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ABSTRACT
The Abramov-Petkovšek reduction computes an additive
decomposition of a hypergeometric term, which extends
the functionality of the Gosper algorithm for indefinite
hypergeometric summation. We improve the Abramov-
Petkovšek reduction so as to decompose a hypergeometric
term as the sum of a summable term and a non-summable
one. The improved reduction does not solve any auxiliary
linear difference equation explicitly. It is also more efficient
than the original reduction according to computational
experiments. Based on this reduction, we design a new
algorithm to compute minimal telescopers for bivariate
hypergeometric terms. The new algorithm can avoid the
costly computation of certificates.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
Creative telescoping is a staple of symbolic summation.

Its main use is to construct recurrence equations that have
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a prescribed definite sum among their solutions. By using
other algorithms applicable to recurrence equations, it is
then possible to derive interesting facts about the original
definite sum, such as closed forms or asymptotic expansions.

The computational problem of creative telescoping is to
construct, for a given term f(x, y), polynomials `0, . . . , `r
in x only, not all zero, and another term g(x, y) s.t.

`0(x)f(x, y) + · · ·+ `r(x)f(x+ r, y) = g(x, y + 1)− g(x, y).

We can distinguish four generations of creative telescoping
algorithms. The first generation was based on elimination
techniques [15, 22, 19, 14]. The second generation started
with what is now known as Zeilberger’s algorithm [21,
5, 23, 19]. The algorithms of this generation use the
idea of augmenting an algorithm for indefinite summation
(or integration) by additional parameters `0, . . . , `r that
are carried along during the calculation and are finally
instantiated, if at all possible, such as to ensure the existence
of a term g as needed for the right-hand side. See [19] for
details about the first two generations.

The third generation was initiated by Apagodu and Zeil-
berger [17, 6]. In a sense, they applied a second-generation
algorithm by hand to a generic input and worked out the
resulting linear system of equations for the parameters `i and
the coefficients inside the desired term g. Their algorithm
then merely consists in solving this system. This approach
is interesting not only because it is easier to implement
and tends to run faster than earlier algorithms, but also
because it is easy to analyze. In fact the analysis of
algorithms from this family gives rise to the best output
size estimates for creative telescoping known so far [11, 12,
13]. A disadvantage is that these algorithms may not always
find the smallest possible output.

The fourth generation of creative telescoping algorithms
originates from [7]. The basic idea behind these algorithms
is to bring each term f(x + i, y) of the left-hand side
into some kind of normal forms modulo all terms that are
differences of other terms. Then to find `0, . . . , `r amounts
to finding a linear dependence among these normal forms.
The key advantage of this approach is that it separates the
computation of the `i from the computation of g. This
is desirable in the typical situation where we are only
interested in the `i and their size is much smaller than
the size of g. With previous algorithms there was no way
to obtain `i without also computing g, but with fourth
generation algorithms there is. So far this approach has
only been worked out for several instances in the differential



case [7, 9, 8]. The goal of the present paper is to give a
fourth-generation algorithm for the discrete case, namely for
the classical setting of hypergeometric telescoping.

Our starting point is the Abramov-Petkovšek reduction
for hypergeometric terms introduced in [3] and summarized
in Section 3 below. Unfortunately the reduced forms
obtained by this reduction are not sufficiently “normal” for
our purpose. Therefore, in Sections 4 and 5 we present a
refined variant of the reduction process and show that the
corresponding normal forms are well-behaved with respect
to taking linear combinations. Then in Section 6 we describe
the creative telescoping algorithm obtained from this reduc-
tion. The final section contains an experimental comparison
between this algorithm and the built-in algorithm of Maple.

2. PRELIMINARIES
Throughout the paper, we let F be a field of characteristic

zero, and F(y) be the field of rational functions in y over F.
Let σy be the automorphism that maps r(y) to r(y + 1)
for all r ∈ F(y). The pair (F(y), σy) is a difference field.
For a nonzero polynomial p ∈ F[y], its degree and leading
coefficient are denoted by degy(p) and lcy(p), respectively.

Definition 2.1. Let D be a difference ring extension of F(y).
A nonzero element T ∈ D is called a hypergeometric term
over F(y) if σy(T ) = rT for some r ∈ F(y). We call r the
shift quotient of T w.r.t. y.

The product of hypergeometric terms is again hypergeo-
metric. Two hypergeometric terms T1, T2 are called similar
if there exists a rational function r ∈ F(y) s.t. T1 = rT2. By
Proposition 5.6.2 in [19], the sum of similar hypergeometric
terms is either hypergeometric or zero.

A univariate hypergeometric term T is called hyperge-
ometric summable if there exists another hypergeometric
term G s.t. T = ∆y(G), where ∆y denotes the difference
of σy and the identity map. We abbreviate “hypergeometric
summable” as “summable” in the sequel.

Given a hypergeometric term T , we let UT be the union
of {0} and the set of summable hypergeometric terms that
are similar to T . Then UT is an F-linear subspace of D. Note
that UT = UH if H is a hypergeometric term similar to T .

Recall [3, §1] that a nonzero polynomial in F[y] is said to
be shift-free if it is coprime with any of its nontrivial shifts.
A nonzero rational function is said to be shift-reduced if its
numerator is coprime with any shift of its denominator.

A basic property of shift-reduced rational functions is
given below.

Lemma 2.2. Let f ∈ F(y) be shift-reduced and unequal to
one. If there exists r ∈ F[y] s.t. fσy(r)− r = 0, then r = 0.

Proof. Suppose that r 6= 0. Then f = r/σy(r). Since f is
unequal to one, r does not belong to F. It follows that f is
not shift-reduced, a contradiction.

According to [3, 4], every hypergeometric term T has a
multiplicative decomposition SH, where S is in F(y) and H
is another hypergeometric term whose shift quotient is shift-
reduced. We call the shift quotient K := σy(H)/H a kernel
of T w.r.t. y and S the corresponding shell. Note that K = 1
if and only if T is a rational function, which is then equal
to cS for some constant c ∈ D.

Let T = SH be a multiplicative decomposition, where S
is a rational function and H a hypergeometric term with a

kernel K. Assume that T = ∆y(G) for some hypergeometric
term G. A straightforward calculation shows that G is
similar to T . So there exists r ∈ F(y) s.t. G = rH. One
can easily verify that

SH = ∆y(rH) ⇐⇒ S = Kσy(r)− r. (1)

Let VK = {Kσy(r) − r | r ∈ F(y)}, which is an F-linear
subspace of F(y). Then (1) translates into

SH ≡ 0 mod UH ⇐⇒ S ≡ 0 mod VK . (2)

These congruences enable us to shorten expressions.

3. ABRAMOV-PETKOVŠEK REDUCTION
Reduction algorithms have been developed for computing

additive decompositions of rational functions [1], hyperexpo-
nential functions [8], and hypergeometric terms [3, 4]. These
algorithms can be viewed as generalizations of the Gosper
algorithm [16, 19] and its differential analogue [5].

The Abramov-Petkovšek reduction [3, 4] is fundamental
for this paper. To describe it concisely, we need a notational
convention and a technical definition.

Convention 3.1. Let T be a hypergeometric term whose
kernel is K and the corresponding shell is S. Let H
be the hypergeometric term whose shift quotient is K.
Then T=SH. Assume that K is unequal to one. More-
over, write K = u/v, where u, v are polynomials in F[y]
with gcd(u, v) = 1.

Definition 3.2. A nonzero polynomial p in F[y] is said to be
strongly prime with K if gcd

(
p, σ−iy (u)

)
= gcd

(
p, σiy(v)

)
=1

for all i ≥ 0.

The proof of Lemma 3 in [3] contains a reduction algo-
rithm whose inputs and outputs are given below.

AbramovPetkovšekReduction: Given K and S as de-
fined in Convention 3.1, compute a rational function S1∈F(y)
and polynomials b, w ∈ F[y] s.t. b is shift-free and strongly
prime with K, and the following equation holds:

S = Kσy(S1)− S1 +
w

b · σ−1
y (u) · v

. (3)

The algorithm contained in the proof of Lemma 3 in [3]
is described as pseudo code on page 4 of the same paper, in
which the last ten lines are to make the denominator of the
rational function V in its output minimal in some technical
sense. We shall not execute these lines. Then the algorithm
will compute two rational functions U1 and U2. They
correspond to S1 and w/

(
bσ−1
y (u)v

)
in (3), respectively.

We slightly modify the output of the Abramov-Petkovšek
reduction. Note that K is shift-reduced and b is strongly
prime with K. Thus, b, σ−1

y (u) and v are pairwise coprime.
By partial fraction decomposition, (3) can be rewritten as

S = Kσy(S1)− S1 +

(
a

b
+

p1

σ−1
y (u)

+
p2
v

)
,

where a, p1, p2 ∈ F[y]. Furthermore, we set r = p1/σ
−1
y (u).

A direct calculation yields r = Kσy(−r)− (−r) + σy(p1)/v.
Update S1 to be S1 − r and set p to be σy(p1) + p2. Then

S = Kσy(S1)− S1 +
a

b
+
p

v
. (4)

This modification leads to shell reduction specified below.



ShellReduction: Given K and S as defined in Con-
vention 3.1, compute a rational function S1 ∈ F(y) and
polynomials a, b, p ∈ F[y] s.t. b is shift-free and strongly
prime with K, and that (4) holds.

Shell reduction provides us with a necessary condition on
summability.

Proposition 3.3. With Convention 3.1, assume that a, b, p
are polynomials in F[y] s.t. b is shift-free and strongly prime
with K. Assume further that (4) holds. If T is summable,
then a/b belongs to F[y].

Proof. Recall that T = SH by Convention 3.1 and it has
a kernel K and the corresponding shell S. It follows from
(2) and (4) that T ≡ (a/b+ p/v)H mod UH . Thus, T is
summable if and only if (a/b+ p/v)H is summable.

Set H ′ = (1/v)H, which has a kernel K′ = u/σy(v). Note
that b is also strongly prime with K′. We can apply Theo-
rem 11 in [4] to (av/b+ p)H ′, which equals (a/b+ p/v)H.
Thus, a/b is a polynomial because b is coprime with v.

Example 3.4. Let T = y2y!/(y + 1). Then the term has
a kernel K = y + 1 and the shell S = y2/(y + 1). Shell
reduction yields S ≡ −1/(y + 2) + y/v mod VK where v=1.
By Proposition 3.3, T is not summable.

Note that a/b+p/v in (4) can be nonzero for a summable T .

Example 3.5. Let T = y ·y! whose kernel is K = y+1 and
shell is S = y. Then S ≡ y/v mod VK , where v = 1. But T
is summable as it is equal to ∆y (y!).

The above example illustrates that neither shell reduction
nor the Abramov-Petkovšek reduction can decide summabil-
ity directly. One way to proceed is to find a polynomial solu-
tion of an auxiliary first-order linear difference equation [4].
We show how this can be avoided and improved in the next
section.

4. IMPROVEMENTS
After the shell reduction described in (4), it remains to

check the summability of (a/b+ p/v)H. In the rational
case, i.e. when the kernel K is one, a/b + p/v in (4)
can be further reduced to a/b with degy(a) < degy(b),
because all polynomials are rational summable. However,
a hypergeometric term with a polynomial shell need not be
summable, as illustrated in Example 3.4.

We define the notion of discrete residual forms for rational
functions, and present a discrete variant of the polynomial
reduction for hyperexponential functions given in [8]. This
variant not only leads to a direct way to decide summability,
but also reduces the number of terms of p in (4).

4.1 Discrete residual forms
With Convention 3.1, we define an F-linear map φK

from F[y] to itself by sending p to uσy(p)−vp for all p ∈ F[y].
We call φK the map for polynomial reduction w.r.t. K.

Lemma 4.1. Let

WK = spanF

{
y` | ` ∈ N, ` 6= degy(p) for all p ∈ im (φK)

}
.

Then F[y] = im (φK)⊕WK .

Proof. By the definition of WK , im (φK) ∩WK = {0}. The
same definition also implies that, for every non-negative
integer m, there exists a polynomial fm ∈ im (φK) ∪WK

s.t. the degree of fm is equal to m. The set {f0, f1, f2, . . .}
forms an F-basis of F[y]. Thus F[y] = im (φK)⊕WK .

In view of the above lemma, we call WK the standard
complement of im(φK). A polynomial p ∈ F can be uniquely
decomposed as p = p1 +p2 with p1 ∈ im (φK) and p2 ∈WK .

Lemma 4.2. With Convention 3.1, let p be a polynomial
in F[y]. Then there exists q ∈WK s.t. p/v ≡ q/v mod VK .

Proof. Let q be the projection of p on WK . Then there
exists f in F[y] s.t. p = φK(f)+q, that is, p = uσy(f)−vf+q.
So p/v = Kσy(f)−f+q/v, that is, p/v ≡ q/v mod VK .

Remark 4.3. Replacing p in the above lemma by vp, we
see that, for every polynomial p ∈ F[y], there exists q ∈WK

s.t. p ≡ q/v mod VK .

By Lemma 4.2 and Remark 4.3, (4) implies that

S ≡ a

b
+
q

v
mod VK , (5)

where a, b, q ∈ F[y], degy(a) < degy(b), b is shift-free and
strongly prime with K, and q ∈ WK . The congruence (5)
motivates us to translate the notion of (continuous) residual
forms in [8] into the discrete setting.

Definition 4.4. With Convention 3.1, we further let f be
a rational function in F(y). Another rational function r
in F(y) is called a (discrete) residual form of f w.r.t. K
if there exist a, b, q in F[y] s.t.

f ≡ r mod VK and r =
a

b
+
q

v
,

where degy(a) < degy(b), b is shift-free and strongly prime
with K, and q belongs to WK . For brevity, we just say that r
is a residual form w.r.t. K if f is clear from the context.

Residual forms help us decide summability, as shown in
the next proposition.

Proposition 4.5. With Convention 3.1, we further assume
that r is a nonzero residual form w.r.t. K. The hypergeo-
metric term rH is not summable.

Proof. Suppose that rH is summable. Let r = a/b + q/v,
where degy(a) < degy(b), b is shift-free and strongly prime
with K, and q belongs to WK . By Proposition 3.3, a/b is a
polynomial. Since degy(a) < degy(b), a = 0. Thus, (q/v)H
is summable. It follows from (1) that there exists w in F(y)
s.t. uσy(w) − vw = q. Thus, w ∈ F[y] by Theorem 5.2.1
in [19, page 76]. So q belongs to im (φK). But q also belongs
to WK . By Lemma 4.1, q = 0, a contradiction.

With Convention 3.1, let r be a residual form of the
shell S. Then SH ≡ rH mod UH by (2) and (5). By
Proposition 4.5, SH is summable if and only if r = 0. Thus,
determining the summability of a hypergeometric term T
amounts to computing a residual form of the corresponding
shell w.r.t. a kernel of T , which is studied below.



4.2 Polynomial reduction
To compute a residual form of a rational function, we

project a polynomial on im(φK) and on its standard com-
plement WK , both defined in the previous subsection.

Let BK =
{
φK(yi) | i ∈ N

}
. The F-linear map φK is

injective by Lemma 2.2. So BK is an F-basis of im (φK),
which allows us to construct an echelon basis. By an echelon
basis, we mean an F-basis in which distinct elements have
distinct degrees. We can easily project a polynomial using
an echelon basis and linear elimination.

To construct an echelon basis, we rewrite im(φK) as

im(φK) = {u∆y(p)− (v − u)p | p ∈ F[y]} .

Set α1 = degy(u), α2 = degy(v), and β = degy(v − u).
Moreover, set τK = lcy(v − u)/ lcy(u), which is nonzero due
to Convention 3.1.

Let p be a nonzero polynomial in F[y]. We make the
following case distinction.

Case 1. β > α1. Then β = α2, and

φK(p) = − lcy(v − u) lcy(p)yα2+degy(p) + lower terms.

So BK is an echelon basis of im(φK), in which degy(φK(yi))
is equal to α2 + i for all i ∈ N. Accordingly, WK has an
echelon basis

{
1, y, . . . , yα2−1

}
and dim(WK) = α2.

Case 2. β = α1. Then

φK(p) = − lcy(v − u) lcy(p)yα1+degy(p) + lower terms.

So BK is an echelon basis of im(φK), in which degy(φK(yi))
is equal to α1 + i for all i ∈ N. Accordingly, WK has an
echelon basis

{
1, y, . . . , yα1−1

}
and dim(WK) = α1.

Case 3. β < α1 − 1. If degy(p) = 0, then φK(p) = (u− v)p.
Otherwise, we have

φK(p) = degy(p) lcy(u) lcy(p)yα1+degy(p)−1 + lower terms.

It follows that BK is an echelon basis of im(φK), in
which degy(φK(1)) = β and

degy(φK(yi)) = α1 + i− 1 for all i ≥ 1.

So WK has an echelon basis
{

1, . . . , yβ−1, yβ+1, . . . , yα1−1
}

,
and dim(WK) = α1 − 1.

Case 4. β = α1 − 1 and τK is not a positive integer. Then

φK(p) =
(
degy(p) lcy(u)− lcy(v − u)

)
lcy(p)yα1+degy(p)−1

+ lower terms. (6)

So BK is an echelon basis of im(φK), in which, for all i ∈ N,
degy(φK(yi)) = α1 + i− 1. Accordingly, WK is spanned by

an echelon basis
{

1, y, . . . , yα1−2
}

, and has dimension α1−1.

Case 5. β = α1 − 1 and τK is a positive integer. It follows
from (6) that for i 6= τK , degy(φK(yi)) = α1 + i − 1.
Moreover, for every polynomial p of degree τK , φK(p) is of
degree less than α1 +τK−1. So any echelon basis of im(φK)
does not contain a polynomial of degree α1 + τK − 1. Set

B′K =
{
φK(yi) | i ∈ N, i 6= τK

}
.

Reducing φK(yτK ) by the polynomials in B′K , we obtain a
polynomial p′ with degy(p′) < α1 − 1. Since BK is an F-

basis and B′K ⊂ BK , p′ 6= 0. So B′K ∪{p′} is an echelon basis

of im(φK). Consequently, WK is spanned by an echelon ba-

sis
{

1, y, . . . , ydegy(p
′)−1, ydegy(p

′)+1, . . . , yα1−2, yα1+τK−1
}

.

The dimension of WK is equal to α1 − 1.

Example 4.6. Let K = (y4 + 1)/(y + 1)4, which is shift-
reduced. Then τK = 4. According to Case 5, im(φK) has an
echelon basis

{φK (p)} ∪ {φK (ym) | m ∈ N,m 6= 4} ,

where p = y4 + y/3 + 1/2, φK(p) = (5/3)y2 + 2y + 4/3,
and φK (ym) = (m− 4)ym+3 + lower terms. Therefore, WK

has a basis {1, y, y7}.

From the above case distinction and example, one observes
that, although the degree of a polynomial in the standard
complement depends on τK , which may be arbitrarily high,
the number of its terms depends merely on the degrees of u
and v. We record this observation in the next proposition.

Proposition 4.7. With the Convention 3.1, we further let

α1 = degy(u), α2 = degy(v), and β = degy(v − u).

Then there exists P ⊂ {yi | i ∈ N} with

|P| ≤ max{α1, α2} − Jβ ≤ α1 − 1K

s.t. every polynomial in F[y] can be reduced modulo im(φK)
to an F-linear combination of the elements in P. Note that
here Jβ ≤ α1 − 1K equals 1 if β ≤ α1 − 1, otherwise it is 0.

Proof. By the above case distinction, dim (WK) is no more
than max{α1, α2} − Jβ ≤ α1 − 1K. The lemma follows.

The above case distinction enables one to find an infinite
sequence p0, p1, . . . in F[y] s.t.

EK = {φK(pi)|i ∈ N} with degy φK(pi) < degy φK(pi+1).

This basis allows us to project a polynomial on im (φK)
and WK , respectively. In the first four cases, the pi’s can be
chosen as powers of y. But in the last case, one of the pi’s
is not necessarily a monomial as shown in Example 4.6.

PolynomialReduction: Given p ∈ F[y], compute f ∈ F[y]
and q ∈WK s.t. p = φK(f) + q.

1. If p = 0, then set f = 0 and q = 0; return.

2. Set d = degy(p). Find the subset P = {pi1 , . . . , pis}
consisting of the preimages of all polynomials in the
echelon basis EK whose degrees are at most d.

3. For k = s, s − 1, . . . , 1, perform linear elimination to
find cs, cs−1, . . . , c1 ∈ F s.t. p−

∑s
k=1 ckφK(pik ) ∈WK .

4. Set f =
∑s
k=1 ckpik and q = p− φK(f); and return.

We now present an improved version of the Abramov-
Petkovšek reduction, which determines summability without
solving any auxiliary difference equations explicitly.

ImprovedAbramovPetkovšekReduction: Given an ir-
rational hypergeometric term T over F(y), compute a
hypergeometric term H with a kernel K, and two rational
functions f, r ∈ F(y) s.t. r is a residual form w.r.t. K, and

T = ∆y(fH) + rH. (7)

1. Find a kernel K and the corresponding shell S of T ;



2. Apply shell reduction to S w.r.t. K to find b, s, t ∈ F[y]
and g ∈ F(y) s.t. b is shift-free and strongly prime
with K; and

T = ∆y (gH) +

(
s

b
+
t

v

)
H, (8)

where σy(H)/H = K and v is the denominator of K.

3. Set p and a to be the quotient and remainder of s
and b, respectively.

4. Apply polynomial reduction to vp+ t to find h ∈ F[y]
and q ∈WK s.t. vp+ t = φK(h) + q.

5. Set f := g+h and r := a/b+q/v and return H, f and r.

Theorem 4.8. With Convention 3.1, the improved version
of the Abramov-Petkovšek reduction computes a rational
function f in F(y) and a residual form r w.r.t. K s.t. (7)
holds. Moreover, T is summable if and only if r = 0.

Proof. Recall that T = SH, where H has a kernel K and S
is a rational function. Applying shell reduction to S w.r.t. K
yields (8), which can be rewritten as

T = ∆y (gH) +

(
a

b
+
vp+ t

v

)
H,

where a and p are given in step 3 of the improved Abramov-
Petkovšek reduction. The polynomial reduction in step 4
yields that vp + t = uσy(h) − vh + q. Substituting this
into (8), we see that

T = ∆y(gH) + (Kσy(h)− h)H +
(a
b

+
q

v

)
H

= ∆y((g + h)H) +
(a
b

+
q

v

)
H.

Thus, (7) holds. By Proposition 4.5, T is summable if and
only r is equal to zero.

Example 4.9. Let T be the same hypergeometric term as
in Example 3.4. Then K = y + 1 and S = y2/(y + 1).
Set H = y!. By the shell reduction in Example 3.4,

T = ∆y

(
−1

y + 1
H

)
+

(
−1

y + 2
+
y

v

)
H,

where v = 1. Applying the polynomial reduction to (y/v)H
yields (y/v)H = ∆y(1 ·H). Combining the above steps, we
decompose T as T = ∆y (y/(y + 1)H) − (1/(y + 2))H. So
the input term T is not summable.

Example 4.10. Let T be the same hypergeometric term as
in Example 3.5. Then K = y+1 and S = y. Set H = y!. By
the shell reduction in Example 3.5, T = yH. The polynomial
reduction yields yH = ∆y (y!) , hence T = ∆y (y!).

5. SUM OF TWO RESIDUAL FORMS
To compute telescopers for bivariate hypergeometric terms

by the improved Abramov-Petkovšek reduction, we are
confronted with the difficulty that the sum of two residual
forms is not necessarily a residual form. This is because the
least common multiple of two shift-free polynomials is not
necessarily shift-free.

The goal of this section is to show that the sum of two
residual forms is congruent to a residual form modulo VK .

Example 5.1. Let K=1/y, r=1/(2y+1) and s=1/(2y+3).
Then both r and s are residual forms w.r.t. K, but their sum
is not, because the denominator (2y+1)(2y+3) is not shift-
free. However, we can still find an equivalent residual form.
For example, we have

r + s =
4(1 + y)

(2y + 1)(2y + 3)
≡ − 1

2(2y + 1)
+

1

2y
mod VK .

Note that the residual form is not unique. Another possible
choice is

r + s ≡ 1

3(2y + 3)
+

1

3y
mod VK .

Let f and g be two nonzero polynomials in F[y]. We say
that f and g are shift-coprime if gcd

(
f, σ`y(g)

)
= 1 for all

nonzero integer `. Assume that both f and g are shift-free.
By polynomial factorization and dispersion computation,
one can uniquely decompose

g = g̃σ`1y (pm1
1 ) · · ·σ`ky (p

mk
k ) , (9)

where g̃ is shift-coprime with f , p1, . . . , pk are distinct,
monic and irreducible factors of f , `1, . . . , `k are nonzero in-
tegers, m1, . . . ,mk are multiplicities of σ`1y (p1), . . ., σ

`k
y (pk)

in g, respectively. We refer to (9) as the shift-coprime
decomposition of g w.r.t. f .

Remark 5.2. Factors g̃, σ`1y (pm1
1 ), . . . , σ

`k
y (p

mk
k ) in (9)

are pairwise coprime, because both f and g are shift-free.

To construct a residual form congruent to the sum of two
given residual ones, we need three technical lemmas. The
first one corresponds to the kernel reduction in [8].

Lemma 5.3. With Convention 3.1, assume that p1, p2 are
in F[y] and m in N. Then there exist q1, q2 in WK s.t.

p1∏m
i=0 σ

i
y(v)
≡q1
v

mod VK and
p2∏m

j=1 σ
−j
y (u)

≡q2
v

mod VK .

Proof. To prove the first congruence, let wm =
∏m
i=0 σ

i
y(v).

We proceed by induction on m. If m = 0, then the
conclusion holds by Lemma 4.2. Assume that the lemma
holds for m− 1. Consider the equality

p1
wm

= Kσy

(
s

wm−1

)
− s

wm−1
+

t

wm−1
,

where s, t ∈ F[y] are to be determined. This equality holds
if and only if σy(s)u+(t−s)σmy (v) = p1. Since u and σmy (v)
are coprime, such s and t can be computed by the extended
Euclidean algorithm. Thus, p1/wm ≡ t/wm−1 mod VK .
Consequently, p1/wm has a required residual form by the
induction hypothesis.

To prove the second congruence, we use the identity

p2

σ−1
y (u)

= Kσy

(
− p2

σ−1
y (u)

)
−
(
− p2

σ−1
y (u)

)
+
σy (p2)

v
,

which implies that p2/σ
−1
y (u) ≡ σy (p2) /v mod VK . By

Lemma 4.2, there exists q2 ∈ WK s.t. q2/v is a residual
form of p2/σ

−1
y (u) w.r.t. K. Assume that the congruence

holds for m − 1. The induction can be completed as in the
proof for p1/wm.

The next lemma provides us with flexibility to rewrite a
rational function modulo VK .



Lemma 5.4. Let K ∈ F(y) be nonzero and shift-reduced.
Then, for every f ∈ F(y) and every ` ∈ Z+,

f ≡ σ`y(f)

`−1∏
i=0

σiy(K)≡σ−`y (f)
∏̀
i=1

σ−iy

(
1

K

)
mod VK .

Proof. Let us show the first congruence by induction on `.
For ` = 1, the identity f = Kσy(−f) − (−f) + σy(f)K
implies that f is congruent to σy(f)K modulo VK . Assume

that it holds for ` − 1. Set w` =
∏`−1
i=0 σ

i
y(K). Then f is

congruent to σ`−1
y (f)w`−1 modulo VK by the induction hy-

pothesis. Moreover, σ`−1
y (f)w`−1 is congruent to σ`y(f)w` by

the induction base, in which f is replaced with σ`−1
y (f)w`−1.

Hence, f is congruent to σ`y(f)w` modulo VK .
The second congruence can be shown similarly. For ` = 1,

the identity f = Kσy(r)− r + r with r = σ−1
y (f)σ−1

y (1/K)
implies that f is congruent to r modulo VK . We then can
proceed as in the proof of the first congruence.

Lemma 5.5. With Convention 3.1, let a, b ∈ F[y] with
b 6=0. Assume that b is shift-free and strongly prime with K.
Assume further that σ`y(b) is strongly prime with K for some

integer `, then a/b has a residual form c/σ`y(b)+q/v w.r.t. K,
where c ∈ F[y] with degy(c) < degy(b) and q ∈WK .

Proof. First, consider the case in which ` ≥ 0. If ` = 0, then
there exist c, p ∈ F with degy(c) < degy(b) s.t. a/b = c/b+p.
The lemma follows from Remark 4.3.

Assume that ` > 0. By the first congruence of Lemma 5.4,

a

b
≡ σ`y

(a
b

)(`−1∏
i=0

σiy(K)

)
=
σ`y(a)

σ`y(b)

∏`−1
i=0 σ

i
y(u)∏`−1

i=0 σ
i
y(v)

mod VK .

Note that σ`y(b) is strongly prime with v by assumption.

Then it is coprime with the product vσy(v) · · ·σ`−1
y (v). By

partial fraction decomposition, we get

a

b
≡ ã

σ`y(b)
+

q̃∏`−1
i=0 σ

i
y(v)

mod VK .

By the first congruence of Lemma 5.3, the second summand
in the right-hand side of the above congruence can be
replaced by a residual form whose denominator is equal to v.
The first assertion holds.

The case in which ` < 0 can be handled in the same way,
in which the second congruences of Lemmas 5.4 and 5.3 will
be used instead of the first ones in these lemmas.

We are ready to present the main result of this section.

Theorem 5.6. With Convection 3.1, let r and s be two
residual forms w.r.t. K. Then there exists a residual form t
congruent to s modulo VK s.t., for all λ, µ ∈ F, λr+ µt is a
residual form w.r.t. K congruent to λr + µs modulo VK .

Proof. Let r = a/f+p/v and s = b/g+q/v, where a, f, b, g ∈
F[y], degy(a) < deg(f), degy(b) < degy(g), p, q ∈ WK ,
and f, g are shift-free and strongly prime with K.

Assume that (9) is the shift-coprime decomposition of g
w.r.t. f . Set Pi = σ`iy (pi) for i = 1, . . . , k. By Remark 5.2
and partial fraction decomposition, we have

b

g
=
b0
g̃

+

k∑
i=1

bi
Pmi
i

, (10)

where b0, b1, . . . , bk ∈ F[y]. Note that pi = σ−`iy (Pi), which
is a factor of f . Thus it is strongly prime with K. So we
can apply Lemma 5.5 to each fraction bi/P

mi
i in (10) to get

b

g
≡ b0

g̃
+

k∑
i=1

b′i
pmi
i

+
q′

v
mod VK , (11)

where b′1, . . . , b
′
k ∈ F[y] and q′ ∈WK .

Set h = g̃
∏k
i=1 p

mi
i . Then h is shift-free and strongly

prime with K as both f and g are. Since f is shift-free,
all its factors are shift-coprime with f , so are the pi’s,
and so is h. Let t be the sum of q/v and the rational
function in the right-hand side of (11). Then there exist b∗ ∈
F[y] with degy(b∗)<degy(h) and q∗∈WK s.t. t=b∗/h+q∗/v.
Since f and h are shift-coprime, their least common multiple
is shift-free. Therefore, λr + µt is a residual form w.r.t. K,
and λr + µt is congruent to λr + µs mod VK .

6. TELESCOPING VIA REDUCTIONS
Let C be a field of characteristic zero, and C(x, y) be the

field of rational functions in x and y over C. Let σx, σy be
the shift operators w.r.t. x and y, respectively, defined by,

σx(f(x, y)) = f(x+ 1, y) and σy(f(x, y)) = f(x, y + 1),

for any f ∈ C(x, y). Then the pair (C(x, y), {σx, σy}) forms
a partial difference field.

Definition 6.1. Let D be a partial difference ring extension
of C(x, y). A nonzero element T ∈ D is called a hyper-
geometric term over C(x, y) if there exist f, g ∈ C(x, y)
s.t. σx(T ) = fT and σy(T ) = gT . We call f, g the shift
quotients of T w.r.t. x and y, respectively.

An irreducible polynomial p ∈ C[x, y] is said to be integer-
linear over C if there exist f ∈ C[z], m,n ∈ Z with n ≥ 0
and gcd(m,n) = 1, s.t. p = f(mx + ny). A polynomial
in C[x, y] is said to be integer-linear over C if all of its
irreducible factors are integer-linear. A rational function
in C(x, y) is said to be integer-linear over C if its denominator
and numerator are integer-linear.

Let F be the field C(x), and F〈Sx〉 be the ring of linear
recurrence operators in x, in which the commutation rule
is that Sxr = σx(r)Sx for all r ∈ F. The application of
an operator L =

∑ρ
i=0 `iS

i
x to a hypergeometric term T is

defined as L(T ) =
∑ρ
i=0 `iσ

i
x(T ).

Definition 6.2. Let T be a hypergeometric term over F(y).
A nonzero operator L ∈ F〈Sx〉 is called a telescoper for T
if there exists a hypergeometric term G s.t. L(T ) = ∆y(G).
We call G the certificate of L.

For hypergeometric terms, telescopers do not always exist.
Abramov presented a criterion for determining the existence
of telescopers in [2, Theorem 10]. Let K=u/v be a kernel
of σy(T )/T and S the corresponding shell. Applying the
improved Abramov-Petkovšek reduction w.r.t. y to T yields
T = ∆y(uH) + rH, where u ∈ F(y), H = T/S, and
r = a/b + q/v is the residual form of S w.r.t. K. By
Abramov’s criterion, T has a telescoper if and only if b is
integer-linear over C. When telescopers exist, Zeilberger’s
algorithm [21] constructs a telescoper for T by iteratively
using the Gosper algorithm to detect the summability
of L(T ) for an ansatz L =

∑ρ
i=0 `iS

i
x ∈ F〈Sx〉.

Following the creative telescoping algorithms based on
Hermite reductions [7, 10, 9, 8] in the continuous case, we



use the improved Abramov-Petkovšek reduction to develop
a telescoping algorithm, which is outlined below.

ReductionCT: Given a hypergeometric term T with shift
quotients f = σx(T )/T and g = σy(T )/T in F(y), compute
a telescoper of minimal order for T and its certificate if
telescopers exist.

1. Find a kernel K and shell S of T w.r.t. y s.t. T = SH
with K = σy(H)/H.

2. Apply the improved Abramov-Petkovšek reduction
to T to get

T = ∆y(u0H) + r0H. (12)

If r0 = 0, then return (1, u0H).

3. If the denominator of r0 is not integer-linear, return
“No telescoper exists!”.

4. Set N := σx(H)/H and R := `0r0, where `0 is an
indeterminate.

For i = 1, 2, . . ., do

4.1. View σx(ri−1)NH as a hypergeometric term with
kernel K and shell σx(ri−1)N . Using shell reduc-
tion w.r.t. K and polynomial reduction w.r.t. K,
find u′i ∈ F and a residual form r̃i w.r.t. K
s.t. σx(ri−1)NH = ∆y(u′iH) + r̃iH.

4.2. Set ũi = σx(ui−1)N + u′i, so that

σix(T ) = ∆y(ũiH) + r̃iH. (13)

4.3. Follow the proof of Theorem 5.6 to compute ui
and ri in F(y) s.t. ri ≡ r̃i mod VK ,

σix(T ) = ∆y(uiH) + riH, (14)

and that R + `iri is a residual form w.r.t. K,
where `i is an indeterminate.

4.4. Update R to be R+ `iri.

4.5. Find `j ∈ F s.t. R = 0 by solving a linear
system in `0, . . . , `i over F. If there is a nontrivial

solution, return
(∑i

j=0 `jS
j
x,
∑i
j=0 `jujH

)
.

Theorem 6.3. Let T be a hypergeometric term over F(y).
If T has a telescoper, then the algorithm ReductionCT
terminates and returns a telescoper of minimal order for T .

Proof. By Theorem 4.8, r0 = 0 implies that 1 is a telescoper
for T of minimal order.

Let r0 obtained from step 2 be of the form a0/b0 + q0/v,
where a0, b0, v ∈ F[y], degy(a0) < degy(b0), b0 is strongly
prime with K, q0 ∈ WK , and v is the denominator of K.
By Ore-Sato’s theorem [18, 20] on hypergeometric terms, K
is integer-linear and so is v. It follows that b0 is integer-
linear if and only if b0v is. By Abramov’s criterion, T has
a telescoper if and only if the denominator of r0 is integer-
linear. Thus, steps 2 and 3 are correct.

It follows from (12) and σx(r0H) = σx(r0)NH that (13)
holds for i = 1. By Theorem 5.6, there exists a residual
form r1 w.r.t. K with r1 ≡ r̃1 mod VK s.t. R+ `1r1 is again
a residual form for all `0, `1 ∈ F. Indeed, the proofs of the
lemmas and Theorem 5.6 enable us to obtain not only r1
but also a rational function g1 s.t. r̃1 = Kσy(g1) − g1 + r1.

Setting u1 = ũ1 + g1, we see that (14) holds for i = 1. By a
direct induction on i, (14) holds in the loop of step 4.

Assume that L =
∑ρ
i=0 ciS

i
x is a telescoper of minimal

order for T with ci ∈ F and cρ 6= 0. Then L(T ) is summable.
By Theorem 4.8,

∑ρ
i=0 ciri is equal to zero. Thus, the linear

homogeneous system (over F) from equating
∑ρ
i=0 `iri to

zero has a nontrivial solution, which yields a telescoper of
minimal order.

Remark 6.4. The algorithm ReductionCT separates the
computation of minimal telescopers from that of certificates.
One may neglect the computation for certificates in the
algorithm when they are irrelevant in applications.

Remark 6.5. Instead of applying the improved Abramov-
Petkovšek reduction to σx(ri−1)NH in step 5, it is also
possible to apply the reduction to σix(T ), but our experiments
suggest that this variant takes considerably more time.

Example 6.6. Let T =
(
x
y

)3
. Then the shift quotients of T

w.r.t. x and y, respectively, are

f :=
σx(T )

T
=

(x+ 1)3

(x+ 1− y)3
and g :=

σy(T )

T
=

(x− y)3

(y + 1)3
.

The kernel K of g is equal to g and the corresponding shell
is 1. In step 4, we obtain

σiy(T ) ≡ qi
v
H mod UH ,

where i = 0, 1, 2, v = (y+1)3, H has shift quotient g w.r.t. y,

q0 = 1
2
(x+1)(x2−x+3y(y−x+1)+1), q1 = (x+ 1)3, and

q2 =
(x+ 1)3

(x+ 2)2
(
11x2 − 12xy + 17x+ 20 + 12y + 12y2

)
.

By finding an F-linear dependency among q0, q1, q2, we get

L := (x+ 2)2S2
x − (7x2 + 21x+ 16)Sx − 8(x+ 1)2

is a telescoper of minimal order for T .

7. IMPLEMENTATION AND TIMINGS
We have implemented our algorithms in Maple. In order

to get an idea about their efficiency, we compared their
runtime and memory requirements to the performance of
known algorithms. All timings are measured in seconds on a
Linux computer 388Gb RAM, 2.80GHz Dual core processor.

For the first comparison, we considered univariate hyper-
geometric terms of the form

T =
f(y)

g1(y)g2(y)

Γ(y − α)

Γ(y − β)
,

where f ∈ Z[y] of degree 20, gi = piσ
λ
y (pi)σ

µ
y (pi) with pi ∈

Z[y] of degree 10, λ, µ ∈ N, and α, β ∈ Z. For a selection of
random terms of this type for different choices of µ and λ,
Table 1 compares the timings of Maple’s implementation
of the classical Abramov-Petkovšek reduction (AP) and our
improved version (IAP). We apply the algorithms to T as
well as to the summable terms σy(T )− T .

For the second comparison, we considered bivariate hy-
pergeometric terms of the form

T =
f(x, y)

g1(x+ y)g2(2x+ y)

Γ(2αx+ y)

Γ(x+ αy)



T σy(T )− T
(λ, µ) AP IAP AP IAP
(0, 0) 0.55 0.37 4.68 2.95
(5, 5) 6.71 1.71 11.39 3.59
(5, 10) 14.74 3.05 17.10 4.32
(10, 10) 18.44 3.24 20.98 3.71
(10, 20) 63.61 8.53 50.58 5.18
(10, 30) 236.87 16.04 110.55 5.01
(10, 40) 459.77 40.83 211.72 5.61

Table 1: Comparison of the Abramov-Petkovšek

reduction and the improved version for a collection of

non-summable terms T and summable terms σy(T )− T .

with f ∈ Z[x, y] of degree n, gi = piσ
λ
z (pi)σ

µ
z (pi) with pi ∈

Z[z] of degree m, and α, λ, µ ∈ N. For a selection of random
terms of this type for different choices of n,m, α, µ, λ,
Table 2 compares the timings of Maple’s implementation of
Zeilberger’s algorithm (Z) and two variants of the algorithm
ReductionCT from Section 6: For the column RCT1 we
computed both the telescoper and certificate, and for RCT2

we only compute the telescoper. The difference between
these two variants comes mainly from the time needed to
bring the rational function u in the certificate uH on a
common denominator. When it is acceptable to keep the
certificate as an unnormalized linear combination of rational
functions, the timings are virtually the same as for RCT2.

(m,n, α, λ, µ) Z RCT1 RCT2 order
(1, 0, 1, 5, 5) 17.12 5.00 1.80 4
(1, 0, 2, 5, 5) 74.91 26.18 5.87 6
(1, 0, 3, 5, 5) 445.41 92.74 17.34 7
(1, 8, 3, 5, 5) 649.57 120.88 23.59 7
(2, 0, 1, 5, 10) 354.46 58.01 4.93 4
(2, 0, 2, 5, 10) 576.31 363.25 53.15 6
(2, 0, 3, 5, 10) 2989.18 1076.50 197.75 7
(2, 3, 3, 5, 10) 3074.08 1119.26 223.41 7
(2, 0, 1, 10, 15) 2148.10 245.07 11.22 4
(2, 0, 2, 10, 15) 2036.96 1153.38 153.21 6
(2, 0, 3, 10, 15) 11240.90 3932.26 881.12 7
(2, 5, 3, 10, 15) 10163.30 3954.47 990.60 7
(3, 0, 1, 5, 10) 18946.80 407.06 43.01 6
(3, 0, 2, 5, 10) 46681.30 2040.21 465.88 8
(3, 0, 3, 5, 10) 172939.00 5970.10 1949.71 9

Table 2: Comparison of Zeilberger’s algorithm to

reduction-based telescoping with and without construc-

tion of a certificate
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