
Finding Hyperexponential Solutions of Linear ODEs by
Numerical Evaluation

Fredrik Johansson
*

RISC
Johannes Kepler University

4040 Linz, Austria

fjohanss@risc.jku.at

Manuel Kauers
*

RISC
Johannes Kepler University

4040 Linz, Austria

mkauers@risc.jku.at

Marc Mezzarobba
Inria, Univ. Lyon, AriC, LIP

†

ENS de Lyon, 46 allée d’Italie
69364 Lyon Cedex 07, France

marc@mezzarobba.net

ABSTRACT
We present a new algorithm for computing hyperexponen-
tial solutions of linear ordinary differential equations with
polynomial coefficients. The algorithm relies on interpret-
ing formal series solutions at the singular points as analytic
functions and evaluating them numerically at some common
ordinary point. The numerical data is used to determine a
small number of combinations of the formal series that may
give rise to hyperexponential solutions.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Closed form solutions, D-finite equations, Effective analytic
continuation

1. INTRODUCTION
We consider linear differential operators

𝑃 = 𝑝𝑟𝐷𝑟 + 𝑝𝑟−1𝐷𝑟−1 + · · · + 𝑝0

where 𝑝0, . . . , 𝑝𝑟 are polynomials and 𝐷 represents the stan-
dard derivation 𝑑

𝑑𝑥
. Such operators act in a natural way on

elements of a differential ring containing the polynomials.
An object 𝑦 is called a solution of the operator if 𝑃 applied
to 𝑦 yields zero. We are interested in finding the hyper-
exponential solutions of a given operator. An object 𝑦 is
*Supported by the Austrian Science Fund (FWF) grant
Y464-N18.
†UMR 5668 CNRS – ENS Lyon – Inria – UCBL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$10.00.

called hyperexponential if the quotient 𝐷(𝑦)/𝑦 can be identi-
fied with a rational function. Typical examples are rational
functions (e.g. (5𝑥 + 3)/(3𝑥 + 5)), radicals (e.g.

√
𝑥 + 1), ex-

ponentials (e.g. exp(3𝑥2 − 4) or exp(1/𝑥)), or combinations
of these (e.g.

√
𝑥 + 1 exp(𝑥9/(𝑥 − 1))). Equivalently, 𝑦 is

called hyperexponential if there is some first order operator
𝑞1𝐷 + 𝑞0 with 𝑞0, 𝑞1 polynomials which maps 𝑦 to zero. If
we regard differential operators as elements of an operator
algebra 𝐶(𝑥)[𝐷], then there is a one-to-one correspondence
between the hyperexponential solutions 𝑦 of an operator 𝑃
and its first order right hand factors. In other words, if 𝑦 is
a hyperexponential term with (𝑞1𝐷 + 𝑞0) · 𝑦 = 0, then 𝑦 is
a solution of 𝑃 if and only if there exist rational functions
𝑢0, . . . , 𝑢𝑟−1 such that

𝑃 = (𝑢𝑟−1𝐷𝑟−1 + 𝑢𝑟−2𝐷𝑟−2 + · · · + 𝑢0)(𝑞1𝐷 + 𝑞0).

Algorithms for finding the hyperexponential solutions of a
linear differential equation (or equivalently, the first order
right hand factors of the corresponding operators) are known
since long. They are needed as subroutine in algorithms for
factoring operators or for finding Liouvillian solutions. See
Chapter 4 of [12] for details and references.

Classical algorithms first compute “local solutions” at
singular points (cf. Section 2.3 below) and then test for
each combination of local solutions whether it gives rise to
a hyperexponential solution. This leads to a combinatorial
explosion with exponential runtime. The situation is similar
to classical algorithms for factoring polynomials over Q,
which first compute the irreducible factors modulo a prime
and then test for each combination whether it gives rise to a
factor in Q[𝑥].

The algorithm of van Hoeij [13] avoids the combinato-
rial explosion as follows. It picks one local solution and
considers the operator 𝑄 = 𝑞1𝐷 + 𝑞0 with 𝑞1, 𝑞0 ∈ 𝐶((𝑥))
which annihilates it. This operator is a right factor of 𝑃 ,
though not with rational coefficients. The algorithm then
constructs (if possible) a left multiple 𝐵 of 𝑄 with rational
coefficients of order at most 𝑟 − 1. This leads to a nontrivial
factorization 𝑃 = 𝐴𝐵 in 𝐶(𝑥)[𝐷]. The procedure is then
applied recursively to 𝐴 and 𝐵 until a complete factoriza-
tion is found. The first order factors in this factorization
give rise to at most 𝑟 hyperexponential candidate solutions
(possibly up to multiplication by a rational function). These
are then checked in a second step. Van Hoeij’s algorithm
reminds of the polynomial factorization algorithm of Lenstra,
Lenstra, Lovász [7, 16], which picks one modular factor and
constructs (if possible) a multiple of this factor with integer

coefficients but smaller degree than the original polynomial.
This multiple is then a proper divisor in Q[𝑥].

The algorithm we propose below avoids the combinatorial
explosion in a different way. We start from the local solu-
tions and regard them as asymptotic expansions of complex
functions. By means of effective analytic continuation and
arbitrary-precision numerical evaluation, we compute the
values of these functions at some common ordinary reference
point. Then a linear algebra algorithm is used to determine
a small list of possible combinations of local solutions that
may give rise to hyperexponential ones, possibly up to mul-
tiplication by a rational function. These are then checked in
a second step. Our approach was motivated by van Hoeij’s
polynomial factorization algorithm [15], which associates to
every modular factor a certain vector and then uses lattice
reduction to determine a small list of combinations that may
give rise to proper factors.

Although our algorithm avoids the combinatorial explo-
sion problem, we do not claim that it runs in polynomial
time. Indeed, no polynomial time algorithm can be expected
because there are operators 𝑃 which have hyperexponential
solutions 𝑦 that are exponentially larger than 𝑃 . Also van
Hoeij [13] makes no formal statement about the complex-
ity of his algorithm. It is clear though that his algorithm
is superior to the naive algorithm. Similarly, we believe
that our algorithm has chances to outperform van Hoeij’s
algorithm, at least in examples that are not deliberately
designed to exhibit worst case performance. The reason is
partly that during the critical combination phase we only
work with floating point numbers of moderate precision while
van Hoeij’s algorithm in general needs to do arithmetic in
algebraic number fields whose degrees may grow during the
computation. Another advantage of our algorithm is that it
is conceptually simpler than van Hoeij’s, at least if we take
for granted that we can compute high-precision evaluations
of D-finite functions.

In Section 2 we recall known results and definitions which
we use. Section 3 contains a global description of the whole
algorithm for finding hyperexponential solutions. Section 4
contains an abstract description of the algorithm for the
combination phase, and in Section 5 we explain how this
algorithm can be implemented using numerical evaluation.
A detailed example is given in Section 6.

2. PRELIMINARIES
In this section, we recall some results from the literature

and introduce notation that will be used in subsequent sec-
tions.

2.1 Differential Fields and Operator Algebras
A differential ring/field is a pair (𝐾, 𝐷) where 𝐾 is a

ring/field and 𝐷 : 𝐾 → 𝐾 is a derivation on 𝐾, i.e., a map
satisfying 𝐷(𝑎+𝑏) = 𝐷(𝑎)+𝐷(𝑏) and 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏+𝑎𝐷(𝑏)
for all 𝑎, 𝑏 ∈ 𝐾. Throughout this paper, we consider the
differential field 𝐾 = 𝐶(𝑥), where 𝐶 is some (computable)
subfield of C, together with the derivation 𝐷 : 𝐾 → 𝐾
defined by 𝐷(𝑐) = 0 for all 𝑐 ∈ 𝐶 and 𝐷(𝑥) = 1. For
simplicity, we assume throughout that 𝐶 is algebraically
closed.

A differential ring/field 𝐸 is called an extension of 𝐾 if
𝐾 ⊆ 𝐸, and the derivation of 𝐸 restricted to 𝐾 agrees with
the derivation of 𝐾.

By 𝐾[𝐷] we denote the set of all polynomials in the in-
determinate 𝐷 with coefficients in 𝐾. Addition in 𝐾[𝐷]
is defined in the usual way, and multiplication is defined
subject to the commutation rule 𝐷𝑎 = 𝑎𝐷 + 𝐷(𝑎) for 𝑎 ∈ 𝐾.
The elements of 𝐾[𝐷] are called operators, and they act
on the elements of some extension 𝐸 of 𝐾 in the obvious
way: If 𝑃 = 𝑝0 + 𝑝1𝐷 + · · · + 𝑝𝑟𝐷𝑟 is an operator of or-
der 𝑟 and 𝑦 ∈ 𝐸, then 𝑃 · 𝑦 :=

∑︀𝑟

𝑖=1 𝑝𝑖𝐷
𝑖(𝑦) ∈ 𝐸. The

noncommutative multiplication is compatible with operator
application in the sense that we have (𝑃 𝑄) · 𝑦 = 𝑃 · (𝑄 · 𝑦)
for all 𝑃, 𝑄 ∈ 𝐾[𝐷] and all 𝑦 ∈ 𝐸.

The elements 𝑦 ∈ 𝐸 such that 𝑃 · 𝑦 = 0 form a 𝐶-vector
space 𝑉 with dim 𝑉 ≤ 𝑟. By making 𝐸 sufficiently large it
can always be assumed that dim 𝑉 = 𝑟.

2.2 Hyperexponential Terms
Let 𝐸 be an extension of 𝐾. An element ℎ ∈ 𝐸 ∖ {0} is

called hyperexponential over 𝐾 if 𝐷(ℎ)/ℎ ∈ 𝐾. Equivalently,
ℎ is hyperexponential if 𝑄 ·ℎ = 0 for some nonzero first order
operator 𝑄 ∈ 𝐾[𝐷].

Two hyperexponential terms ℎ1, ℎ2 are called equivalent
if ℎ1/ℎ2 ∈ 𝐾. For example, the terms exp(3𝑥2 − 𝑥) and
(1−2𝑥)2 exp(3𝑥2−𝑥) are equivalent, but exp(3𝑥2−𝑥) and (1−
2𝑥)

√
2 exp(3𝑥2−𝑥) are not. (Here and below, we use standard

calculus notation to refer to elements of some extension 𝐸
on which the derivation acts as the notation suggests, e.g.
𝐷(exp(3𝑥2 − 𝑥)) = (6𝑥 − 1) exp(3𝑥2 − 𝑥).)

Every hyperexponential term can be written in the form
ℎ = exp(

∫︀
𝑣), where 𝑣 is a rational function. The additive

constant of the integral amounts to a multiplicative constant
for ℎ, which is irrelevant in our context, because 𝑃 · ℎ = 0 if
and only if 𝑃 ·(𝑐ℎ) = 0 for every 𝑐 ∈ 𝐶∖{0}. If we consider the
partial fraction decomposition of 𝑣 and integrate it termwise,
we obtain something of the form

𝑔 +
𝑛∑︁

𝑖=1

𝛾𝑖 log(𝑝𝑖)

with 𝑔 ∈ 𝐾, 𝛾1, . . . , 𝛾𝑛 ∈ 𝐶 and monic square free pairwise co-
prime polynomials 𝑝𝑖 ∈ 𝐶[𝑥]. In terms of this representation,
two hyperexponential terms are equivalent if the difference
of the corresponding rational functions 𝑔 is a constant and
any two corresponding coefficients 𝛾𝑖 differ by an integer.

The equivalence class of a hyperexponential term ℎ is called
the exponential part of ℎ. The motivation for this terminology
is that when we are searching for some hyperexponential
solution ℎ of 𝑃 and we already know its equivalence class,
then we can take an arbitrary element ℎ0 from this class and
make an ansatz ℎ = 𝑢ℎ0 for some rational function 𝑢 ∈ 𝐾.
The operator 𝑃 := 𝑃 ⊗

(︀
𝐷 − 𝐷(1/ℎ0)

1/ℎ0

)︀
∈ 𝐾[𝐷] then has the

property that 𝑢 is a solution of 𝑃 if and only if 𝑢ℎ0 is a
solution of 𝑃 . This reduces the problem to finding rational
solutions, which is well understood and will not be discussed
here [1, 12].

2.3 Local Solutions
Consider an operator 𝑃 ∈ 𝐶(𝑥)[𝐷] of order 𝑟. By clearing

denominators, if necessary, we may assume that 𝑃 ∈ 𝐶[𝑥][𝐷],
say 𝑃 = 𝑝𝑟𝐷𝑟 + · · · + 𝑝0 with 𝑝𝑟 ̸= 0. A point 𝑧 ∈ C ∪ {∞}
is called singular if 𝑧 is a root of 𝑝𝑟, or 𝑧 = ∞. A point
which is not singular is called ordinary. Note that there are
only finitely many singular points, and that we include the
“point at infinity” always among the singular points.

If 𝑧 = 0 is an ordinary point then 𝑃 admits 𝑟 linearly inde-
pendent power series solutions. If 𝑧 = 0 is a singular point,
it is still possible to find 𝑟 linearly independent generalized
series solutions of the form

𝑥𝛼 exp(𝑢(𝑥−1/𝑠))
𝑚∑︁

𝑘=0

𝑏𝑘(𝑥1/𝑠) log(𝑥)𝑘 (1)

where 𝛼 ∈ 𝐶, 𝑢 ∈ 𝐶[𝑥] with 𝑢(0) = 0, 𝑠 ∈ N, 𝑚 ∈ N

and 𝑏0, . . . , 𝑏𝑚 ∈ 𝐶[[𝑥]]. These solutions are called the local
solutions at 0. Their computation is well-known and will
not be discussed here. (See [14, 12] and the references given
there for details.)

Two series as in (1) are called equivalent if they have the
same 𝑢 and 𝑠 and the difference of the respective values of 𝛼
is in 1

𝑠
Z. The equivalence classes of generalized series under

this equivalence relation are called the exponential parts
of the series. Adopting van Hoeij’s notation and defining
Exp(𝑒) := exp(

∫︀
𝑒
𝑥

) for 𝑒 ∈ 𝐶[𝑥−1/𝑠], we have that Exp(𝑒1)
and Exp(𝑒2) are equivalent iff 𝑒1 − 𝑒2 ∈ 1

𝑠
Z. Note that if

𝑚 = 0 and 𝑠 = 1, two series are equivalent iff their quotient
can be identified with a formal Laurent series. We will from
now on make no notational distinction between Exp(𝑒) and
its equivalence class.

A point 𝑧 ̸= 0 can be moved to the origin by the change
of variables �̃� = 𝑥 − 𝑧 (if 𝑧 ∈ 𝐶) or �̃� = 1/𝑥 (if 𝑧 = ∞). If 𝑃
is the operator obtained from 𝑃 by replacing 𝑥 by �̃� + 𝑧 or
1/�̃�, then a local solution of 𝑃 ∈ 𝐶[𝑥][𝐷] at 𝑧 is defined as
the local solution of 𝑃 ∈ 𝐶[�̃�][𝐷] at 0.

Throughout the rest of this paper, we will use the following
notation. 𝑃 is some operator in 𝐶[𝑥][𝐷] of order 𝑟, by
𝑧1, . . . , 𝑧𝑛−1 ∈ 𝐶 we denote its finite singular points, 𝑧𝑛 = ∞.
We write �̃�𝑖 = 𝑥 − 𝑧𝑖 (𝑖 = 1, . . . , 𝑛 − 1) and �̃�𝑛 = 1/𝑥 for
the variables with respect to which the singularities at 𝑧𝑖

appear at the origin. For 𝑖 = 1, . . . , 𝑛, we consider the vector
space 𝑉𝑖 generated by all local solutions at 𝑧𝑖. There may
be solutions with different exponential parts, say ℓ𝑖 different
parts Exp(𝑒𝑖,1), . . . , Exp(𝑒𝑖,ℓ𝑖) for 𝑒𝑖,𝑗 ∈ 𝐶[�̃�−1/𝑠𝑖,𝑗

𝑖]. By

𝑉𝑖,𝑗 = 𝑉𝑖 ∩ Exp(𝑒𝑖,𝑗)𝐶((�̃�1/𝑠𝑖,𝑗

𝑖))[log �̃�𝑖]

we denote the vector space of all local solutions of 𝑃 at 𝑧𝑖

with exponential part (equivalent to) Exp(𝑒𝑖,𝑗). Our 𝑉𝑖,𝑗 are
written 𝑉𝑒𝑖,𝑗 (𝑃) in van Hoeij’s papers [14, 13].

The condition in the definition of equivalence that the
difference of corresponding values of 𝛼 be an integer (rather
than, say, requiring exactly the same value of 𝛼) ensures
that the 𝑉𝑖,𝑗 are indeed vector spaces, because if some 𝑉𝑖,𝑗

contains, for example, the two series

𝑥𝛼(1 + 𝑥 + 𝑥2 + · · ·) and 𝑥𝛼(1 + 𝑥 + 3𝑥2 + · · ·)

then it must also contain their difference 𝑥𝛼(2𝑥2 + · · ·) =
𝑥𝛼+2(2 + · · ·).

2.4 Analytic Solutions
It is classical that the formal power series solutions 𝑦

of 𝑃 at an ordinary point 𝑧 ∈ C actually converge in a
neighbourhood of 𝑧 and thus give rise to analytic function
solutions 𝑦 of 𝑃 . The correspondence is one-to-one. For any
other ordinary point 𝑧′ ∈ C and a path 𝑧 ; 𝑧′ avoiding
singular points there exists a matrix 𝑀𝑧;𝑧′ ∈ C𝑟×𝑟 such
that (︀

𝐷𝑗𝑦(𝑧′)
)︀𝑟−1

𝑗=0
= 𝑀𝑧;𝑧′

(︀
𝐷𝑗𝑦(𝑧)

)︀𝑟−1
𝑗=0

for every solution 𝑦 analytic near 𝑧. There are algorithms [5,
9] for efficiently computing the entries of 𝑀𝑧;𝑧′ for any
given polygon path 𝑧 ; 𝑧′ with vertices in Q̄ to any desired
precision. In other words, we can compute arbitrary precision
approximations of 𝑦 and its derivatives at every ordinary
point (“effective analytic continuation”).

Assume now that 0 is a singular point, and consider the
case 𝑠 = 1 and 𝑚 = 0, i.e., let 𝑦 = Exp(𝑒)𝑏 for some 𝑒 ∈
𝐶[𝑥−1] and 𝑏 ∈ 𝐶[[𝑥]] be a formal solution of 𝑃 . To give an
analytic meaning to Exp(𝑒) = exp(

∫︀
𝑒
𝑥

) = exp(𝑢+𝛼 log 𝑥) =
𝑥𝛼 exp(𝑢) (for suitable 𝛼 ∈ 𝐶 and 𝑢 ∈ 𝐶[𝑥−1]) amounts to
making a choice for a branch of the logarithm. Every choice
gives rise to the same function up to some multiplicative
constant.

Since Exp(𝑒)𝑏 is a solution of 𝑃 iff 𝑏 is a solution of the
operator 𝑃 ⊗ (𝐷 + 𝑒

𝑥
), we may assume that 𝑒 = 0. Then

the problem remains that the formal power series 𝑦 = 𝑏
may not be convergent if 0 is a singular point. However, by
resummation theory [2, 3] it is still possible to associate to 𝑦
an analytic function 𝑦 defined on some sector

Δ = Δ(𝑑, 𝜙, 𝜌) := {𝑧 ∈ C : 0 < |𝑧| ≤ 𝜌 ∧ |𝑑 − arg 𝑧| ≤ 𝜙/2}

(with 𝑑 ∈ [0, 2𝜋], 𝜌, 𝜙 > 0) such that 𝑦 is the asymptotic
expansion of 𝑦 for 𝑧 → 0 in Δ.

The precise formulation of this result is technical and not
really needed for our purpose (see [3, Chap. 6, 10, and 11] or
[2, Chap. 5–7] for full details). It will be more than sufficient
to know the following facts:

∙ For every 𝑘 = (𝑘1, . . . , 𝑘𝑞) ∈ Q𝑞 with 𝑘1 > · · · > 𝑘𝑞

and every 𝑑 = (𝑑1, . . . , 𝑑𝑞) ∈ [0, 2𝜋]𝑞 such that

|𝑑𝑗+1 − 𝑑𝑗 | ≤ (𝑘−1
𝑗+1 − 𝑘−1

𝑗) 𝜋
2 , 𝑗 = 1, . . . , 𝑞 − 1,

one constructs [3, §10.2] a differential subring C{𝑥}𝑘,𝑑

of C[[𝑥]] [3, Theorems 51 and 53] which contains the
ring C{𝑥} of all convergent power series.

∙ There is a differential ring homomorphism [3, Theorems
51 and 53] 𝒮𝑘,𝑑 from C{𝑥}𝑘,𝑑 to the germs of analytic
functions defined on sectors of the form Δ(𝑑1, 𝜙, 𝜌) for
suitable 𝜙, 𝜌 > 0, with the property that for every 𝑦 ∈
C{𝑥}𝑘,𝑑 the function 𝒮𝑘,𝑑(𝑦) has 𝑦 as its asymptotic
expansion for 𝑧 → 0 [3, §10.2, Exercice 2]. The 𝒮𝑘,𝑑

map convergent formal power series to their sum in the
usual sense [3, Lemmas 8 and 20].

∙ For a given operator 𝑃 ∈ 𝐶[𝑥][𝐷] of order 𝑟, one
can compute a tuple 𝑘 and finite subsets 𝒟1, . . . , 𝒟𝑞

of [0, 2𝜋] such that any 𝑦 ∈ C[[𝑥]] with 𝑃 ·𝑦 = 0 belongs
toC{𝑥}𝑘,𝑑 for all 𝑑 as above with 𝑑1 /∈ 𝒟1, . . . , 𝑑𝑞 /∈ 𝒟𝑞.
Additionally, given such a 𝑑, one can compute 𝜙, 𝜌 > 0
such that each 𝒮𝑘,𝑑(𝑦) is defined on Δ(𝑑1, 𝜙, 𝜌).

∙ Furthermore, given a point 𝑧 ∈ Δ(𝑑1, 𝜙, 𝜌), a precision
𝜀 > 0, and 𝑦 ∈ C[[𝑥]] with 𝑃 · 𝑦 = 0, one can efficiently
compute an approximation 𝑌𝜀 of the vector 𝑌 (𝑧) =
(𝐷𝑗𝒮𝑘,𝑑(𝑦))𝑟−1

𝑗=0 such that ‖𝑌 (𝑧) − 𝑌𝜀‖ ≤ 𝜀.

The computational part of the last two items is a special
case of Theorem 7 of van der Hoeven [11]. As an application,
van der Hoeven [10] shows how to factor differential operators
using numerical evaluation. Note that our 𝑘𝑗 correspond to
1/𝑘𝑗 in van der Hoeven’s articles, and the components of the
tuples 𝑘 and 𝑑 appear in reverse order.

Also observe that in the last item, 𝑧 is an ordinary point,
so that from there we can use effective analytic continuation
to compute values of 𝒮𝑘,𝑑(𝑦) and its derivatives at any other
ordinary point.

3. OUTLINE OF THE ALGORITHM
A hyperexponential term ℎ can be expanded as a gener-

alized series at every point 𝑧 ∈ C ∪ {∞}, in particular at
its singularities. The resulting generalized series are local
solutions of 𝑃 if ℎ is a solution of 𝑃 . If ℎ = exp(

∫︀
𝑣) is a

hyperexponential solution where 𝑣 ∈ C(𝑥), and if we write
the partial fraction decomposition of 𝑣 in the form

𝑣 = 𝑒1

𝑥 − 𝑧1
+ 𝑒2

𝑥 − 𝑧2
+ · · · + 𝑒𝑛

1/𝑥
,

where the 𝑒𝑖 are polynomials in �̃�−1
𝑖 , then expanding this ℎ

at 𝑧𝑖 yields a generalized series in �̃�𝑖 whose exponential part
matches Exp(𝑒𝑖). The components 𝑒𝑖 in the decomposition
of 𝑣 must hence show up among the exponential parts of the
local solutions of 𝑃 .

If Exp(𝑒𝑖,1), . . . , Exp(𝑒𝑖,ℓ𝑖) are (representatives of) the dif-
ferent exponential parts that appear among the local so-
lutions at 𝑧𝑖, then any hyperexponential solution must be
equivalent to the term exp(

∫︀
(𝑒1,𝑗1

�̃�1
+ · · · + 𝑒𝑛,𝑗𝑛

�̃�𝑛
)) for some

tuple (𝑗1, . . . , 𝑗𝑛). It then remains to check for each of these
candidates whether some element of its equivalence class
solves the given equation. The basic structure of the al-
gorithm for finding hyperexponential solutions is thus as
follows.

Algorithm 1. Input: a linear differential operator 𝑃 =
𝑝0 + 𝑝1𝐷 + · · · + 𝑝𝑟𝐷𝑟, 𝑝𝑟 ̸= 0, with coefficients in 𝐶[𝑥].
Output: all the hyperexponential terms ℎ with 𝑃 · ℎ = 0.

1. Let 𝑧1, . . . , 𝑧𝑛−1 ∈ C be the roots of 𝑝𝑟 in C, and let
𝑧𝑛 = ∞.

2. For 𝑖 = 1, . . . , 𝑛 do

3. Find the exponential parts Exp(𝑒𝑖,1), . . . , Exp(𝑒𝑖,ℓ𝑖)
of the local solutions of 𝑃 at 𝑧𝑖.

4. Determine a set 𝑈 ⊆ {1, . . . , ℓ1} × · · · × {1, . . . , ℓ𝑛}
s.t. for every hyperexponential solution ℎ equivalent to
exp
(︀∫︀ ∑︀𝑛

𝑖=1
𝑒𝑖,𝑗𝑖

�̃�𝑖

)︀
we have (𝑗1, . . . , 𝑗𝑛) ∈ 𝑈 .

5. For each (𝑗1, . . . , 𝑗𝑛) ∈ 𝑈 do

6. Let ℎ0 := exp
(︀∫︀ ∑︀𝑛

𝑖=1
𝑒𝑖,𝑗𝑖

�̃�𝑖

)︀
, and compute the oper-

ator 𝑃 := 𝑃 ⊗ (𝐷 − 𝐷(1/ℎ0)
1/ℎ0

).

7. Compute a basis {𝑢1, . . . , 𝑢𝑚} ⊆ 𝐶(𝑥) of the vector
space of all rational solutions of 𝑃 , and output 𝑢1ℎ0,
. . . , 𝑢𝑚ℎ0.

There is some freedom in step 4 of this algorithm. A naive
approach would simply be to take all possible combinations,
i.e., 𝑈 = {1, . . . , ℓ1} × · · · × {1, . . . , ℓ𝑛}. This is a finite set,
but its size is in general exponential in the number of singular
points. For finding a smaller set 𝑈 , Cluzeau and van Hoeij [6]
use modular techniques to quickly discard unnecessary tuples.
Our algorithm, explained in the following section, addresses
the same issue. It computes a set 𝑈 of at most 𝑟 tuples.

4. THE COMBINATION PHASE
In general, the differential operator 𝑃 may have several

different solutions with the same exponential part, i.e., the
dimension of the vector spaces 𝑉𝑖,𝑗 might be greater than one.
In this case, it might be that 𝑉𝑖,𝑗 contains some series which
is the expansion of a hyperexponential solution ℎ at 𝑧𝑖 as
well as some other series which are not. If we compute some
basis of 𝑉𝑖,𝑗 , we cannot expect it to contain the expansion
of ℎ. Instead, each basis element will in general be the linear
combination of this series and some other one. Now, if the
expansion of ℎ at some other singular point 𝑧𝑖′ belongs to
the space 𝑉𝑖′,𝑗′ (which possibly also has higher dimension),
then, in some sense, ℎ must belong to the intersection of the
vector spaces 𝑉𝑖,𝑗 and 𝑉𝑖′,𝑗′ .

Our algorithm is based on testing which intersections are
nontrivial. To make these intersections meaningful, we must
first map the vector spaces we want to intersect into a com-
mon ambient space 𝑊 . Let 𝐸 be some differential ring
containing 𝐶(𝑥) as well as all the hyperexponential solutions
of 𝑃 , and let 𝑊 ⊆ 𝐸 be the 𝐶-vector space generated by
solutions of 𝑃 in 𝐸. For each 𝑖, let 𝜋𝑖 be some vector space
homomorphism

ℓ𝑖⨁︁
𝑗=1

Exp(𝑒𝑖,𝑗)C((�̃�1/𝑠𝑖,𝑗

𝑖))[log �̃�𝑖] ⊇ 𝑉𝑖
𝜋𝑖−→ 𝑊

with the following properties:

1. The sum 𝜋𝑖(𝑉𝑖,1) + · · · + 𝜋𝑖(𝑉𝑖,ℓ𝑖) is direct.

2. If ℎ ∈ 𝑊 is hyperexponential, then 𝜋−1
𝑖 (ℎ) contains

the formal series expansion ℎ̂ of ℎ at 𝑧𝑖, possibly up to
a multiplicative constant.

Define 𝑊𝑖,𝑗 := 𝜋𝑖(𝑉𝑖,𝑗). If ℎ is some hyperexponential solu-
tion of 𝑃 , say with exponential part

exp
(︁∫︁ (︁

𝑒1,𝑗1

�̃�1
+ 𝑒2,𝑗2

�̃�2
+ · · · + 𝑒𝑛,𝑗𝑛

�̃�𝑛

)︁)︁
,

then ℎ ∈ 𝑊𝑖,𝑗𝑖 for all 𝑖, and hence the vector space 𝑊𝑗 :=
𝑊1,𝑗1 ∩ · · · ∩ 𝑊𝑛,𝑗𝑛 is not the zero subspace (because it
contains at least ℎ). Our main observation is that there can
be at most 𝑟 tuples 𝑗 = (𝑗1, . . . , 𝑗𝑛) for which 𝑊𝑗 ̸= {0}, and
that they can be computed efficiently once we have bases of
the 𝑊𝑖,𝑗 .

Postponing the discussion of making the 𝜋𝑖 constructive to
the next section, assume for the moment that 𝑊 is some vec-
tor space over 𝐶, let 𝑟 = dim 𝑊 < ∞ be its dimension, and
suppose we are given 𝑛 different decompositions of subspaces
of 𝑊 into direct sums:

𝑊1,1 ⊕ 𝑊1,2 ⊕ · · · ⊕ 𝑊1,ℓ1 ⊆ 𝑊,

𝑊2,1 ⊕ 𝑊2,2 ⊕ · · · ⊕ 𝑊2,ℓ2 ⊆ 𝑊,

...
𝑊𝑛,1 ⊕ 𝑊𝑛,2 ⊕ · · · ⊕ 𝑊𝑛,ℓ𝑛 ⊆ 𝑊.

Without loss of generality, we may make the following as-
sumptions:

∙ Each direct sum
⨁︀ℓ𝑖

𝑗=1 𝑊𝑖,𝑗 is in fact equal to 𝑊 . If
not, add one more vector space to the sum.

∙ ℓ1 = ℓ2 = · · · = ℓ𝑛 =: ℓ. If not, pad the sum with
several copies of {0}.

∙ ℓ ≤ 𝑟. If not, then because the sums are supposed to
be direct, each decomposition must contain at least
ℓ − 𝑟 copies of {0}, which can be dropped.

Lemma 2. There are at most dim 𝑊 = 𝑟 different tuples

𝑗 = (𝑗1, . . . , 𝑗𝑛) ∈ {1, . . . , ℓ}𝑛

such that 𝑊𝑗 := 𝑊1,𝑗1 ∩ 𝑊2,𝑗2 ∩ · · · ∩ 𝑊𝑛,𝑗𝑛 ̸= {0}.

Proof. Induction on 𝑛. For 𝑛 = 1, there are only ℓ ≤ 𝑟
different tuples altogether: (1), (2), . . . , (ℓ), so the claim is
obviously true. Suppose now that the claim is shown for
the case when 𝑛 − 1 decompositions of some vector space
are given. Let 𝑈 ⊂ {1, . . . , ℓ}𝑛 be a set of tuples 𝑗 with
𝑊𝑗 ̸= {0}. Partition the elements of 𝑈 according to their
first components,

𝑈 = 𝑈1
.
∪ 𝑈2

.
∪ · · ·

.
∪ 𝑈ℓ,

i.e., 𝑈𝑘 is the set of all tuples 𝑗 whose first component is 𝑘,
for 𝑘 = 1, . . . , ℓ.

For all 𝑗 = (𝑘, 𝑗2, . . . , 𝑗𝑛) ∈ 𝑈𝑘 we have {0} ≠ 𝑊𝑗 ⊆ 𝑊1,𝑘.
Therefore, (𝑗2, . . . , 𝑗𝑛) ∈ {1, . . . , ℓ}𝑛−1 is a valid solution tu-
ple for the modified problem with 𝑊 ′

𝑖,𝑗 := 𝑊𝑖+1,𝑗 ∩ 𝑊1,𝑘

(𝑖 = 1, . . . , 𝑛 − 1, 𝑗 = 1, . . . , ℓ) in place of 𝑊𝑖,𝑗 (𝑖 = 1, . . . , 𝑛,
𝑗 = 1, . . . , ℓ). By induction hypothesis, since the 𝑊 ′

𝑖,𝑗 form
𝑛 − 1 decompositions of the space 𝑊1,𝑘, there are at most
dim 𝑊1,𝑘 tuples (𝑗2, . . . , 𝑗𝑛) with 𝑊(𝑗2,...,𝑗𝑚) ≠ {0}. Con-
sequently, there are altogether at most

∑︀ℓ

𝑘=1 dim 𝑊1,𝑘 =
dim 𝑊 = 𝑟 different tuples for the original space 𝑊 .

The desired index tuples can be computed efficiently using
dynamic programming, as shown in the following algorithm.

Algorithm 3. Input: a vector space 𝑊 of dimension 𝑟, and
a collection of subspaces 𝑊𝑖,𝑗 (𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , ℓ)
such that 𝑊 =

⨁︀ℓ

𝑗=1 𝑊𝑖,𝑗 for 𝑖 = 1, . . . , 𝑛 and ℓ ≤ 𝑟.
Output: the set 𝑈 of all tuples 𝑗 = (𝑗1, . . . , 𝑗𝑛) with the
property 𝑊𝑗 =

⋂︀𝑛

𝑖=1 𝑊𝑖,𝑗𝑖 ̸= {0}.

1. 𝑈 := { (𝑗) : 𝑊1,𝑗 ̸= {0} }
2. For 𝑖 = 2, . . . , 𝑛 do
3. 𝑈new := ∅
4. For 𝑗 = 1, . . . , ℓ do
5. For 𝑘 ∈ 𝑈 do
6. If 𝑊𝑘 ∩ 𝑊𝑖,𝑗 ̸= {0} then
7. 𝑈new := 𝑈new ∪ {append(𝑘, 𝑗)}
8. 𝑈 := 𝑈new

9. Return 𝑈

Proposition 4. Algorithm 3 is correct and needs no more
than O(𝑛𝑟5) operations in 𝐶, if the bases of the 𝑊𝑘 are
cached.

Proof. Correctness is obvious by line 6 and the fact that
whenever 𝑘 = (𝑘1, . . . , 𝑘𝑛) is such that 𝑊𝑘 ̸= {0} then we
necessarily also have 𝑊(𝑘1,...,𝑘𝑛−1) ̸= {0}.

For the complexity, observe that all the vector space in-
tersections can be performed with a number of operations
which is at most cubic in 𝑟. Taking also into account that
we always have |𝑈 | ≤ 𝑟 by Lemma 2, and that ℓ ≤ 𝑟, the
bound O(𝑛ℓ𝑟4) = O(𝑛𝑟5) follows immediately.

By a more careful analysis it can be shown that the com-
plexity is actually bounded by 8𝑛𝑟4. We omit the details of
the corresponding argument as we will not need the tighter
estimate in what follows.

5. NUMERICAL EVALUATION AT A
REFERENCE POINT

We now turn to the question of how to construct the
morphisms 𝜋𝑖. The basic idea is to choose a reference point 𝑧0
that is an ordinary point of 𝑃 , and let 𝑊 be the space of
analytic solutions of the equation in a neighborhood of 𝑧0.

𝑧0

𝑧1 𝑧2

𝑧3

𝑧4

For each singular point 𝑧𝑖, let Δ𝑖 be a
sector rooted at 𝑧𝑖 for which all formal
power series appearing in the generalized
series solutions of 𝑃 at 𝑧𝑖 admit an inter-
pretation as analytic functions via some
operator 𝒮𝑘,𝑑 (depending on 𝑖, but not
on the series), as described in Section 2.4.
Such sectors exist and can be computed
explicitly. Next, let 𝛾𝑖 (𝑖 = 1, . . . , 𝑛) be polygonal paths from
𝑧𝑖 to 𝑧0 avoiding singular points and leaving the startpoint
through Δ𝑖 (meaning that for some 𝜀 > 0 all the points on 𝛾𝑖

with a distance to 𝑧𝑖 less than 𝜀 should belong to Δ𝑖). Such
paths exist. The analytic interpretations of the generalized
series solutions at the singular points 𝑧𝑖 defined in Δ𝑖 admit
a unique analytic continuation along the paths 𝛾𝑖 to the
neighborhood of 𝑧0.

We define 𝜋𝑖 : 𝑉𝑖 → 𝑊 as follows. Let 𝑉 0
𝑖,𝑗 be the subspace

of 𝑉𝑖,𝑗 consisting of generalized series (1) with 𝑠 = 1 and
𝑚 = 0, and let 𝑉 ′

𝑖,𝑗 be a linear complement of 𝑉 0
𝑖,𝑗 in 𝑉𝑖,𝑗 .

If 𝑦 ∈ 𝑉 0
𝑖,𝑗 i.e., if 𝑦 = Exp(𝑒𝑖,𝑗)𝑏 with 𝑒𝑖,𝑗 ∈ C[�̃�−1

𝑖] and 𝑏 ∈
C[[�̃�𝑖]], define 𝜋𝑖(𝑦) to be the unique analytic continuation of
the function E(𝑒𝑖,𝑗)𝒮𝑘,𝑑(𝑏) along 𝛾𝑖 to 𝑧0, where E(𝑒𝑖,𝑗) refers
to the function 𝑧 ↦→ exp(

∫︀ 𝑧

𝑧0
𝑒𝑖,𝑗/�̃�𝑖) with some arbitrary but

fixed choice of the branch of the logarithm, and 𝒮𝑘,𝑑 is as
described in Section 2.4. Set 𝜋𝑖(𝑦) = 0 for 𝑦 ∈ 𝑉 ′

𝑖,𝑗 , and then
extend 𝜋𝑖 to 𝑉𝑖 by linearity. The precise values of 𝜋𝑖(𝑉𝑖,𝑗)
depend on the choice of Δ𝑖 and 𝑑 (which is arbitrary, within
the limits indicated in Section 2.4), but, as shown below, the
properties of these spaces used in the algorithm do not.

Proposition 5. The functions 𝜋𝑖 defined above satisfy the
two requirements imposed in Section 4: (1) 𝜋𝑖(𝑉𝑖,1) + · · · +
𝜋𝑖(𝑉𝑖,ℓ𝑖) is a direct sum; (2) if ℎ is a hyperexponential term,
then 𝜋−1

𝑖 (ℎ) contains the formal series expansion of ℎ at 𝑧𝑖,
possibly up to a multiplicative constant.

Proof. 1. Without loss of generality, we assume 𝑧𝑖 = 0. Let
𝑦𝑗 ∈ 𝑉𝑖,𝑗 (𝑗 = 1, . . . , ℓ𝑖) and consider 𝑦 =

∑︀ℓ𝑖

𝑗=1 𝑦𝑗 . Write
𝑦𝑗 = 𝑥𝛼𝑗 exp(𝑢𝑗)𝑏𝑗 + 𝑦′

𝑗 where 𝑦′
𝑗 ∈ 𝑉 ′

𝑖,𝑗 , the (𝛼𝑗 , 𝑢𝑗) are
pairwise distinct, 𝑢𝑗(0) = 0, and 𝑏𝑗(0) ̸= 0 unless the series
𝑏𝑗 is zero. Writing 𝑢𝑗 =

∑︀
𝑘

𝑢𝑗,𝑘𝑥−𝑘, choose a direction 𝜃

such that 𝜌ei𝜃 ∈ Δ𝑖 for small 𝜌 and any two unequal 𝑢
1/𝑘
𝑗,𝑘 ei𝜃

have different real parts.
By changing 𝑥 to e−i𝜃𝑥, we can assume that 𝑑 = 0. This

tranforms 𝑢𝑗 into
∑︀

𝑘
(𝑢𝑗,𝑘ei𝑘𝜃)𝑥−𝑘, so that the real parts of

two polynomials 𝑢𝑗 can be the same only if the 𝑢𝑗 themselves
are equal. Hence, we can reorder the nonzero terms in
the expression of 𝑦 by asymptotic growth rate, in such a
way that the nonzero terms come first, 𝑢1 = · · · = 𝑢𝑡 and
Re 𝛼1 = · · · = Re 𝛼𝑡, while

𝑧Re 𝛼1 eRe 𝑢1(𝑧) ≫ 𝑧Re 𝛼𝑝 eRe 𝑢𝑝(𝑧), 𝑧 → 0, 𝑧 > 0

for all 𝑝 ≥ 𝑡 + 1 such that 𝑦𝑝 ̸= 0. Using the definition of 𝜋𝑖

and the fact that 𝒮𝑘,𝑑(𝑏𝑗)(𝑧) tends to 𝑏𝑗(0) as 𝑧 → 0 in the
positive reals, it follows that

𝑧−Re 𝛼1 exp(−𝑢1(𝑧)) 𝜋𝑖(𝑦)(𝑧) =
𝑡∑︁

𝑗=1

𝑐𝑗𝑏𝑗(0)𝑧i Im 𝛼𝑗 + o(1)

(as 𝑧 → 0, 𝑧 > 0) for some nonzero constants 𝑐𝑗 . Since
the (𝛼𝑗 , 𝑢𝑗) are pairwise distinct by assumption and the
(Re 𝛼𝑗 , 𝑢𝑗) are equal for 𝑗 = 1, . . . , 𝑡, the Im 𝛼𝑗 are pairwise
distinct for 𝑗 = 1, . . . , 𝑡.

Now assume that 𝜋𝑖(𝑦) = 0. Then, for all 𝜆 > 0, the
expression

∑︀𝑡

𝑗=1 𝑐𝑗𝑏𝑗(0)(𝜆𝑧)i Im 𝛼𝑗 tends to 0 as 𝑧 → 0, 𝑧 > 0.
Choosing 𝜆 = e𝑝 for 𝑝 = 1, . . . , 𝑡, it follows that if not all the
𝑏𝑗(0) were zero, the 𝑡 × 𝑡 determinant

det
(︀
(e𝑝𝑧)i Im 𝛼𝑞

)︀
𝑝,𝑞

= 𝑧i Im(𝛼1+···+𝛼𝑡) det
(︀
(ei Im 𝛼𝑞)𝑝

)︀
𝑝,𝑞

would tend to zero as well, which however is not the case.
Therefore 𝑏𝑗(0) = 0 for 𝑗 = 1, . . . , 𝑡, and therefore 𝑦𝑗 = 0 for
𝑗 = 1, . . . , 𝑡, and therefore 𝑦𝑗 = 0 for 𝑗 = 1, . . . , ℓ𝑖.

2. Let ℎ ∈ 𝑊 be hyperexponential. Then the expansion ℎ̂
of ℎ at 𝑧𝑖 is clearly a local solution, so ℎ̂ ∈ 𝑉𝑖,𝑗 for some 𝑗.
We show that 𝜋𝑖(ℎ̂) = 𝑐ℎ for some 𝑐 ∈ C. The map 𝜋𝑖 is a
differential homomorphism because 𝒮𝑘,𝑑 is (as remarked in
Section 2.4) and the (formal) exponential parts Exp(𝑒𝑖,𝑗) are
mapped to analytic functions satisfying the same differential
equations. Since ℎ is hyperexponential, it satisfies a first
order linear differential equation. Since ℎ̂ is the expansion
of ℎ, it satisfies the same equations as ℎ. Since 𝜋𝑖 is a differ-
ential homomorphism, 𝜋𝑖(ℎ̂) satisfies the same equations as ℎ̂.
Hence 𝜋𝑖(ℎ̂) and ℎ satisfy the same first-order differential
equation. The claim follows.

The definition of the maps 𝜋1, . . . , 𝜋𝑚 as outlined above
relies on analytic continuation, a concept which is only avail-
able if 𝐶 = C. For actual computations, we must work in a
computable coefficient domain. At this point, we use numer-
ical approximations. By van der Hoeven’s result quoted in
Section 2.4, we are able to compute for every given 𝑦 ∈ 𝑉𝑖,𝑗

and every given 𝜀 > 0 a vector 𝑌𝜀 ∈ Q(i)𝑟 with⃦⃦(︀
𝐷𝑘𝜋𝑖(𝑦)(𝑧0)

)︀𝑟−1
𝑘=0

− 𝑌𝜀

⃦⃦
∞

< 𝜀.

Using these approximations, the linear algebra parts of Algo-
rithm 3 are then performed with ball arithmetic to keep track
of accumulating errors during the calculations. The test in
line 6 of this algorithm requires to check whether a certain
matrix has full rank. There are two possible outcomes: If
during the Gaussian elimination we can find in every itera-
tion an entry which is definitely different from zero, then the
rank of the matrix is definitely maximal and the intersection
of the vector spaces is definitely empty. We are then entitled
to discard the possible extension of the partial tuple under
consideration. On the other hand, if during the Gaussian
elimination we encounter a column in which all the entries
are balls that contain zero, this can either mean that the
intersection is really nonempty, or that the accuracy of the
approximation was insufficient. In this case, in order to be on
the safe side, we must consider the intersection as nonempty
and include the corresponding tuple.

Regardless of which initial accuracy 𝜀 is used, this variant
of Algorithm 3 produces a set of tuples that is guaranteed to
contain all correct ones, but may possibly contain additional

ones. With sufficiently high precision, the number of tuples in
the output that actually have an empty intersection will drop
to zero. We don’t need to know in advance which precision
is sufficient in this sense, because it is not dramatic to have
some extra tuples in the output as long as they are not
too many. Unfortunately, we don’t have an implementation
yet with which we could experimentally determine a good
strategy for resolving this situation. An ad-hoc way to
balance precision and output size might be to start the
algorithm with some fixed precision 𝜀 and let it abort and
restart with doubled precision whenever |𝑈 | exceeds 2𝑟, say.
Another idea, suggested by a referee, is to use our algorithm
in combination with the modular approach from [6] for cross
checking tuples for which the numerical data is not conclusive.

In any case, we want to stress that we use numerical
approximations only to determine the (small) tuple set 𝑈 ,
and not to somehow reconstruct the (long) exact symbolic
hyperexponential solutions from it. We therefore don’t expect
to need very high precision in typical situations.

6. A DETAILED EXAMPLE
Consider the operator

𝑃 = 𝑝0 + 𝑝1𝐷 + 𝑝2𝐷2 + 𝑝3𝐷3 ∈ Q[𝑥][𝐷]

where
𝑝0 = −105𝑥20 + 3570𝑥19 − 58026𝑥18 + 556216𝑥17 − 3456830𝑥16 +

14810744𝑥15 − 45667732𝑥14 + 104614932𝑥13 − 182764261𝑥12 +
249940430𝑥11 − 276371642𝑥10 + 257839924𝑥9 − 211785148𝑥8 +

154714472𝑥7 − 95675216𝑥6 + 45214304𝑥5 − 13863936𝑥4 +
1685888𝑥3 + 424960𝑥2 − 182784𝑥 + 20480,

𝑝1 = (𝑥 − 1)𝑥(105𝑥19 − 3150𝑥18 + 51456𝑥17 − 489796𝑥16 +
2938210𝑥15 − 11903624𝑥14 + 34247824𝑥13 − 72603516𝑥12 +

116974957𝑥11 − 148046826𝑥10 + 153582952𝑥9 − 137261696𝑥8 +
109046080𝑥7 − 75250624𝑥6 + 41559168𝑥5 − 16084864𝑥4 +

3278080𝑥3 + 163840𝑥2 − 231424𝑥 + 32768),

𝑝2 = −4(𝑥 − 2)2(𝑥 − 1)3𝑥2(30𝑥15 − 693𝑥14 + 7314𝑥13 − 42905𝑥12 +
155930𝑥11 − 378483𝑥10 + 649718𝑥9 − 828795𝑥8 + 820160𝑥7 −

645092𝑥6 + 398200𝑥5 − 182384𝑥4 + 54656𝑥3 − 5696𝑥2 − 2944𝑥 + 1024),

𝑝3 = 4(𝑥 − 2)4(𝑥 − 1)5𝑥4(15𝑥10 − 258𝑥9 + 1492𝑥8 − 4446𝑥7 +
8309𝑥6 − 10972𝑥5 + 10520𝑥4 − 6456𝑥3 + 1552𝑥2 + 480𝑥 − 256).

The leading coefficient 𝑝3 has 13 distinct roots inC, but those
coming from the degree-10-factor turn out to be apparent,
so we can ignore them. (See [4] and the references there for
more on apparent singularites.) It thus remains to study the
singular points 𝑧1 := 0, 𝑧2 := 1, 𝑧3 := 2, and 𝑧4 := ∞.

For each singular point, we find three linearly independent
generalized series solutions with two distinct exponential
parts:

𝑉1,1 = C𝑦1,1 𝑉1,2 = C𝑦1,2 +C𝑦1,3,

𝑉2,1 = C𝑦2,1 𝑉2,2 = C𝑦2,2 +C𝑦2,3,

𝑉3,1 = C𝑦3,1 𝑉3,2 = C𝑦3,2 +C𝑦3,3,

𝑉4,1 = C𝑦4,1 𝑉4,2 = C𝑦4,2 +C𝑦4,3

where

𝑦1,1 = exp(1
𝑥

)
(︁

1 − 4
9 𝑥 + 37

32 𝑥2 + 83
384 𝑥3 + · · ·

)︁
,

𝑦1,2 =
√

𝑥
(︁

1 − 𝑥 − 25
24 𝑥3 + · · ·

)︁
,

𝑦1,3 =
√

𝑥
(︁

𝑥2 − 7
4 𝑥3 + 9

32 𝑥4 + · · ·
)︁

,

𝑦2,1 = (𝑥 − 1)3 + (𝑥 − 1)5 − 4
3 (𝑥 − 1)6 + · · · ,

𝑦2,2 = exp(1
𝑥−1)

(︁
1 + 1

2 (𝑥 − 1) + 19
120 (𝑥 − 1)3 + · · ·

)︁
,

𝑦2,3 = exp(1
𝑥−1)

(︁
(𝑥 − 1)2 + 23

30 (𝑥 − 1)3 + · · ·
)︁

,

𝑦3,1 = 1 − 3
4 (𝑥 − 2) + 39

32 (𝑥 − 2)2 − 673
384 (𝑥 − 2)3 + · · · ,

𝑦3,2 = 1
(𝑥−2)2 exp(1

𝑥−2)
(︁

1 + 11
4 (𝑥 − 2) + · · ·

)︁
,

𝑦3,3 = 1
(𝑥−2)2 exp(1

𝑥−2)
(︁

(𝑥 − 2)3 + 1
4 (𝑥 − 2)4 + · · ·

)︁
,

𝑦4,1 = 𝑥
(︀
1 + 3𝑥−1 + 9𝑥−2 + 79

3 𝑥−3 + 74𝑥−4 + · · ·
)︀
,

𝑦4,2 =
√

𝑥
(︁

1 + 𝑥−1 + 3
2 𝑥−2 + 13

6 𝑥−3 + · · ·
)︁

,

𝑦4,2 =
√

𝑥
(︁

𝑥3 + 𝑥 + 19
6 𝑥−1 + 283

30 𝑥−2 + · · ·
)︁

.

Let us choose 𝑧0 = 3 as ordinary reference point and take
the branch of the logarithm for which

√
𝑥 is positive and

real on the positive real axis. The example was chosen in
such a way that all the power series are convergent in some
neighborhood of the expansion point, so that we do not need
to worry about sectors and resummation theory but can
use the somewhat simpler algorithm for effective analytic
continuation in the ordinary case to compute the values of the
analytic functions 𝑦𝑖,𝑗 := 𝜋𝑖(𝑦𝑖,𝑗) (𝑖 = 1, . . . , 4; 𝑗 = 1, 2, 3).
The vectors

(︀
𝑦𝑖,𝑗(𝑧0), 𝐷𝑦𝑖,𝑗(𝑧0), 𝐷2𝑦𝑖,𝑗(𝑧0)

)︀
to five decimal

digits of accuracy are as follows.

𝑊1,1=
[︁(︃−200.15

322.46
−1184.8

)︃]︁
, 𝑊1,2=

[︁(︃−70.513
−46.308
−101.17

)︃
,

(︃
−156.55
−91.322
−205.47

)︃]︁
,

𝑊2,1=
[︁(︃ 30.349

−48.896
179.66

)︃]︁
, 𝑊2,2=

[︁(︃12.494
5.2891
13.066

)︃
,

(︃77.105
44.216
99.931

)︃]︁
,

𝑊3,1=
[︁(︃ .74285

−.061904
.14960

)︃]︁
, 𝑊3,2=

[︁(︃ 15.580
−31.307
105.26

)︃
,

(︃4.5433
2.6503
5.9631

)︃]︁
,

𝑊4,1=
[︁(︃ 30.349

−48.896
179.66

)︃]︁
, 𝑊4,2=

[︁(︃ 2.8557
−.23797
.57510

)︃
,

(︃63.199
41.308
90.353

)︃]︁
.

We now go through Algorithm 3. Start with the partial
tuples (1) and (2) corresponding to the vector spaces 𝑊1,1
and 𝑊1,2, respectively. To compute the intersection of 𝑊1,1
and 𝑊2,1 we apply Gaussian elimination to the 3 × 2-matrix
whose columns are the generators of 𝑊1,1 and 𝑊2,1:(︃

−200.15 30.349
322.46 −48.896

−1184.8 179.66

)︃
−→

(︃
−200.15 30.349

0.00
0.00

)︃
The notation 0.00 refers to some complex number 𝑧 with
|𝑧| < 5 ·10−3, which may or may not be zero, while the blank
entries in the left column signify exact zeros that have been
produced by the elimination. As the remaining submatrix
does not contain any entry which is certainly nonzero, we
regard the intersection as nonempty, which in this case means
𝑊1,1 = 𝑊2,1. The partial tuple (1) is extended to (1, 1).

The intersections 𝑊1,1 ∩ 𝑊2,2 and 𝑊1,2 ∩ 𝑊2,1 turn out to
be trivial, as they have to be if we really have 𝑊1,1 = 𝑊1,2,
because the sums 𝑊1,1 ⊕ 𝑊1,2 and 𝑊2,1 ⊕ 𝑊2,2 are direct.

It thus remains to consider the intersection 𝑊1,2 ∩ 𝑊2,2.
Applying Gaussian elimination to the 3 × 4-matrix whose
columns are the generators of 𝑊1,2 and 𝑊2,2, we find(︃

−70.513 −25.596 12.494 77.105
−46.308 2.1330 5.2891 44.216
−101.17 −5.1548 13.066 99.931

)︃

−→

(︃
−70.513 −25.596 12.494 77.105

−17.50 4.440 9.777
0.00 0.00

)︃
,

which suggests that we have 𝑊1,2 = 𝑊2,2. We extend the
partial tuple (2) to (2, 2). At the end of the first iteration,
we have 𝑈 = {(1, 1), (2, 2)}.

In the second iteration, we find 𝑊(1,1) ∩ 𝑊3,1 = {0} and
𝑊(1,1) ⊆ 𝑊3,2, so we extend the partial tuple (1, 1) to (1, 1, 2)
and record 𝑊(1,1,2) = 𝑊(1,1) = 𝑊1,1. Furthermore we find
𝑊3,1 ⊆ 𝑊(2,2), so we extend (2, 2) to (2, 2, 1) and record
𝑊(2,2,1) = 𝑊3,1. Finally, there is a nontrivial intersection
between 𝑊(2,2) and 𝑊3,2:(︃12.494 77.105 15.580 4.5433

5.2891 44.216 −31.307 2.6503
13.066 99.931 105.26 5.9631

)︃

−→

(︃12.494 77.105 15.580 4.5433
−27.34 89.53 −1.72

216. 0.00

)︃
suggests a common subspace of dimension 1 generated by
the second listed generator of 𝑊3,2. We therefore extend
the partial tuple (2, 2) to (2, 2, 2) and record 𝑊(2,2,2) =
[(4.5433, 2.6503, 5.9631)]. At the end of the second iteration,
we have 𝑈 = {(1, 1, 2), (2, 2, 1), (2, 2, 2)}.

For the final iteration, we see by inspection that 𝑊4,1 =
𝑊2,1 = 𝑊(1,1,2), so we extend (1, 1, 2) to (1, 1, 2, 1). Be-
cause dim 𝑊4,1 = 1 and the sums of the vector spaces
are direct, the other two partial tuples cannot also have
a nontrivial intersection with 𝑊4,1, nor can 𝑊(1,1,2) ∩ 𝑊4,2
be nontrivial. We do however have 𝑊(2,2,1) ⊆ 𝑊4,2 and
𝑊(2,2,2) ⊆ 𝑊4,2, so the algorithm terminates with the output
𝑈 = {(1, 1, 2, 1), (2, 2, 1, 2), (2, 2, 2, 2)}.

At this point we know that every hyperexponential solution
of the operator 𝑃 must have one of the following three
exponential parts:

1
(𝑥 − 2)2 exp

(︁ 1
𝑥

+ 1
𝑥 − 2

)︁
from (1,1,2,1)

√
𝑥 exp

(︁ 1
𝑥 − 1

)︁
from (2,2,1,2)

√
𝑥 exp

(︁ 1
𝑥 − 1 + 1

𝑥 − 2

)︁
from (2,2,2,2).

Following the steps of Algorithm 1, it remains to check
whether some rational function multiples of these terms are
solutions of 𝑃 . The important point is that we have to do this
only for three different candidates, while the naive algorithm
would have to go through all 24 = 16 combinations. Indeed,
it turns out that 𝑃 has the following three hyperexponential
solutions:

(𝑥 − 1)3

(𝑥 − 2)2 exp
(︁ 1

𝑥
+ 1

𝑥 − 2

)︁
,

√
𝑥 exp

(︁ 1
𝑥 − 1

)︁
,

(𝑥 − 2)𝑥2√
𝑥 exp

(︁ 1
𝑥 − 1 + 1

𝑥 − 2

)︁
.

7. CONCLUDING REMARKS
Our algorithm as described above takes advantage of the

fact that series expansions of hyperexponential terms can-
not involve exponential terms with ramification (𝑠 > 1) or
logarithms (𝑚 > 0), by letting the morphisms 𝜋𝑖 map all
these irrelevant series solutions to zero. As a result, we get
smaller vector spaces 𝑊𝑖,𝑗 , which not only reduces the ex-
pected computation time per vector space intersection but
also makes it somehow more likely for intersections to be
empty, thus decreasing the chances of getting tuples that do
not correspond to hyperexponential solutions.

As a further refinement in this direction, it would be desir-
able to exploit the fact that if ℎ̂ = Exp(𝑒)𝑏 is the expansion
of some hyperexponential term ℎ, then the formal power
series 𝑏 must be convergent in some neighborhood of the ex-
pansion point. Instead of the vector spaces 𝑊𝑖,𝑗 used above,
it would be sufficient to consider the subspaces 𝑊 ′

𝑖,𝑗 ⊆ 𝑊𝑖,𝑗

corresponding to generalized series solutions involving only
convergent power series. Besides the advantage of having
to work with even smaller vector spaces, an additional ad-
vantage would be that the numerical evaluation becomes
simpler because algorithms for the regular case [5, 9] become
applicable. Implementations of these algorithms are avail-
able [8], which to our knowledge is not yet the case for van der
Hoeven’s general algorithm for the divergent case [11]. Un-
fortunately however, it is not obvious how to compute from
a given basis of 𝑊𝑖,𝑗 a basis of the subspace 𝑊 ′

𝑖,𝑗 . Miller’s
algorithm [17] numerically solves a similar problem, but so
far we have not been able to turn the underlying convergence
statements into explicit error bounds that would yield an
algorithm producing output with certified precision.

Finally, it would of course be also interesting to see an
analog of our algorithm for finding hypergeometric solutions
of linear recurrence equations with polynomial coefficients.
A translation is not immediate because there is no notion of
local solution around a finite singularity in this case.

8. REFERENCES
[1] S.A. Abramov and K.Yu. Kvashenko. Fast algorithms

to search for the rational solutions of linear differential
equations with polynomial coefficients. In Proceedings
of ISSAC’91, pages 267–270, 1991.

[2] Werner Balser. From Divergent Power Series to
Analytic Functions, volume 1582 of Lecture Notes in
Mathematics. Springer-Verlag, 1994.

[3] Werner Balser. Formal power series and linear systems
of meromorphic ordinary differential equations.

Springer, 2000.
[4] Shaoshi Chen, Maximilian Jaroschek, Manuel Kauers,

and Michael F. Singer. Desingularization explains
order-degree curves for univariate Ore operators. In
these ISSAC’13 proceedings, 2013.

[5] David V. Chudnovsky and Gregory V. Chudnovsky.
Computer algebra in the service of mathematical
physics and number theory. In David V. Chudnovsky
and Richard D. Jenks, editors, Computers in
Mathematics, volume 125 of Lecture Notes in Pure and
Applied Mathematics, pages 109–232, Stanford
University, 1986. Dekker.

[6] Thomas Cluzeau and Mark van Hoeij. A modular
algorithm to compute the exponential solutions of a
linear differential operator. Journal of Symbolic
Computation, 38:1043–1076, 2004.

[7] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring
polynomials with rational coefficients. Annals of
Mathematics, 126:515–534, 1982.

[8] Marc Mezzarobba. NumGfun: a package for numerical
and analytic computation with d-finite functions. In
Proceedings of ISSAC’10, 2010.

[9] Joris van der Hoeven. Fast evaluation of holonomic
functions. Theoretical Computer Science,
210(1):199–216, 1999.

[10] Joris van der Hoeven. Around the numeric-symbolic
computation of differential galois groups. Journal of
Symbolic Computation, 42:236–264, 2007.

[11] Joris van der Hoeven. Efficient accelero-summation of
holonomic functions. Journal of Symbolic Computation,
42(4):389–428, 2007.

[12] Marius van der Put and Michael Singer. Galois Theory
of Linear Differential Equations. Springer, 2003.

[13] Mark van Hoeij. Factorization of differential operators
with rational functions coefficients. Journal of Symbolic
Computation, 24:537–561, 1997.

[14] Mark van Hoeij. Formal solutions and factorization of
differential operators with power series coefficients.
Journal of Symbolic Computation, 24(1):1–30, 1997.

[15] Mark van Hoeij. Factoring polynomials and the
knapsack problem. Journal of Number Theory,
95:167–189, 2002.

[16] Joachim von zur Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press, 1999.

[17] Jet Wimp. Computing with Recurrence Relations.
Pitman Publishing Ltd., 1984.

	Introduction
	Preliminaries
	Differential Fields and Operator Algebras
	Hyperexponential Terms
	Local Solutions
	Analytic Solutions

	Outline of the Algorithm
	The Combination Phase
	Numerical Evaluation at aReference Point
	A Detailed Example
	Concluding Remarks
	References

