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1 Introduction

Automated asymptotic methods only recently became subject of symbolic com-
putation. Contributions like [3, 12, 5, 10, 13] discuss a variety of aspects con-
cerning the asymptotic analysis of continuous, real-valued functions. First ap-
proaches employed generalized series expansion [5, 3], later methods are based

on the theory of Hardy fields [6].

So far, it seems that more emphasis was laid on the treatment of continuous
functions, and although some mathematical fundaments are already available
[1, 2], algorithmic approaches for the discrete case seem rare.

Our poster focuses on limit computation of sequences in @, more specifically,
of sequences that can be defined by IIX-expressions [7]. We will present a
rather simple approach which avoids the use of heavy theory but whose first
applications already give promising fine results.

2 A discrete Analogon to I’'Hospital’s Rule

As is pointed out, e.g., in [4], the difference operator A, defined by Aa, :=
an4+1 — @n can be viewed as a discrete analogon to the differential operator
D: f+ f' of the continuous world. For instance, the discrete product rule

A(anby) = (Aap)by + any1Aby

closely resembles the product rule for differentiation.

n
Analogously, the summation operator X, defined by Xa,, := ) ai, corresponds
to indefinite integration in the continuous setting. k=1

This correspondence between discrete and continuous operators has been ex-
ploited in algorithms for difference equations and indefinite summation (see,
e.g., [7, 11]). Following this spirit, the following theorem may be regarded as a
discrete analogon to I’Hospital’s rule.
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Theorem (Discrete L’Hospital’s Rule) Let (a,)0%,, (b,)5%; be real se-

quences, both tending to infinity as n — oo and suppose that (b,) is asymptot-
ically strictly monotonous. Then,
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provided that the limit on the right-hand side exists. O

The theorem follows immediately from statement 1.1.70 in [9] or II §8, ex. 5
in [8] (see also Lemma 8.7 of [2]).

As an example,
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Note that this limit is found neither by Maple nor by Mathematica because
standard limit computation techniques cannot deal with the summation sign in
the denominator.

3 Towards an Algorithm

We consider terms that are built from rational functions, indefinite sums, and
indefinite products over an indeterminate n. Such expressions are called 11X-
expressions. A IIX-expression is called admissible, if the scopes of all occuring
product quantifiers are asymptotically postive. It can be shown that every
admissible term is asymptotically monotonous, so we need not worry about a
decision procedure for monotonicity.

Examples for admissible terms include expressions involving exponentials a”
(a > 0), factorials n!, binomial coefficients (}.), etc. while terms like (—1)" are
excluded.

We illustrate our method with by example. In order to compute, for instance,

H. > H n
lim *=1 where Hy, := ) % denotes the nth harmonic number, we first
n—oo  pH2. =1

apply ’Hospital’s rule obtaining
lim 22 (1)

with

pn = 40 H,Han + 407 Y Hg + 100 Ho Han + 70y Hye + 4n”H,
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+ 4n2H,, + 8nH, Hy, + TnH,, + 3 Z Hy + 4n + 6nH,,
k=1
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Gn = 4n3Hi + 8n3Hn + 10n2Hi + 20n2Hn +4n% + 8nH721 + 16nH,,

+ 6n 4 2H2 + 4H,, + 2



after expanding products and clearing double denominators. Subsequent appli-
cations of I’'Hospital’s rule would lead to more and more complicated expressions
and would most likely never come to a conclusion.

Instead, we determine in the next step a dominant term of both numerator and
denominator and consider only the quotient of these “leading terms” — the
other terms are negligible asymptotically. This is known from calculus exercises

like
T 5n3 4+ 3n? 4+ 4 _
o Ind3+4n—-5

)
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which we now extend from univariate to multivariate rational functions. Taking
the point of view of IIX-fields [7], we may regard the expressions p, and ¢
of (1) as polynomials in the ring

R=Q[n,Hy, Hyn, Y Hyl.

k=1

This view regards n, H,, etc. no longer as sequences but as pure algebraic
variables. For monomials mq, my in R corresponding to admissible sequences

(1) (2)

my, ', my, ’, respectively, let

(1)

. mn
myp < my > Iim ) = 0.

This defines a strict partial ordering < on the monomials of R.

Continuing the example of (1), we determine the leading term of both p,, and ¢,
with respect to < by calling the algorithm recursively. In general, since < is
only a partial ordering, a unique greatest summand need not exists. This case
is more complicated to deal with, but in the situation of (1) the leading terms
are unique, and the problem reduces to

hm P 4n*H,Hy, i H2n vH 4043
Putting things together, we obtain
H, Y Hg
lim —==L =1,

4 Open Problems

Although a Maple implementation of the method outlined in the previous section
works quite nice (see Section 5 for examples), some questions remain open and
will be subject of further investigations.

Currently, we deal with monotonicity by restricting the admissible sequences to
a class where everything is asymptotically monotonous, and we employ a set of
ad-hoc criterions for checking that numerator and denominator go to infinity.
Naturally, future work will focus on enlarging the class of admissible terms and
on a more systematic treatment for deciding unboundedness.



The method described in Section 3 is a semi-decision procedure in the sense that
every computed limit is correct but the method may fail or it may run forever.
Refined versions should focus on the treatment of sequences which currently
cause a failure of the method, and an a priory criteria for termination would be
interesting.

5 Some Examples

For giving a flavor of the problems that can be treated by our method, we
provide some examples, none of which can be found by the standard general
purpose CA-systems.
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