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Motivation

» For every n € N, we have

n n i—1j-—1
(Z ) Za: +3ZZ$ xj+ T )—1-6222902:@9%
k=1 i=1 j=1 i=1 j=1 k=1

» For every given n € N, |hs and rhs are polynomials in n
variables.

» Equality can be checked easily in this case.
» But how to prove the identity for general n?

» Can this been done algorithmically?
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f1(n))5

f1(1), f1(2), f1(3): initial values of f;

f1(1)  f1(2)  AB) a4 ) o) )
f2(1)  f2(2)  f23)  f2(4)  f2(5)  f2(6)  f2(7)
(1) f3(2)  f3(3)  f3(4)  f3(5) f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f1(n))S2

n=1

f1(4) = p(f1(1), [1(2), 2(3))
p = poly or p =1/poly fixed

f1(2)  AB) (8 H(B) f6) [(7)
f2(2)  f2(3)  f204)  f2(B)  fa(6)  f2(7)
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recurrence.

» Example: Definition of a sequence (f1(n))S2

f1(1)
f2(1)
f3(1)

n=1

f1(5) = p(f1(2), [1(3), f1(4))
p = poly or p =1/poly fixed

f1(2) AB) A1) fHB)  16) A7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f1(n))S2

f1(1)
f2(1)
f3(1)

n=1

f1(6) = p(f1(3), f1(4), f1(5))
p = poly or p =1/poly fixed

f1(2)  f(8)  fu(4)  f1(B)  fa(6)  Si(7)
f2(2)  f23)  fa(4)  f2(B)  f2(6)  f2A7)
f3(2)  f33) f3(4)  f3(5) f3(6) f3(7)



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f1(n))S2

f1(1)
f2(1)
f3(1)

n=1

f1(7) = p(f1(4), [1(5), f1(6))
p = poly or p =1/poly fixed

f1(2) (B fi4)  fu(B)  f1(6)  fi(7)
f2(2)  f23)  fa(4)  f2(B)  f2(6)  f2A7)
f3(2)  f3(3) f3(4)  f3(5) f3(6) f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(1), f2(2): initial values of f>

A1) f(2)  AB)  f1(8)  f1(B)  f1(6)  f1(7)
f2(1)  f2(2)  f2(3) f2(4)  fa(5)  f2(6)  fo(7)
(1) f3(2)  f3(3)  f3(4)  f3(5) f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(3) = q(f2(1)7 f2(2)’ f1(1)7 fl(z), f1(3))
q = poly or ¢ =1/poly fixed

f(1)  f1(2)  B)  f1(8)  f1(B)  f1(6)  f1(7)
f2(1)  f2(2)  f23)  2(4)  fa(B)  fa(6) 0 fa(7)
(1) f3(2)  f3(3)  f3(4)  f3(5)  f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(4) = q(f2(2)7 f2(3)’ f1(2)7 f1(3), f1(4))
q = poly or ¢ =1/poly fixed

A1) f1(2)  fB)  f1(4)  f1(B)  f1(6)  f1(7)
f(1)  f2(2)  f3) f204)  1(5) L6) f(7)
(1) f3(2)  f3(3)  f3(4)  f3(5)  f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(5) = q(f2(3)7 f2(4)’ f1(3)7 f1(4), f1(5))
q = poly or ¢ =1/poly fixed

A1) f(2)  B)  f1(4)  f1(B)  f1(6)  f1(7)
f2(1)  f22)  f3) f2(4)  fo5)  o(6) So(7)
(1) f3(2)  f3(3)  f3(4)  f3(5)  f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(6) = q(f2(4)7 f2(5)’ f1(4)7 f1(5), f1(6))
q = poly or ¢ =1/poly fixed

A1) f(2)  AB)  f1(4)  f1(B)  f1(6)  f1(7)
f2(1)  f22)  f3) f2(4)  fo5)  fa(6)  So(7)
(1) f3(2)  f3(3)  f3(4)  f3(5)  f3(6)  f3(7)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f2(n))5,

f2(7) = q(f2(5)7 f2(6)’ f1(5)7 f1(6), f1(7))
q = poly or ¢ =1/poly fixed

A1) f(2)  AB)  f1(8)  f1(5)  f1(6)  f1(7)
f(1)  f22)  f(3) f204)  fa(5)  f2(6)  fa(7)
f3(1)  f3(2)  f3(3)  f3(4)  f3(5) f3(6)  fa(
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial

recurrence.

» Example: Definition of a sequence (f3(n))5,

f3(1), f3(2), f3(3), f3(4): initial values of f3

f(1)  AR) AB) AMB) f15)  f1(6)  fi(7)
f(1)  f(2)  f3)  f04)  fa(5)  f2(6)  faf
f3(1)  f3(2)  f3(3)  f3(4)
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f3(n))5,

f3(5) =r(f3(1),..., f3(4), f2(1),. .., f2(B), f1(1),. .., f1(5))
r = poly or r = 1/poly fixed



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f3(n))5,

f3(6) = r(f3(2), ..., f3(5), f2(2), ..., f2(6), f1(2), . . -, f1(6))
r = poly or r = 1/poly fixed
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Nested Polynomial Recurrences

> A sequence is admissible if it satisfies a (nested) polynomial
recurrence.

» Example: Definition of a sequence (f3(n))5,

f3(7) =r(f3(3), ..., f3(6), f2(3), ..., f2(7), f1(3), - - -, f1(7))
r = poly or r = 1/poly fixed

fi(1)  AR) AB) AMB) f5)  f1(6)  f1(7)
f(1)  f2)  f3)  fa(4)  fa(5)  fa(6)  fa(7)
f3(1)  f3(2)  f3(3)  f3(4)  f3(5) (6)

RISC-Linz Manuel Kauers



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Some admissible Sequences

Many sequences are admissible. For instance:



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Some admissible Sequences

Many sequences are admissible. For instance:

» holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Some admissible Sequences

Many sequences are admissible. For instance:

» holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

. n
> sequences like 22



\Admissible univariate sequences\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Some admissible Sequences

Many sequences are admissible. For instance:

» holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)
> sequences like 22"

» rational functions of other admissible sequences
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Some admissible Sequences

Many sequences are admissible. For instance:
» holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)
> sequences like 22"
» rational functions of other admissible sequences

» indefinite sums and products of other admissible sequences
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Some admissible Sequences

Many sequences are admissible. For instance:

>

vV v.vY

holonomic sequences (hypergeometric sequences, orthogonal
polynomials, etc.)

sequences like 22"
rational functions of other admissible sequences
indefinite sums and products of other admissible sequences

indefinite continued fractions of other admissible sequences
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Algebraic Representation of admissible Sequences

» Model admissible sequences by difference algebra concepts

» Example:

fi(n)  fi(n+1) fi(n+2) ---
fo(n)  faln+1) fo(n+2) ---
f3(n) f3(n+1) f3(n+2) -
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Algebraic Representation of admissible Sequences

» Model admissible sequences by difference algebra concepts

» Example:
filn)  filn+1) fi(n+2) - ti0 ti1 tio -
fa(n)  fa(n+1) fo(n+2) -+ s tao t21 t22 -
f3(n) fa(n+1) fz(n+2) - t30 tz1 t3o -
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» Example:
filn)  filn+1) fi(n+2) - ti0 ti1 tio -
fa(n)  fa(n+1) fo(n+2) -+ s tao t21 t22 -
f3(n) fa(n+1) fz(n+2) - t30 tz1 t3o -

» Consider the t; ; as indeterminates of a polynomial ring
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Algebraic Representation of admissible Sequences

» Model admissible sequences by difference algebra concepts

» Example:
filn)  filn+1) fi(n+2) - tio ti11 tip
fa(n)  fa(n+1) fa(n+2) - st t21 t22
f3(n) fs(n+1) fa(n+2) - t30 t31 t32

» Consider the t; ; as indeterminates of a polynomial ring

» The recurrence relations give rise to polynomial relations
among these indeterminates.
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N
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» Goal: Show that f3(n) =0 foralln € N

» [dea: Use ideal arithmetic to construct an induction proof
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N
» [dea: Use ideal arithmetic to construct an induction proof

» Observation: Every t; ; (j high enough) is “connected” with
other indeterminates via a polynomial relation

ti,j - p0|y =0 or poly . tl,] —1=0
— —_———

::d(ti’]’) =Zd(ti,j)

The polynomial d(t; ;) is called the defining relation of t; ;.
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

1,0 1,1 t12 d(t13)  d(ti,4) t15 t16
2.0 t2.1 d(ta2) d(t23) d(t2a) o5 t26
13,0 13,1 132 13,3 d(t34) i35 136
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t10 t11 t1o d(ti3) d(t1a) t15 t16
2.0 t2.1 d(ta2) d(t23) d(t2a) o5 t26
13,0 13,1 132 13,3 d(t34) 13,5 13,6
t3,0 131 t32 133

L0 by IH
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

1,0 1,1 t12 d(t13)  d(ti,4) t15 t16
t2.0 t21 d(t22) d(t23)  d(to4) 25 26
13,0 131 132 133 d(ts,4) 135 136
3,0 131 132 133 o

L0 by IH @
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

1,0 1,1 t12 d(t13)  d(ti,4) t15 t16
2.0 t2.1 d(ta2) d(t23) d(t2a) o5 t26
13,0 131 132 133 d(ts,4) 135 136
130 131 132 133 o

L0 by IH @

» This can be decided by a radical membership test in
K[tlyo, . ,t3,4]
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t10 t11 t1o d(ti3) d(t1a) t15 t16
2.0 t2.1 d(ta2) d(t23) d(t2a) o5 t26
13,0 13,1 132 13,3 d(t34) 13,5 13,6
t3,0 131 t32 133

L0 by IH

yes

IS found
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

1,0 1,1 t12 d(t13)  d(ti,4) t15 t16
2.0 t2.1 d(ta2) d(t23) d(t2a) o5 t26
13,0 13,1 132 13,3 d(t34) 13,5 13,6
t3,0 131 t32 133
L0 by IH
yes no
IS found extend IH;
iterate
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t1,0 t11 1,2 d(t13) d(tia) d(tis) t16
2.0 t2.1 d(to2) d(t23) d(t2a) d(tzs) 26
t3,0 t31 t32 t33 d(tss) d(t3p) t36
3,0 131 132 133 134 o

20 by IH @
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t1,0 t11 t12 d(t13) d(tia) d(tis) d(tie)
t2.0 t21 d(t22) d(t23) d(t2s) d(t2s) d(tae)
£3,0 t31 t3.2 33 d(tsa) d(tss) d(t3e)
130 131 132 133 134 i35 o

Lo by IH @
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t1,0 t11 1,2 d(t13) d(tia) d(tis)
t2.0 t21 d(t22) d(t23) d(t2s) d(t2s)
t3,0 t31 t32 33 d(tss) d(t3p)
130 131 132 133 134 i35

» Finally, check sufficiently many initial values
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t1,0 t11 1,2 d(t13) d(tia) d(tis)
t2.0 t21 d(t22) d(t23) d(t2s) d(t2s)
t3,0 t31 t32 33 d(tss) d(t3p)
130 131 132 133 134 i35

» Finally, check sufficiently many initial values

» Correctness: complete induction on n
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 foralln € N

t1,0 t11 1,2 d(t13) d(tia) d(tis)
t2.0 t21 d(t22) d(t23) d(t2s) d(t2s)
t3,0 t31 t32 33 d(tss) d(t3p)
130 131 132 133 134 i35

» Finally, check sufficiently many initial values

» Correctness: complete induction on n

» Termination: see paper



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Extension to arbitrarily many variables



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”

» Requirement: Find algebraic representation of variable
sequences (x,,)7 4



Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

[Extension to arbitrarily many variables|

Arbitrarily many Variables
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» Requirement: Find algebraic representation of variable
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> ldea: Represent fi(n + i) := x,4; by indeterminates ¢;;
without defining relation
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Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”

» Requirement: Find algebraic representation of variable
sequences (x,,)7 4

> ldea: Represent fi(n + i) := x,4; by indeterminates ¢;;
without defining relation

» Consequences:
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[Extension to arbitrarily many variables|

Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”

» Requirement: Find algebraic representation of variable
sequences (x,,)7 4

> ldea: Represent fi(n + i) := x,4; by indeterminates ¢;;
without defining relation

» Consequences:
1. Expressions involving x,, can be represented
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[Extension to arbitrarily many variables|

Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”

» Requirement: Find algebraic representation of variable
sequences (x,,)7 4

> ldea: Represent fi(n + i) := x,4; by indeterminates ¢;;
without defining relation

» Consequences:

1. Expressions involving x,, can be represented
2. The same algorithm is still applicable
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[Extension to arbitrarily many variables|

Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”
» Requirement: Find algebraic representation of variable
sequences (x,,)7 4
> Idea: Represent fi(n + i) := xp4, by indeterminates t1 ;
without defining relation
» Consequences:
1. Expressions involving x,, can be represented

2. The same algorithm is still applicable
3. But it will not terminate in general
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Arbitrarily many Variables

» Goal: Handle identities with “arbitrarily many variables”

» Requirement: Find algebraic representation of variable
sequences (x,,)7 4

> Idea: Represent fi(n + i) := xp4, by indeterminates t1 ;
without defining relation

» Consequences:

1. Expressions involving x,, can be represented
2. The same algorithm is still applicable
3. But it will not terminate in general

» Fix: Put all ¢; ; without relations into the ground field
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 for all n € N

» Suppose fi(n) = x, is free
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 for all n € N

» Suppose fi(n) = x, is free

1,0 t1,1 t12 t13 t1.4 t1,5
2.0 121 d(to2) d(t23) d(t2a) t25
t3,0 13,1 132 133 d(t34) t35
3,0 131 132 133

[\

@)
\ TV
=0 by IH @
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Proving Zero Equivalence of Admissible Sequences

» Goal: Show that f3(n) =0 for all n € N

» Suppose fi(n) = x, is free

1,0 t1,1 t12 t13 t1.4 t1,5
t2,0 t21 d(to2) d(t23) d(t2a) 25
t3,0 13,1 132 133 d(t34) t35
3,0 131 132 133
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» This can be decided by a radical membership test in
K(t10,.. - t14)[t2,0,-- -, t34]
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» Goal: Show that f3(n) =0 for all n € N

» Suppose fi(n) = x, is free

1,0 t1,1 t12 t13 t1.4 t1,5
t2,0 t21 d(to2) d(t23) d(t2a) 25
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» This can be decided by a radical membership test in
K(t10,.. - t14)[t2,0,-- -, t34]
» Everything else carries over literally
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Simple Example

Prove: ZZ@ =(n+ 1)Zn:ﬂsk - zn:kxk.
k=0 k=0

k=0:i=0
Step 0 Describe f(n) := lhs — rhs in terms of recurrences.
fo(n) =, no defining relation
filn) =n f1(0) =0, fi(n+1) = fa(n) +1
fa(n) Iéoxk f2(0) = mo, f2(n+ 1) = fa(n) + fo(n + 1)



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

n k n n
Prove: ZZIEZ =(n+ 1)2 T — kak
k=0 k=0

k=0 i=0
Step 0 Describe f(n) := lhs — rhs in terms of recurrences.
fo(n) =z, no defining relation
filn) =n f1(0) =0, fi(n+1) = fa(n) +1

f2(n) Zkioxk f2(0) = zo, fo(n + 1) = fa(n) + fo(n +1)
f3(n) = /éo kxr  f3(0) =0, fz(n +1) = f3(n) + fo(n + 1) fi(n + 1)

fa(n) = lhs f4(0) = zo, fa(n + 1) = fa(n) + fa(n +1)
f(n)=1lhs —rhs f(0) =0, f(n) = fa(n) — (fi(n) + 1) f2(n) — f3(n)

RISC-Linz Manuel Kauers
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Simple Example

n k n n
Prove: ZZm, =(n+ 1)2 T — kak
k=0 k=0

Step 1 Translate recurrences to defining relations
fo(n) ~ too none
fi(n) ~tio  ti1—tio—1
fa(n) ~ta0  t21 —t20 —toa
f3(n) ~t30  t31—t30 —to1t11
)
)

fa(n) ~tap ta1 —tao —to1
f(n) ~tso  tso—tap+ (t1,0+ 1)ta0 +t30

Let D be the set of defining relations.



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

n k n n
Prove: Zsz =(n+ 1)2 T — kak.
k=0 k=0

Step 2 Find the induction step
ts1 € Rad(({ts.0} U D))

ThismeansVneN: f(n) =0 = f(n+1)=0.
(No iteration necessary in this example.)



\Extension to arbitrarily many variables\ Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Simple Example

Prove: Zsz = n+1)2xk—2kxk

k=0 i=0

Step 3 Check initial conditions: f(0) =0. O
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Further Examples

» Christoffel-Darboux identity: For each ()51, (M) the
recurrence

P.(z) = (z — cn)Po—1(z) — Ay Po—2(x)

defines a family of orthogonal polynomials. We can prove

i Py (@) Py (u) _ Pry1(z) Po(u) — Po(2)Posa(v)
pr Sl | AP (o — ) [T N
~ Pu(2) _ Pa(@)Pa(x) — Paga(2) P (2)
kZ:O JanDY a : | Eanp¥

for general ()72 1 and (A\p)22;.
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Further Examples

» A hypergeometric identity for general ,, F,, Defining the
multivariate sequences f(n,m) and g(n,m) by

ar, a1+ %, .. am, am+ 3 o 2>
n,m)=F ’ 2’ y Y 2 | (pm—n-1,
f(n,m) (bl;bl+%,...,bn7bn+%,% ( )

1 2a1,...,2am, 2a1,...,24m,
g(n,m) = 2[F< by, ..., 2b, Z) +F( 2by,...,2b,

—)].

we can prove
f(n,m) = g(n,m)

for general n and m (see paper).
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proven but also be found by the computer (T Schneider's talk)
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Conclusion

v

A large class of sequences can be represented by difference
algebra tools

» Free sequences can be represented as well
» An algorithm for deciding zero equivalence is known

» This allows for proving certain polynomial identities in
arbitrarily many variables by the computer

» Latest Development: Some of these identities can not only be
proven but also be found by the computer (T Schneider's talk)

» ...but is there any use of all this?



