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Abstract

We introduce the class of nested polynomially recurrent sequences which includes
a large number of sequences that are of combinatorial interest. We present an al-
gorithm for deciding zero equivalence of these sequences, thereby providing a new
algorithm for proving identities among combinatorial sequences. This algorithm is
able to treat mathematical objects which are not covered by any other known sym-
bolic method for proving combinatorial identities. Despite its theoretical flavor and
its high complexity, an implementation of the algorithm can be successfully applied
to nontrivial examples.
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1 Introduction

Computer proofs of combinatorial identities came up in the early nineties when
Zeilberger [1] presented algorithms for deciding whether a representation of
a holonomic function represents the zero function. The study of holonomic
and O-finite functions [2,3] was motivated by the observation that many spe-
cial functions are of such type and by the fact that the defining differential-
difference system of such functions provides a convenient representation of the
mathematical object which can be used in computations.
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However, little is known about the algorithmic treatment of functions which
are not holonomic. In this paper, we restrict our attention to univariate se-
quences, i.e., functions with domain N. We note that in this case, holonomic
sequences are also called P-finite [4]. We present an algorithm for proving zero
equivalence (and hence, for proving identities) of nested polynomially recurrent
sequences, to be defined in Section 3. The class of these sequences contains
all holonomic sequences, but it contains in addition also plenty of interesting
objects which are not holonomic and which, to our knowledge, could not be
handled so far by symbolic methods. Section 6 contains some examples.

We will employ the notions of difference algebra [5], which can be seen as a
discrete analogue to differential algebra [6]. Sequences will be defined by anni-
hilating difference polynomials from a polynomial difference ring whose vari-
ables represent the sequences under consideration, or shifts of these sequences
(see Section 2). Compared to the definition of sequences by annihilating lin-
ear operators, as it is done in algorithms for holonomic objects [1-3], the use
of difference polynomials allows the definition of sequences of a more general
type, as we will see in Section 3. However, we employ the notion of difference
algebra only as a convenient language, but we will not need any deep results
from the theory of difference algebra [5]. The basic definitions we need will be
stated in Section 2. For our arguments we assume familiarity with elementary
concepts of commutative algebra only, as it is presented, e.g., in [7].

On one hand, our algorithm is of theoretical interest. It provides a decision
procedure for deciding zero equivalence of nested polynomially recurrent se-
quences. On the other hand, our algorithm is of practical relevance, for in-
stance, to prove entries from mathematical tables like [8] (see also Exam-
ple 11). Despite its very high worst case complexity, we succeeded in proving
nontrivial identities using a straightforward implementation.

This paper is organized as follows. Section 2 introduces some basic notions and
convenient notation. In Section 3 we introduce the class of nested polynomially
recurrent sequence. We will give some examples and some closure properties
of the class of these sequences. Section 4 presents how nested polynomially
recurrent sequences are translated into the language of difference rings by
means of defining relations. Section 5 presents the algorithm for proving zero
equivalence, along with proofs of its correctness and termination. Section 6
concludes the paper by some illustrative examples.

2 Difference Rings and Difference Ideals

Let K be a computable algebraically closed field of characteristic zero. By
computable, we mean that every element a € K should have a finite repre-



sentation @ and for any representation a of an element in a € K it should be
decidable if a is the zero element of K. Natural choices for K are the algebraic
closure of Q, or transcendental extensions hereof.

We recall the basic definitions of differential algebra [5]. A difference ring R is
a commutative ring with unity, equipped with an injective ring homomorphism
s: R — R. The homomorphism s is called the shift operator of R.

An important example of a difference ring is the m-fold polynomial difference
ring, to be denoted by R™. Let {t;; :i=1,...,m,j € Ny} be algebraically
independent over K and let s be canonically defined by s(c) = ¢ (¢ € K) and
s(ti;) == tij+1. Then

R(m) = K[tl,Oa Ce 7tm,07 t2,1; ceay tm,la t371, ...... ],

equipped with this s forms a difference ring. We view R(™ as a polynomial ring
with infinitely many indeterminates. The elements of R(™) are called difference
polynomials. Readers familiar with differential algebra will note the similarity
with differential polynomials. However, it is worth noting that s(ab) = s(a)s(b)
whereas the derivative in a differential ring obeys the more complicated Leibniz
rule D(ab) = D(a)b+ aD(b).

Writing s" := so s" !, s% = id, defining ¢; :=t,o (i = 1,...,m) and omitting
parentheses we will often write s7t; in place of ¢; ;. This shall remind us that the
index j corresponds to the jth shift of the object represented by the variable ¢;.
We will use similar shortcuts not only for the indeterminates, but also for
polynomials, sets of polynomials, etc. As an example, sp = s3t, + s%t3 + st if
p = 8%ty + sty + 1.

As the polynomial difference ring R is not Noetherian [5, Chapter 2, Ex. 3],
we would have difficulties to compute in R™ directly. Therefore we introduce
restrictions Rﬁm) of R where only shifts up to some finite order r € N
appear. We define

qum) = K[tl,o, t2,0, Ce 7tm,0) ...... tl,Ta RN tm,?“] - R(m) <7" € N)

We view R{™ as a polynomial ring over K in m(r + 1) indeterminates. Note
that the shift operator s on R(™ does not induce a shift operator of R{(™
because s(t;,) ¢ R™ (i = 1,...,m). We call r the order and m the depth
of R™. As m will be fixed in all our considerations, we can safely write
R, := R™ for short.

A difference ideal I in some difference ring R is an ideal in R such that s/ C I.
If S C R is any subset of R and [ is the intersection of all difference ideals in
R containing S, then we say [ is generated by S and S is called a basis of I.
We write I = {(S)). Note that if S itself has the property that sS C S then I
is the usual ring ideal generation of S, denoted by I = (S).



For S C R,, we write (S), for the polynomial ideal generated by S in R,. Note
that (S), # (S),41 unless S is trivial. The notation I < R, expresses that the
set I C R, is a polynomial ideal in R,, i.e., I = (I),. If I < R, is some ideal,
then Rad I denotes the radical of I.

3 Nested Polynomially Recurrent Sequences

We have already fixed a computable algebraically closed field K of charac-
teristic zero in the previous section. Let the class C of sequences N — K
be defined by structural induction as follows. Let fi,...,fs € C and p €
K[Y,,..., Y, Xy, ..., X, 4] (s,7 > 0 fixed). A sequence f = (f(n))s, in K
belongs to C if it satisfies (1) the recurrence

fn+r)=p(fam),.... fi(n), F(n), fn+1),..., f(n+7—1))
or (2) it satisfies the recurrence

1
p(fin),.... f(n), f(), f(n+1),.... f(n+r—1))

fln+r)=

Note that the base of the induction is given by the case s = 0.

We call C the class of nested polynomially recurrent sequences. Its elements are
“polynomially recurrent” in the sense that the polynomial p is not limited to
polynomials that are linear in f(n + 4). Nonlinear recurrences are allowed as
well. The term “nested” reflects the fact that the definition of f may involve
other nested polynomially recurrent functions.

The number 7 in the definition is called the order of f. The sequences fi,..., fs
from the definition are called subexpressions of f, and the notion of subex-

pression is understood transitively. The total number m of subexpressions of
f is called the depth of f.

Note that the notions of depth and order depend on the definition of a sequence
rather than on the sequence itself, e.g., (1/n—1/n)2% | has order 0 and depth 2,
(f(n))o2, with f(n+2) :=3f(n), f(1) = f(2) = 0 has order 2 and depth 1,
and (0)22, has depth 0 and order 0, yet all three sequences are equal, only
their representations differ.

The class C contains a large variety of sequences which appear frequently in
practice. It is immediate that all holonomic sequences are contained in C. In
addition, C contains sequences like (a®")®, (o« € K,3 € Z; by f(n+1) =

f(n)?) or (&™), (a € K, F(n) the nth Fibonacci number; by f(n + 2) =



f(n+1)f(n)) which are easily seen not to be holonomic. A class of nonlinear
recurrent sequences which arise in combinatorial and number theoretic con-
siderations is studied in [9,10]. These sequences satisfy recurrences of the form
f(n+1) = f(n)> + af(n) + B for certain a, € Q, thus they are members
of C. An example is Sylvester’s sequence defined by s(n+1) = s(n)*—s(n)+1,
s(0) =0 (cf. [11, M0865]).

The Handbook of Mathematical Functions [8] contains a lot of families f,(x)
of special functions which, for fixed x, admit sequences in n which belong to C.
Examples include

E,(z) = /100 t " exp(—xt)dt

by Ean(z) = ~(exp(—2) — 2B, (),

n o
L(n,x) := "t exp(—t) dt
by L(n,z) =T(n—1,2)(n —1) + 2" " exp(—2)
1 2
Q(X2|n) =1- W(n/z) /OX tn/Z_l exp(—t/?) dt

(x2/2)"? exp(—x?/2)
I'(n/2+1) ’

by  Q(x*In+2) = Q(x’|n) +

as well as Bessel functions J,(x), their integrals, Struve functions, orthogonal
polynomials, etc. If these functions can be handled for every fixed n € N, then
our algorithm provides a tool to prove relations among them for general n.

It is clear that C is closed under field operations provided that they are
meaningful, i.e., denominators must not vanish anywhere on the natural num-
bers. It is also quite clear that C is closed under taking indefinite sums and
products, for F(n) = Y>-7_, f(k) satisfies F(n +1) = F(n) + f(n + 1) and
F(n) = Iz, f(k) satisfies F(n +1) = f(n+ 1)F(n). It follows that C con-
tains all I[I¥-sequences [12]. Many definite sums F(n) = Yp_; f(k,n) obey
linear recurrences and therefore also belong to C. For large classes of sum-
mands f(k,n), suitable recurrences for F'(n) can be computed by the methods
of Schneider [13] or Zimmermann [14], and a recurrence computed by one of
these methods can be used as a definition of F' in the present context.

It may be remarked that C is also closed under taking indefinite continued
fractions. Given (f(n))s>, € C with f(n) # 0 (n € N) we introduce the
notation

n

P =K 10 =10+ [r@+1 )+ 1)

k=1

It is at the heart of the theory of continued fractions [15] that F'(n) can be



written as a quotient sz (n)/(n) where

s (n+2
(1
ny(n+2

(1
Obviously, (51(n))22, (312(n))s2, € C, and as C is closed under arithmetic

(n
operations, it follows (F'(n))%2, € C.

f(n+2)c(n+1) + 5(n),
fQ), a(2) =1+ f(1)f(2),
/

1

(n+2)se0(n + 1) + 302(n),

) =
)
)
)=1, x=(2) =f(2).

4 Defining Relations

Let f € C be given. The goal of this section is the construction of a finite set
D C R, of defining relations for f, according to the following definition.

Definition 1 Let fi,...,f, € C. A finite set D C R, 1is called a set of
defining relations for fi,..., fm if

(1) For alln € N, the ideal
<DU{8itj—fj(n+i):i:(),...,r—l,j:1,...,m}>T

has a unique solution, and in this solution s"t; = fi(n+r) (j =1,...,m).
(2) For every j € {1,...,m}, there exists exactly one polynomial p € D of
the form p = s"t; +q or p = ¢s"t; — 1 where q depends only on srltj:
with 7' < j and ' < r, but not on s"t;. This p is called the defining
polynomial or the defining relation of s™t;.
(8) For allp € R,_1, we have p € D <= sp € D.

The number r is called the order of D. We say that the sequence f; corresponds
to the variable t;.

If f1,..., fm_1 are the subexpressions of fmn, then we also say D is a set of
defining relations for f,.

We next collect some important properties of sets of defining relations. If we
say that the set AUsA C R, is obtained on shift of the set A C R, then the
essence of the following lemma is that the property of being a set of defining
relations is preserved under shift.

Lemma 2 Let f € C be a nested polynomially recurrent sequence of depth m
and D C R, be a set of defining relations for f. Let f1,..., f., be the sequences
corresponding to the variables ty, ..., t,,, respectively. Then DU sD C R, 1 is
also a set of defining relations for f.



PROOF. It is clear that the conditions (2) and (3) of Def. 1 are satisfied for
D U sD. As for (1), take an arbitrary n € N. Then,

<Du{s"tj—fj(n+¢):z':o,...,r—1, jzl,...,m}>

T

has a unique solution with s"t; = fj(n+r) (j=1,...,m) and
<$DU{sitj—fj(n+i):z':(),...,r, j=1,...,m}>wr1

has a unique solution with s"*'¢; = fj(n+r+1) (j = 1,...,m). It follows
that

<(DUSD)U{sitj—fj(n+i):z'=0,...,7", j:1,...,m}>T+1

also as a unique solution with s"*'t; = f;(n+r+1) (j=1,...,m). O

The following lemma states that the polynomial ideal generated by a set of
defining relations in some R, coincides with the intersection of R, with the
difference ideal it generates in R™. The proof of the lemma proceeds by
considering lexicographic Grobner bases and using the elimination property
in polynomial rings with finitely many variables. As the lemma is not needed
in the sequel, we omit the details of the proof.

Lemma 3 If D is a set of defining relations of order r and {(D)) is the dif-
ference ideal generated by D in R™ | then (DY) N R™ = (D),.

We now turn to the construction of sets of defining relations for the elements
of C. Given f € C with subexpressions fi,..., f,,—1, a set of defining relations
can eagily be obtained using the recurrences fulfilled by the f;. Suppose the f;
are numbered such that all subexpressions of f; are among the fi, ..., fi_1, let
r; be the order of f; and put r := max; r;. We distinguish two cases, according
to the two cases in the definition of C.

(1) filn+mr) = p(fl(n), oo i), fi(n), oo, filn+ 1 — 1)) for some poly-
nomial p € K[X,...,X;-1,Y0,...,Y,._1]. For each such f;, let

di = Sriti — p(tl, P ti—l, ti, ceay S”_lti) S qu;-

2) fitn+r) = 1/p(Ai(n),--., fia(n), fi(n),..., filn + i — 1)) for some
polynomial p € K[Xq,...,X;_1,Y0,...,Y,,_1]. For each such f;, let

di = p(tl, cey izt iy ey Sri_lti)S”ti —1le R’ri-
Using this notation, define D C R, as

D = {dl, Sdl, RN ST_Tldl, dg, Sdg, ceey ST_Tde, ...... , dm, Sdm, ceey ST_dem}.



It is immediate by construction that D is a set of defining relations for f.
In practice, we will of course represent common subexpressions by a single
variable queue t;, st;, sst;,... rather than by separate ones, and more subtle
optimizations for reducing the number of variables are thinkable as well.

Example 4 Consider the sequence (f(n))s>, € C defined by

where F(n) denotes the nth Fibonacci number. An appropriate set of defining
relations for f is

D = {stq + t1, sst1 + st1, (ty ~(=1)")
88ty — Sto — 1o, (t F( ))
ssty — stz — i3, (t3 ~F(n+1))
tyts — 1, stysty — 1, sstysst3 — 1, (ty ~1/F(n+1))
tstats — 1, stystosty — 1, sstysstassts — 1, (ts ~1/F(n)F(n+1))
stg — tg — stqsts, sstg — stg — Sstqssts, (te ~Xp_q-..)
t7 — toty — tg, Sty — Stosty — Stg, (tr ~ f(n ) )

ssty — sstossty — sstg }

This representation has been obtained by mechanically applying the definitions
of the various subexpressions, and representing identical subexpressions by the
same variable. However, yet a “better” set of defining relations for f can be
obtained by exploiting that ty ~ F(n) implies sty ~ F(n +1).

D' = {t; + sty, st1 + ssty, (t; ~(=1)")
s8ty — sto — i, (to ~F(n))
sty — 1, stzsto — 1, sstzssta — 1, (ts ~1/F(n))
sty — ty — titosts, ssty — sty — stystossty, (ta~XP21...)
Sty — tosts — sty, ssts — stassty — ssty ) (ts~ f(n—1))

5 Proving Zero Equivalence

We now turn to the algorithm for deciding f = 0 for elements f € C given by
a set D of defining relations.

The key idea is an induction argument. The algorithm computes a number
k € N such that f(n) = --- = f(n+k —1) = 0 implies f(n + k) = 0 for
arbitrary n € N. After that, f is evaluated at k consecutive points, and either



there is a counterexample among these values, or there is no counterexample
at all.

The algorithm reads as follows.

Algorithm 1

Input: f — a nested polynomaially recurrent sequence
D — a set of defining relations for f

Output: true or false, depending on whether f =0 or not

o0

o 1, D is of order r

Assumptions: t,, corresponds to (f(n))
function isZeroEquivalent(f, D)
k<0
Io < (D) + {tm, Sty - -, 8" M)y
while s¥*"¢t,, ¢ Rad I, do
kE+—k+1
Iy (o) hr + (8" ) ks + (S" Dy
end do
for n from 1 to £ +r do
if f(n) # 0 then
return false, counterexample = n
return true

A TR S IS RS N T S

~ D

The rest of this section consists of the proofs for correctness and termination
of Algorithm 1.

Theorem 5 Algorithm 1 is correct.

PROOF. It is clear that f # 0 whenever the algorithm returns “false” be-
cause this does only happen when a counterexample has been found. Now
suppose the algorithm returns “true”. We will prove f(n) = 0 (n € N) by
induction on n.

First, according to lines 8-10, we have f(1) = --- = f(k+r) = 0 as base of
the induction. Now let n € N be arbitrary such that f(n) = f(n+1)=---=
f(n+k+r—1)=0.Prove f(n+k+r)=0.

By repeated application of Lemma 2, DU sD U --- U s*D is a set of defining
relations for f because D is. Let f; (j = 1,...,m) be the sequences corre-
sponding to the variables ¢; (j = 1,...,m), respectively. By assumption of
the algorithm, f,, = f. Condition (1) of Def. 1 asserts that the ideal

J:<Du---u$’“Du{sitj—fj(n+z‘):z‘:0,...,k+r—1,j:1,...,m}>k+r



has a unique solution, and this solution satisfies s**"t; = f;(n + k +r). Now,
by induction hypothesis, I, C .J. Every solution of J must be a solution of I}
as well. But by the termination condition in line 4, I has only solutions with
sk*7¢,, = 0. This implies f(n+k+7)=0. O

The next theorem will assert the termination of Algorithm 1. For its proof,
we will need two technical lemmas.

Lemma 6 Let p < K[X]| =: K[z1,...,2,] be a prime ideal. Then

(1) For all ¢ € K[X], the ideal p' := (p U{p}) < K[X,y| withp =y —q
is prime and the quotient fields of the coordinate rings are isomorphic,
QK[X]/p) = Q(K[X, yl/p').

(2) For all ¢ € K[X]\p, the ideal p' := (p U {p}) < K[X,y] withp =qy — 1
is prime and Q(K[X]/p) = Q(K[X, y]/p').

PROOF. Let R = K[X]/p and R' = K[X,y]/y'.

(1) p=y — q for ¢ € K[X]. Consider the homomorphisms ¢, ¢ defined by

¢ [ ]—)RI m,sz(ZZI,,n),
G KX R mima (i=1em), g a(@,. o).

As p C ker ¢ and p C ker v, these homomorphisms induce homomorphisms
gb R — R and ¢: R" — R. ¢ and ¢ are inverses of each other because

D(b(w:)) = ¢(P(x:)) = i for i = 1,....n and ¢(P(y)) = ¢(q) = ¢ =p y. It
follows that R = R' and consequently Q( ) =2 Q(R).

(2) p=gqy —1 for ¢ € K[X]\ p. Note that, by p’ = (p) + (p), ' = R[y]/(p).
As g & p, there is some element 1/¢ € Q(R). It suffices to show the existence
of an embedding R’ — Q(R), for then R — R’ — Q(R), and hence Q(R) —

Q(R') — Q(R), and hence Q(R') = Q(R).

The evaluation homomorphism ¢: R[y] — Q(R), ¢(y) = 1/q induces a homo-
morphism ¢: R — Q(R) because (p) C ker ¢. If furthermore ker ¢ C (p) then
¢ is injective, and we are done. Indeed, ker ¢ C (p): Let a = ¥, a9’ & (qy—1)
be in canonical form, i.e., fully reduced wrt. gy — 1. Then ¢ { a,, in K[X]. Sup-
pose a € ker ¢, i.e.,

n

= Za@(y)z = Z a—Z' =— Zaz’qn_z

i—0 ¢

10



As 1/q™ # 0, it follows that

n n—1
0=>aiq" " =a+qy_ aiq" 7,
i=0 i=0
€K[X]

and hence ¢ | a,, a contradiction. O

For the present context, the previous lemma provides an invariant property for
certain ideals in Ry on extending them to ideals in Ry,;. This observation is
crucial for the termination proof. Recall that the dimension of a primary ideal
a < K[X] is defined as the transcendence degree of Q(K[X]/Rad a) over K.

Lemma 7 Let D C R, be a set of defining relations for some f € C, where
r is the order of D. For all n > 0, define I, :== (DU sD U ---U s"D),,.
Furthermore, let I, C a < Riyy and @' := (a)gir41 + Ikr1 < Rpyrir for some
fized k € N. Let a =(;_, p; be a primary decomposition of a. Then

S

(1) o = ﬂ (pi + Ik+1) is a primary decomposition of «' and
i=1

(2) fori=1,...,s we have dimy, p; = dimg .41 (pi + Ik+1).

PROOF. As I; C a, we have

a = (@) grre1 + (d1,. -y d)psre1 Where d; is
the defining relation of s**"*1¢; (i =1,

ceo,m).

Consider the special case o’ = (a) + (d) < Rp.,[s*""11;]. Applying Lemma 6
to the associated prime ideals of p;, we obtain that Rad p; + (d) is prime and
its function field is isomorphic to that of Radp;, so in particular p; + (d) is
primary and dim p; = dim(p; + (d)).

The general case a' = (a)g1r41 + (d1,-- -, dm)ksri1 1S Proven by repeating the
argument m times. Note that this is possible because d; does not depend on
variables s**7*1¢; with j > i by Def. 1.(2). O

Theorem 8 Algorithm 1 terminates.

PROOF. The only critical part is the loop in lines 4-7. We define an ordering
< on ideals as follows. Let a < A, b < B be two ideals in some rings A, B. By
aq,bg denote the respective number of primary components of dimension d in
the ideals a, b. Let dy be the greatest integer such that a4, # bg,, or dg = 0 if
aq = by for all d. Then we write a < b iff ag, < bg,-

11



It suffices to show that Iy, < Iy, because then the ideal sequence Iy, I, ...
computed by the algorithm is strictly decreasing wrt. <, and hence, by Dixon’s
lemma, it must be finite. Eventually, there will be a & with I, = (1) and at
least then the loop is left.

Suppose s**7t,, & RadI at the end of the loop body, otherwise we are
done. Let I, = ), p; be a primary decomposition of I;. As s¥*7t,, & Rad I,
there must be some component p; with s¥*7¢,, ¢ Radp;, and so dim(p; +
(s** Tt psr) < dimp;. It follows I, has at least one component which is re-
placed by components of strictly lower dimension in I+ {s**"¢,,)x,. Lemma 7
ensures that on passing from Iy + (s¥*7¢,, )., to the ideal Iy 1 = (Ix)gpi14r +
("t kr14r + (8¥1D) 414y, there will not appear new components, and the
dimension of no component will increase. Therefore I} ,; < I as claimed. O

6 Examples

Example 9 (Ezample 4 continued) We apply Algorithm 1 to show

F(n) ~ (F

I = st TG+ " (1)
for all n € N. Using D from page 8 as set of defining relations, we find
ssty & Rad(D U {ty7, st7})e, s3t; € Rad(D U sD U {t, sty, sst7})3. We conclude
k = 1 and we have to check k + r = 3 initial values. It is easily verified
f(1) = f(2) = f(3) =0, and this implies f(n) = 0 for all n € N. Using D’
instead of D leads to the same result, but fewer variables may speed up the
computations.

A careful inspection of the proofs in Section 5 shows that condition (2) of Def. 1
is only used in the termination proof, but not needed for the correctness. If
we apply Algorithm 1 to a set D C R, which satisfies conditions (1) and
(3) of Def. 1 and we obtain an answer, then this result is correct — we may,
however, obtain no answer at all. The next example provides an application
of this observation.

Example 10 (from [16], Exercise 5.93) We want to show for all functions f
and all o # 0 the identity

o T (f() +a)
Z =1

1/ & fk)+ o
& = H o —1). (2)
k=1 z'l;ll £(@) « ( f(k) )

k=1

The idea is to omit the defining relation for the variable corresponding to f(n).

12



There are two possible ways to treat the constant a: Fither we regard it as a
transcendental element and compute in Q(«), or we regard it as a constant
sequence and represent it by one of the variables t;. We will follow the second
approach, as it is more rigorous with respect to analytical correctness.

We use the following set as a set of defining relations. The variable t3 will
correspond to f(n).

D:{Stl—tl, 1NOé)
tQtl—l,StQStl—l, tQNl/Oé)
St4 — t48t3, t4 ~ Hf( ))

t5t3 — 1, St5$t3 — 1,
St6 — t6(8t3 + St1)8t5,
St7 —_ t7(t3 + tl),

ts ~1/f(n))

tr ~11(f(n) + @)

tgty — 1, stgsty — 1,
Stg — tg — stgstry,
tio — tg +ta(te — 1),
st1g — stg + sto(stg — 1) }

ts ~ 1/11(f(n))
tg ~ S(I1/11) )
t1g ~ identity candidate)

(
(
(
(
(te ~ II((f(n) + @)/ f(n)))
(
(
(
(

It is easily checked that stig ¢ Rad(D U {tio})1 and sst;y € Rad(D U sD U
{t10, st10})2. The loop terminates with k =1 and we have to check k +r = 2
initial values. For n = 1, the left hand side evaluates to 1/f(1), and the right
hand side evaluates to

() -2 - 7

Forn =2, the left hand side evaluates to

ilj(f(')“‘)_ 1 f()+a_a+ i)+
5ofge 0 0@ e

The right hand side evaluates to

) - () -

This completes the proof.

Despite the tremendous number of variables needed, an implementation com-
pletes the above examples virtually instantaneously — at least if special pur-
pose software is used for the Grobner basis computations in the radical mem-
bership test. We implemented the algorithm in the Maple system and used
Faugere’s Gb system [17] for Grébner basis computations.

13



The examples above were selected in order to illustrate the computations of the
algorithm in detail, the next example just lists some identities which we were
able to check automatically using our algorithm. Note that these identities
were up to now out of the scope of algorithmic computer proofs.

Example 11 (1) Ezercise 6.61 in [16]. If F(n) denotes the nth Fibonacci
number then

noo1 F(2" —1)
L Fe =T TFe ®)

(2) (5.1.45) in [8]. Let E,(x) denote the nth exponential integral and T'(n, )
be the incomplete Gamma function (See page 3 for definitions and defin-
ing relations). Then

E,(z)=2""'T(1 —n,z) (4)

(3) (26.4.5) in [8]. Let Q(x*|n) be the quantile of the Chi Square distribution
(cf. page 8), and let n!! =2-4-6---n forn € N even. Then

n/2-1 2\r
QU = esp(—/2 (1 + 3 < )

) (5)

(4) Recall the notation K,_, ax introduced in Section 3 for continued frac-
tions, and let

h(n) = i D= 12\/(7:;_(2—; — 2TG) (n €N).
Then
é% < ( 1;[1( 12+9z )) (6)

Though our main interest is not in efficiency, we want to point out some
timings as evidence that Algorithm 1 is of practical relevance. Our timings
are taken on a 2.4GHz machine with 1Gb of memory. In the table below,
m,r,d denote the depth, order and maximum total degree of the used set of
defining relations, respectively. The number k is as in Algorithm 1, and ¢ is
the approximate CPU time in seconds which was required to compute k.

14



Ee. | (1) 2) 38) (4) (5) (6)
m 7 10 7 9 11 11
T 2 1 1 1 2 2
d 3 2 2 3 3 4
k 1 1 1 3 3 2
t 0 0 0 6 67 8%

*)  with slight human support

7 Conclusion

We have defined the class C of nested polynomially recurrent sequences and
we have shown that zero equivalence is decidable on this class. This result
in particular admits a new algorithm for proving combinatorial identities on
a class of sequences that were formerly out of the scope of computer proofs.
Although it is likely that there are more efficient ways to implement the al-
gorithm, an unoptimized ad-hoc implementation of the algorithm is already
capable of doing nontrivial examples in reasonable time, which underlines its
practical relevance.

Acknowledgements

I am grateful to my advisor Peter Paule and my colleagues in his group at
RISC for fruitful discussions on earlier drafts of this paper. I am also indebted
to Gabor Bodnar for continuous support concerning commutative algebra, and
to Tobias Beck for considerable simplifications of the original proofs.

References

[1] D. Zeilberger, A holonomic systems approach to special functions, Journal of
Computational and Applied Mathematics 32 (1990) 321-368.

[2] F. Chyzak, B. Salvy, Non-commutative elimination in Ore algebras proves
multivariate identities, Journal of Symbolic Computation 26 (1998) 187-227.

[3] F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic
functions, Discrete Mathematics 217 (2000) 115-134.

15



[4] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Studies in
Advanced Mathematics 62, Cambridge University Press, 1999.

[5] R. M. Cohn, Difference Algebra, Interscience Publishers, John Wiley & Sons,
1965.

[6] J. F. Ritt, Differential Algebra, American Mathematical Society, Colloquium
Publications, 1950.

[7] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Springer, 1992.

[8] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 9th
Edition, Dover Publications, Inc., 1972.

[9] A. V. Aho, N. J. A. Sloane, Some doubly exponential sequences, Fibonacci
Quarterly 11 (1973) 429-437.

[10] S. W. Golomb, On certain nonlinear recurring sequences, American
Mathematical Monthly 70 (1963) 403-405.

[11] N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, 1995, http://research.att.com/ njas/sequences/.

[12] M. Karr, Theory of summation in finite terms, Journal of Symbolic
Computation 1 (3) (1985) 303-315.

[13] C. Scheider, Symbolic summation in difference fields, Ph.D. thesis, RISC-Linz,
Johannes Kepler Universitat Linz (2001).

[14] B. Zimmermann, Definite summation and integration of special functions, Ph.D.
thesis, RISC-Linz, Johannes Kepler Universitdt Linz (to appear).

[15] O. Perron, Die Lehre von den Kettenbriichen, 2nd Edition, Chelsea Publishing
Company, 1929.

[16] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd Edition,
Addison-Wesley, 1989.

[17] J.-C. Faugere, Gb tutorial, http://www-calfor.lip6.fr/“jef/ (2002).

16



