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I For every given n ∈ N, lhs and rhs are polynomials in n
variables.
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I For every given n ∈ N, lhs and rhs are polynomials in n
variables.

I Equality can be checked easily in this case.

I But how to prove the identity for general n?
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Motivation

I For every n ∈ N, we have
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I For every given n ∈ N, lhs and rhs are polynomials in n
variables.

I Equality can be checked easily in this case.

I But how to prove the identity for general n?

I Can this been done algorithmically?
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Overview

Admissible univariate sequences

Zero equivalence test for admissible sequences

Extension to arbitrarily many variables
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Admissible univariate sequences
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f1(n))
∞
n=1

f1(1), f1(2), f1(3): initial values of f1

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f1(n))
∞
n=1

f1(4) = p(f1(1), f1(2), f1(3))
p = poly or p = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f1(n))
∞
n=1

f1(5) = p(f1(2), f1(3), f1(4))
p = poly or p = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f1(n))
∞
n=1

f1(6) = p(f1(3), f1(4), f1(5))
p = poly or p = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f1(n))
∞
n=1

f1(7) = p(f1(4), f1(5), f1(6))
p = poly or p = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(1), f2(2): initial values of f2

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(3) = q(f2(1), f2(2), f1(1), f1(2), f1(3))
q = poly or q = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(4) = q(f2(2), f2(3), f1(2), f1(3), f1(4))
q = poly or q = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(5) = q(f2(3), f2(4), f1(3), f1(4), f1(5))
q = poly or q = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(6) = q(f2(4), f2(5), f1(4), f1(5), f1(6))
q = poly or q = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f2(n))
∞
n=1

f2(7) = q(f2(5), f2(6), f1(5), f1(6), f1(7))
q = poly or q = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f3(n))
∞
n=1

f3(1), f3(2), f3(3), f3(4): initial values of f3

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f3(n))
∞
n=1

f3(5) = r(f3(1), . . . , f3(4), f2(1), . . . , f2(5), f1(1), . . . , f1(5))
r = poly or r = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f3(n))
∞
n=1

f3(6) = r(f3(2), . . . , f3(5), f2(2), . . . , f2(6), f1(2), . . . , f1(6))
r = poly or r = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

I A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

I Example: Definition of a sequence (f3(n))
∞
n=1

f3(7) = r(f3(3), . . . , f3(6), f2(3), . . . , f2(7), f1(3), . . . , f1(7))
r = poly or r = 1/poly fixed

f1(1) f1(2) f1(3) f1(4) f1(5) f1(6) f1(7)
f2(1) f2(2) f2(3) f2(4) f2(5) f2(6) f2(7)
f3(1) f3(2) f3(3) f3(4) f3(5) f3(6) f3(7)
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Some admissible Sequences

Many sequences are admissible. For instance:
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Some admissible Sequences

Many sequences are admissible. For instance:

I holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)
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Some admissible Sequences

Many sequences are admissible. For instance:

I holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

I sequences like 22
n
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Some admissible Sequences

Many sequences are admissible. For instance:

I holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

I sequences like 22
n

I rational functions of other admissible sequences
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Some admissible Sequences

Many sequences are admissible. For instance:

I holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

I sequences like 22
n

I rational functions of other admissible sequences

I indefinite sums and products of other admissible sequences
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Some admissible Sequences

Many sequences are admissible. For instance:

I holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

I sequences like 22
n

I rational functions of other admissible sequences

I indefinite sums and products of other admissible sequences

I indefinite continued fractions of other admissible sequences
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Zero equivalence test for admissible sequences
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Algebraic Representation of admissible Sequences

I Model admissible sequences by difference algebra concepts
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Algebraic Representation of admissible Sequences

I Model admissible sequences by difference algebra concepts

I Example:

f1(n) f1(n+ 1) f1(n+ 2) · · ·
f2(n) f2(n+ 1) f2(n+ 2) · · ·
f3(n) f3(n+ 1) f3(n+ 2) · · ·
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Algebraic Representation of admissible Sequences

I Model admissible sequences by difference algebra concepts

I Example:

f1(n) f1(n+ 1) f1(n+ 2) · · ·
f2(n) f2(n+ 1) f2(n+ 2) · · ·
f3(n) f3(n+ 1) f3(n+ 2) · · ·

Ã

t1,0 t1,1 t1,2 · · ·
t2,0 t2,1 t2,2 · · ·
t3,0 t3,1 t3,2 · · ·
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Algebraic Representation of admissible Sequences

I Model admissible sequences by difference algebra concepts

I Example:

f1(n) f1(n+ 1) f1(n+ 2) · · ·
f2(n) f2(n+ 1) f2(n+ 2) · · ·
f3(n) f3(n+ 1) f3(n+ 2) · · ·

Ã

t1,0 t1,1 t1,2 · · ·
t2,0 t2,1 t2,2 · · ·
t3,0 t3,1 t3,2 · · ·

I Consider the ti,j as indeterminates of a polynomial ring
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Algebraic Representation of admissible Sequences

I Model admissible sequences by difference algebra concepts

I Example:

f1(n) f1(n+ 1) f1(n+ 2) · · ·
f2(n) f2(n+ 1) f2(n+ 2) · · ·
f3(n) f3(n+ 1) f3(n+ 2) · · ·

Ã

t1,0 t1,1 t1,2 · · ·
t2,0 t2,1 t2,2 · · ·
t3,0 t3,1 t3,2 · · ·

I Consider the ti,j as indeterminates of a polynomial ring

I The recurrence relations give rise to polynomial relations
among these indeterminates.
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Idea: Use ideal arithmetic to construct an induction proof
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Idea: Use ideal arithmetic to construct an induction proof

I Observation: Every ti,j (j high enough) is “connected” with
other indeterminates via a polynomial relation

ti,j − poly
︸ ︷︷ ︸

=:d(ti,j)

= 0 or poly · ti,j − 1
︸ ︷︷ ︸

=:d(ti,j)

= 0

The polynomial d(ti,j) is called the defining relation of ti,j .
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH
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Zero equivalence test for admissible sequences Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0

I This can be decided by a radical membership test in
K[t1,0, . . . , t3,4]
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0

?

yes

IS found
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) t1,5 t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 t3,6

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0

?

yes

IS found
?

no

extend IH;

iterate
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) d(t1,5) t1,6

t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) d(t2,5) t2,6

t3,0 t3,1 t3,2 t3,3 d(t3,4) d(t3,5) t3,6

t3,0 t3,1 t3,2 t3,3 t3,4
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,5
?
= 0
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Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) d(t1,5) d(t1,6)
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) d(t2,5) d(t2,6)
t3,0 t3,1 t3,2 t3,3 d(t3,4) d(t3,5) d(t3,6)

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,6
?
= 0
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Zero equivalence test for admissible sequences Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) d(t1,5) · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) d(t2,5) · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) d(t3,5) · · ·

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 · · ·

I Finally, check sufficiently many initial values
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Zero equivalence test for admissible sequences Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) d(t1,5) · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) d(t2,5) · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) d(t3,5) · · ·

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 · · ·

I Finally, check sufficiently many initial values

I Correctness: complete induction on n
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Zero equivalence test for admissible sequences Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N

t1,0 t1,1 t1,2 d(t1,3) d(t1,4) d(t1,5) · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) d(t2,5) · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) d(t3,5) · · ·

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 · · ·

I Finally, check sufficiently many initial values

I Correctness: complete induction on n

I Termination: see paper
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Extension to arbitrarily many variables
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”
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Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1
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Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation
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Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation

I Consequences:
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation

I Consequences:

1. Expressions involving xn can be represented
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation

I Consequences:

1. Expressions involving xn can be represented
2. The same algorithm is still applicable
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation

I Consequences:

1. Expressions involving xn can be represented
2. The same algorithm is still applicable
3. But it will not terminate in general
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

I Goal: Handle identities with “arbitrarily many variables”

I Requirement: Find algebraic representation of variable
sequences (xn)

∞
n=1

I Idea: Represent f1(n+ i) := xn+i by indeterminates t1,i

without defining relation

I Consequences:

1. Expressions involving xn can be represented
2. The same algorithm is still applicable
3. But it will not terminate in general

I Fix: Put all ti,j without relations into the ground field
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Suppose f1(n) = xn is free
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Suppose f1(n) = xn is free

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 · · ·

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Suppose f1(n) = xn is free

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 · · ·

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0

I This can be decided by a radical membership test in
K(t1,0, . . . , t1,4)[t2,0, . . . , t3,4]
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Proving Zero Equivalence of Admissible Sequences

I Goal: Show that f3(n) = 0 for all n ∈ N
I Suppose f1(n) = xn is free

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 · · ·
t2,0 t2,1 d(t2,2) d(t2,3) d(t2,4) t2,5 · · ·
t3,0 t3,1 t3,2 t3,3 d(t3,4) t3,5 · · ·

t3,0 t3,1 t3,2 t3,3
︸ ︷︷ ︸

!
=0 by IH ©©

©

HHH

HHH

©©
©

?
c

t3,4
?
= 0

I This can be decided by a radical membership test in
K(t1,0, . . . , t1,4)[t2,0, . . . , t3,4]

I Everything else carries over literally
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 0 Describe f(n) := lhs− rhs in terms of recurrences.
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Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 0 Describe f(n) := lhs− rhs in terms of recurrences.

f0(n) = xn no defining relation
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Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 0 Describe f(n) := lhs− rhs in terms of recurrences.

f0(n) = xn no defining relation

f1(n) = n f1(0) = 0, f1(n+ 1) = f1(n) + 1
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 0 Describe f(n) := lhs− rhs in terms of recurrences.

f0(n) = xn no defining relation

f1(n) = n f1(0) = 0, f1(n+ 1) = f1(n) + 1

f2(n) =
n∑

k=0

xk f2(0) = x0, f2(n+ 1) = f2(n) + f0(n+ 1)
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 0 Describe f(n) := lhs− rhs in terms of recurrences.

f0(n) = xn no defining relation

f1(n) = n f1(0) = 0, f1(n+ 1) = f1(n) + 1

f2(n) =
n∑

k=0

xk f2(0) = x0, f2(n+ 1) = f2(n) + f0(n+ 1)

f3(n) =
n∑

k=0

kxk f3(0) = 0, f3(n+ 1) = f3(n) + f0(n+ 1)f1(n+ 1)

f4(n) = lhs f4(0) = x0, f4(n+ 1) = f4(n) + f2(n+ 1)

f(n) = lhs− rhs f(0) = 0, f(n) = f4(n)− (f1(n) + 1)f2(n)− f3(n)
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 1 Translate recurrences to defining relations

f0(n) ∼ t0,0 none

f1(n) ∼ t1,0 t1,1 − t1,0 − 1

f2(n) ∼ t2,0 t2,1 − t2,0 − t0,1

f3(n) ∼ t3,0 t3,1 − t3,0 − t0,1t1,1

f4(n) ∼ t4,0 t4,1 − t4,0 − t2,1

f(n) ∼ t5,0 t5,0 − t4,0 + (t1,0 + 1)t2,0 + t3,0

Let D be the set of defining relations.
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 2 Find the induction step

t5,1 ∈ Rad(〈{t5,0} ∪D〉)

This means ∀ n ∈ N : f(n) = 0 ⇒ f(n+ 1) = 0.
(No iteration necessary in this example.)
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove:
n∑

k=0

k∑

i=0

xi = (n+ 1)
n∑

k=0

xk −
n∑

k=0

k xk.

Step 3 Check initial conditions: f(0) = 0. ¤
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Further Examples

I Christoffel-Darboux identity: For each (cn)
∞
n=1, (λn)

∞
n=1 the

recurrence

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x)

defines a family of orthogonal polynomials. We can prove

n∑

k=0

Pk(x)Pk(u)
∏k+1

i=1 λi

=
Pn+1(x)Pn(u)− Pn(x)Pn+1(u)

(x− u)
∏n+1

i=1 λi

n∑

k=0

Pk(x)
2

∏k+1
i=1 λi

=
Pn(x)P

′
n+1(x)− Pn+1(x)P

′
n(x)

∏n+1
i=1 λi

for general (cn)
∞
n=1 and (λn)

∞
n=1.
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Extension to arbitrarily many variables Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Further Examples

I A hypergeometric identity for general mFn Defining the
multivariate sequences f(n,m) and g(n,m) by

f(n,m) = F

(
a1, a1 +

1
2 , . . . , am, am +

1
2

b1, b1 +
1
2 , . . . , bn, bn +

1
2 ,

1
2

∣
∣
∣
∣
(2m−n−1z)2

)

g(n,m) =
1

2

[

F

(
2a1, . . . , 2am

2b1, . . . , 2bn

∣
∣
∣
∣
z

)

+ F

(
2a1, . . . , 2am

2b1, . . . , 2bn

∣
∣
∣
∣
−z

)]

,

we can prove
f(n,m) = g(n,m)

for general n and m (see paper).
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Conclusion
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Conclusion

I A large class of sequences can be represented by difference
algebra tools
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Conclusion

I A large class of sequences can be represented by difference
algebra tools

I Free sequences can be represented as well

I An algorithm for deciding zero equivalence is known
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Conclusion

I A large class of sequences can be represented by difference
algebra tools

I Free sequences can be represented as well

I An algorithm for deciding zero equivalence is known

I This allows for proving certain polynomial identities in
arbitrarily many variables by the computer
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Conclusion

I A large class of sequences can be represented by difference
algebra tools

I Free sequences can be represented as well

I An algorithm for deciding zero equivalence is known

I This allows for proving certain polynomial identities in
arbitrarily many variables by the computer

I Latest Development: Some of these identities can not only be
proven but also be found by the computer (↑ Schneider’s talk)
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Conclusion Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Conclusion

I A large class of sequences can be represented by difference
algebra tools

I Free sequences can be represented as well

I An algorithm for deciding zero equivalence is known

I This allows for proving certain polynomial identities in
arbitrarily many variables by the computer

I Latest Development: Some of these identities can not only be
proven but also be found by the computer (↑ Schneider’s talk)

I . . . but is there any use of all this?
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