements

b:=58"tm+1 —p(...) or b:=s"tmpip(...)—1,

“ ”

respectively, where stands for the variables

-1
t1, 8t1, ST t1, Srt1,
-1
tz, Stz, ST tz, Srtg,
r—1 'r
tm, Stom, S tm, S tm,
-1
tm+1, Stm+1, $" " tmt.

The polynomial b is called the defining relation of t,,. The
t1,...,tm have defining relations of the same type, possibly
depending on indeterminates t;, st;,... with smaller ¢ for
which in turn defining relations are available. The important
fact is that every t¢; has a defining relation depending only
on t; with j <4 (possibly shifted).

Given a set D C F{t1,...,tm}r of defining relations for
t1,.-.,tm where t,, represents the sequence f = (f(n))p>; €
C as described above, the algorithm proceeds as follows.
function isZero(D, f)

I, := {D)r + (tm, Stm, - - -

k:=r

while s*t,, ¢ Radl; do

k:=k+1
I := «D»k + <tm, Sty - -
done

if f(1)=f(2)=---= f(k) =0 then

return true

else

return false

, Sr_ltm)r

, sk—ltm>k



In the listing above, we assume that ¢,, corresponds to f.
RadlI} refers to the radical ideal of I}. Ideal computations
are taking place in appropriate restrictions of the difference
ring F{t1,...,tm}-

Detailed proofs of correctness and termination of this al-
gorithm are given in [6]. In fact, both correctness and ter-
mination will also follow as special case from the statements
made in the following section.

4. THE CASE OF ARBITRARY MANY
VARIABLES

The algorithm outlined in Section 3 is now applied to
identities in unknowns z1,z2,...,Z, for undetermined n.
The key idea is to regard z1,x2,... as a sequence without
defining relation, represented like the other sequences by a
formal variable ¢; and its formal shifts.

4.1 Admissible Sequences

The class C' = C'(F) of formal sequences in § is defined
inductively by:

1. Formal sequences of the form wi,us2,us,... belong to
the class C'. By a formal sequence, we mean a sequence
of distinct symbols bearing no relation to each other.

2. If fi,...,fs €C' (s >0) and f = (f(n))sZ, obeys a
recurrence of the form (2), then f € C'.

Obviously, C C C'. Also note that for every f € C’ and every
n € N, f(n) evaluates to a rational function in §(u1, ..., un).

At this point we remark that C’ contains in particular
the classical symmetric polynomials pi,p2,e2 used in the
introduction for proving (1). Appropriate defining relations
are readily found as

pi(n+1) =pi1(n) + Tnt1
p2(n+1) =pa(n) + 2741
e2(n+ 1) = ea(n) + znt1p1(n).

Additional, “more complicated” objects in C' with interest-
ing applications are discussed in Section 4.4.

4.2 The Zero Equivalence Test in ¢’

We can treat elements of C’ in the same way as we treated
the elements of C in Section 3, omitting any defining re-
lation for the variables corresponding to formal sequences
U1, U2, ... There are instances where the algorithm still ter-
minates as it stands, and if it does so, we can perfectly rely
on the answer. But the existence of defining relations for
every t; is crucial for the termination, and so we cannot ex-
pect termination of the original algorithm in general. As
an example, let ui,u2,... be arbitrary and define (pn)a=1,
(gn)sX; by the recurrences

Prnt2 = Un42Pnt1 +Pp, P-2=0,p_1 =1,
n+2 = Un+2qn+1 +qn, q-2=1,4q-1 =0.
Then it turns out that the algorithm as stated in Section 3
is able to prove
Pn+14n — Pndn+1 = (_1)n

in a finite number of steps, but it can be shown that it does
not terminate on

n+

Prt1@n-1 — Pn—1qnt1 = (—1)" T upy1.

(Both identities are special cases of (35) in 1.§6 of [8].)

In order to avoid this nontermination due to missing defin-
ing relations of variables representing arbitrary sequences
(un)nZ1, we put these “critical” variables into the ground
field. If ¢4,...,t;—1 are the variables corresponding to for-
mal sequences ui,uz,... then the algorithm of Section 3
carries over literally, if we stipulate that the I} are ideals in
S(tla ceay ti_1){t1’, - ,tm}k rather than in S{tl, .. ,tm}k-

4.3 Correctness and Termination

We will next prove correctness and termination of this
modification. The proofs are very similar to those already
given in [6] for the case where § contains only constants. We
leave out some technical details which can be found there.

THEOREM 1. The algorithm s correct.

ProOOF. If the algorithm returns false, then it has found
some ¢ € {1,...,k} with f(¢) # 0 which provides a coun-
terexample.

On the other hand, if the algorithm returns true, we may
prove the correctness by induction on n. In this case, the
induction hypothesis f(1) = --- = f(k) = 0 is fulfilled.
As for the induction step, we observe that (D) has by
construction (see [6] for a detailed formal argument) the
following property (x): For every j,n € N, every point in
the variety of

«D»J +(tm _f(n)a Stm _f(n+1)a v Sjiltm _f(n+j_1)>j

(i.e., every solution of the corresponding system of polyno-
mial equations) satisfies s’t,, = f(n + j). By induction
hypothesis we have f(n) =--- = f(n+ k —1) =0, and the
termination condition of the main loop asserts

$Ftm € Rad({DWk + (tmy -, 85 m)s).
Together with (x) this implies that f(n+ k) =0. O

The next lemma provides a statement which is required
later for the termination proof. The claim of the lemma can
be shown by elementary algebraic arguments. A detailed
proof is also given in [6].

LEMMA 2. Let K be an arbitrary field of characteristic 0
and K[X] = K[z1,...,zn] be the polynomial ring in n vari-
ables over K. Let P be a prime tdeal in K[X] and ¢ € K[X].

Then the ideals P' := (PU{y—q}) and P" := (PU{qy—1})
in K[X,y] are also prime and the quotient fields of their
coordinate rings are isomorphic:

Q(K[X,y]/P') = Q(K[X]/P) = Q(K[X,y]/P").
THEOREM 3. The algorithm terminates.

PROOF. We observe that

It = (Tg U {s"tm, s" " piy . F T

where p; is the defining relation of ¢; (j =4,...,m).

If s*t,, € Radly, then we are done. If not, then there must
be a primary component P of Iy with s*t,, ¢ P. By pri-
mality, (P U s*t,,)x has strictly lower dimension as (P). It
follows that Iy+(s"t,)x has at least one component replaced
by components of strictly lower dimensions, compared to I.

Every defining relation is either of the form s"it;q; — 1 or
s"it; —g; for some polynomial ¢; depending only on ¢, with



j' < j (and shifts). Hence m-fold application of Lemma 2
asserts that J := Iy + {(s"tm ) and

) 5k_r+1pm})k+1

have the same number of primary components and corre-
sponding components have the same dimension. Therefore,
in each iteration, at least one component of I} is replaced by
components of strictly lower dimension. By Dixon’s lemma,
this process must ultimately come to an end. [

Iepr = (JU{s" " Hpy,

4.4 Examples and Applications
We illustrate how the algorithm proves the identity

Hllwz+a)_1 “oxk +a
Zni—a(ﬂz—k—l) ®)

1T k=1

taken from Exercise 5.93 in [5]. We take § = Q(«) as field
of constants. There is one sequence of variables, (zn)n=1,
which will be represented by to, i.e., to corresponds to z,, sto
t0 Tp+1, etc. Further difference indeterminates are used for
representing the sum and the products in terms of defining
relations. We compute in the ring Q(«)(to){t1,...,ts} and
use the following set D of defining relations:

D :={st1 — t1(to + @), (t1 ~I(zs + «))
sty — tasto, (t2 ~ (z;))
tatz — 1, (ts ~ 1/11(zs))
stq — ta — stists, (ta ~ lhs)
sts — ts(sto + a)/sto, (ts ~(zp + a)/zr )

te —ta+ (ts — 1)/}

A quick Grobner basis computation confirms that st ¢
Rad(((D))l + (te)l) but sstg € Rad(((D))2 + (te, 5t6>2), there-
fore we obtain k = 2. Now, it only remains to check (3) for
n =1 and n = 2, which is straightforward.

(ts ~ lhs —rhs)

To give an impression of the range of examples to which
our method can be applied, we list some more example iden-
tities which we were able to prove by a straightforward im-
plementation of our algorithm in Mathematica. The imple-
mentation also supports certain transformations from ex-
pressions to sets of defining relations, which makes it possi-
ble to enter the problems quite similar to the form in which
they are stated in this paper. The implementation is avail-
able from the author’s homepage.

All problems listed here, including the detailed example
above, are completed in less than a second on a 2.4 GHz
machine with 1Gb of memory, using the built-in Grébner
basis facilities of Mathematica.

As the second example, consider the Christoffel-Darboux
formula for orthogonal polynomials [1, Theorem 5.2.4]. If
(An)az1 and (cn)nz1 denote arbitrary sequences, then the
family (P,(z))n of orthogonal polynomials, defined by

Po(z) = (xz — cn)Pre1(z) — An Pa—2a(2),
P71(:U) =0, Po(:l:) =1
satisfies the formula
Zn: Py(@) Pe(w) _ Poy1(2)Pr(u) = Po(2)Poyi(u)
k=0 Hi’c:f i (w - u) H?:ll Ag

for all n € IN. Note that in this example the A\,, and ¢, play
the role of the unknowns that appear in an undetermined

number while z and w are just regarded as constants. Note
further that we have not just proven the identity for some
special family of orthogonal polynomials, but rather for all
families of orthogonal polynomials in one stroke.

A related example which can be proven just as fast as
the Christoffel-Darboux identity is taken from the theory of
continued fractions. If K(yo,...,yn;Z1,...,2Zn) denotes the
continuant polynomial ([5, Section 6.7] or [8]) then

Y1 _ I((yl, -
Y2 I((yz, .

yYn; L0y« -+, Tn)
,yn;wl,...,wn)

Cn =20 +
z1 +

.\ Yn
Tn

may serve as a representation for the continued fraction by

which the computer proves instantaneously the identity

Co=m0+) (—
k=1

in full generality for all n € N and all zo,z1,...,y1,¥2,.--
(Exercise 5.12 in [1]). Here, By abbreviates the denomina-
tor’s continuant polynomial K(y2,...,Yx; Z1,...,2Zx).

At the end of this section, let us us stress that proving
identities like the following two artificial ones now has be-
come completely routine for the computer. These identities
are generalizations of identities which have been found by
the Sigma package [10] with particular sequences in place of
the z,. The generalization has been found by hand, based
on Sigma'’s answers for special instances.

The symbol H(n) = >°7_, 1/k in (4) denotes the nth har-
monic number.

n k
ZH(k)Zacz (—m+ (1 +n)H(n le

i=1

k
1)k+1 Hi:l Yi
By—1 By,

Mz

(H(k) — 1)k, (4)

Pl b
n k ' &
S o

The left and right hand side of (4) and (5) do not define sym-
metric functions, as can be seen already for n = 2. Hence,
these identities are out of the scope of the symmetric func-
tions approach outlined in the introduction.

5. GENERALIZATION: APPLYING MUL-
TIVARIATE IDENTITIES

It has been shown in the previous section how polyno-
mial identities in z1,...,Zn, y1,..-,Yn, etc. can be proven
automatically for arbitrary n. Under certain circumstances,
there is a simple extension of the methodology of the previ-
ous section which applies also to identities in z1,...,2Zn,
Y1,---,Ym, etc. for arbitrary and independent n,m, etc.
This will be outlined next.




5.1 Admissible Sequences

We define the class C* = C*(F) of multivariate formal
sequences in § inductively by: C'(F) C C*(F) and the ob-
ject (f(n1,...,mp))n;,....ny=1 belongs to C*(F) if and only
if (f(n1,n2,...,mp))m=1 € C'(F(n2,...,np)) and for every
value @ € N, the object (f(a,n2,...,1p))ns,... n,=1 belongs
to C*(F).

Note that the order of variables is significant. For ex-
ample, f(m,n, k) = k> +™ belongs to C*, but f(k,m,n) =
k2" ™ does not.

5.2 Zero Equivalence Test in ¢*

Given a sequence f = (f(n1,...,7p))n;, .. .n,=1 € C", we

-----

proceed as follows to answer the question f < 0. First con-
sider f as an element of C'(F(n2,...,np)), and compose a set
of defining relations for f and its components. This is possi-
ble by definition of C’'. The algorithm of Section 4 is then ap-
plied to compute a number £ of initial values that needs to be
checked in order to get a decision. For checking these initial
values, proceed recursively with (f(a, n2,...,7))ns,....np=1
for a = 1,...,k. Note that the recursion is again possible
by definition of C*.

5.3 Two Simple Examples

The procedure just described can be used to do Exer-
cise 5.27 in [5] which asks the reader to prove the hyperge-
ometric identity

0/1,0/1+%,...,0/m,am+% ‘ m—n—1_\2

2
<b1,b1—|—%,...,bn,bn—|—%,% ( ?)
1 2a1,...,2am 2a1,...,2am |
_2[F( %1, 2bn ‘z>+F( %1, , 2bn z)] ©)

for arbitrary m,n > 0. Recall the definition

A1y, am - a,
F( T ‘ z) e
bi,...,bn ’; bk k'
where o = a(a+1)---
torial.
The odd coefficients of z* in (6) obviously cancel out, and
by consideration of the even coefficients it suffices to prove

(a + k — 1) denotes the raising fac-

22k(m n— 1)(2]{7) IL:[ a"?(ai + %)F llj_ll(Qal)zk
T — =2 (7)
(1/2)F 11 biF (bi + L)F 1:[ (26;)7%

for all n,m,k > 0. Induction on m requires one to check
two initial values, m = 0 and m = 1, and for both of these
special values of m, induction on n also requires to check
two initial values, n = 0,n = 1. Thus it remains to show
the identity for the four special cases (m,n) = (0,0), (0,1),
(1,0), (1,1) for all £ > 0. These identities are in a form to
which the algorithm of Section 4 can be applied. Altogether,
about five seconds of CPU time were needed to complete the
proof of (7) in full generality.
As another example, consider the identity

K(Z1,y.- ) Tm+n)
=K(ml,...,xm)K(wm+1,...,:L'm+n) (8)
+ K(z1, .. s Zm—-1)K(Tm+2, - Tmtn)

(Eq. (6.133) in [5]) for the special continuant polynomials
K(z1,...,2n) = K(1,...,1;21,...,25). First, we keep m
fixed and put upn := Tm+n. (This substitution was done by
hand.) Then the algorithm of Section 4 is applied to

yUn) + BK (U2, ...y Un)

with constants «, 5. It turns out that three initial conditions
have to be checked: n = 1,2,3. Plugging these values of n
into (8) gives three identities in m that can again be tackled
by the algorithm of Section 4. The overall computation time
needed to complete this example is far less than a second.

K(ui-m,--,un) = aK(ui,...

6. CONCLUSION

We have presented an algorithm for proving, or refuting,
identities in one discrete indeterminate n. Our algorithm
applies commutative algebra techniques, in particular the
radical membership test, to appropriate restrictions of a dif-
ference ideal representing the identity under consideration,
and thereby determines a number of values which suffices
to be checked in order to conclude that the identity holds
everywhere. It has been shown that this algorithm can be
successfully applied to the problem of proving, or refuting,
polynomial identities in an undetermined number of vari-
ables. The input class of the presented algorithm includes
in particular the class of symmetric polynomials for which
automated proofs were already available. Indeed, it covers
identities of a far more general type, including also sequences
obeying nonlinear recurrences of arbitrary order, not neces-
sarily yielding symmetric functions.

Now, does this fulfill Zeilberger’s wish of being able to
prove identities in arbitrary many variables? Actually, not
quite. In his outlook [15], he aims at being able to deal with
objects like (37, @i)! or [, (2”:) which are beyond the
scope of our approach. However, he does suspect that in
analogy to the classical WZ-machinery [9], algorithms for
proving polynomial identities might be needed as a subrou-
tine. Our algorithm might be a contribution at this level.

Directions for more modest applications have been shown
in Sections 4.4 and 5.3. Certain kinds of problems hav-
ing been accessible to symbolic methods only for special in-
stances so far can now be handled in full generality by the
computer. For the given examples, this is even possible very
efficiently.
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