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ABSTRACT
We show that the problem of constructing telescopers for
rational functions of m + 1 variables is equivalent to the
problem of constructing telescopers for algebraic functions
of m variables and we present a new algorithm to construct
telescopers for algebraic functions of two variables. These
considerations are based on analyzing the residues of the
input. According to experiments, the resulting algorithm
for rational functions of three variables is faster than known
algorithms, at least in some examples of combinatorial in-
terest. The algorithm for algebraic functions implies a new
bound on the order of the telescopers.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Symbolic Integration, Creative Telescoping

1. INTRODUCTION
The problem of creative telescoping is to find, for a given

“function” f in several variables t1, . . . , tn, x1, . . . , xm, a lin-
ear differential operator L involving only the ti and deriva-
tions with respect to the ti, and some other “functions”
g1, . . . , gm such that

L(f) = Dx1(g1) + · · ·+Dxm(gm),

∗Supported by the National Science Foundation (NSF) grant
CCF-1017217.
†Supported by the Austrian Science Fund (FWF) grant
Y464-N18.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

where Dxj denotes the derivative with respect to xj . The
main motivation for computing such operators L (called
“telescopers” for f) is that, under suitable technical assump-
tions on f and the domain Ω, these operators have the def-
inite integral

F (t1, . . . , tn) =

∫
Ω

f(t1, . . . , tn, x1, . . . , xm) dx1 · · · dxm

as a solution. Once differential operators for F have been
found, other algorithms can next be used for determining
possible closed forms, or asymptotic information, or recur-
rence equations for the series coefficients of F .

There are general algorithms for computing telescopers
when the input f is holonomic [30, 16, 29, 25, 9] as well
as special-purpose algorithms designed for restricted input
classes [30, 31, 5]. The focus in the present paper is on
two such restricted input classes: rational and algebraic
functions of several variables. Our first result is that an
algorithm for computing telescopers for rational functions
of m + 1 variables directly leads to an algorithm for com-
puting telescopers for algebraic functions of m variables and
vice versa (Section 2). Our second result is a new algorithm
for creative telescoping of algebraic functions of two vari-
ables (Section 3), which, by the equivalence, also implies a
new algorithm for creative telescoping of rational functions
of three variables. The algorithm for algebraic functions is
mainly interesting because it implies a new bound on the
order of the telescoper in this case (Theorem 14), while the
implied algorithm for rational functions is mainly interesting
because at least for some examples it provides an efficient
alternative to other methods (Section 4).

For a precise problem description, let k be a field of char-
acteristic zero, and k(t,x) be the field of rational functions
in t and x = (x1, . . . , xm) over k. Let x̂m denote the m− 1
variables x1, . . . , xm−1. The algebraic closure of a field K is
denoted by K. The usual derivations ∂/∂t and ∂/∂xi are de-
noted by Dt and Dxi , respectively. Let k(t)〈Dt〉 be the ring
of linear differential operators in t with coefficients in k(t).
Then we are interested in the following two problems:

Problem 1. Given f ∈ k(t,x), find a nonzero operator L ∈
k(t)〈Dt〉 such that

L(f) = Dx1(g1) + · · ·+Dxm(gm) for some gj ∈ k(t,x).

Such an L is called a telescoper for f , and the rational func-
tions g1, . . . , gm are called certificates of L.



Problem 2. Given α ∈ k(t, x̂m), find a nonzero opera-
tor L ∈ k(t)〈Dt〉 such that

L(α)=Dx1(β1)+· · ·+Dxm−1(βm−1) for some βj ∈ k(t, x̂m).

Such an L is called a telescoper for α, and the algebraic
functions β1, . . . , βm−1 are called certificates of L.

Both the equivalence of these two problems and the new
algorithm for Problem 2 (when m = 2) are based on the
general idea of eliminating residues in the input. As an in-
troduction to this approach, consider the problem of finding
a telescoper and certificate for a rational function in two
variables, i.e., given a rational function f ∈ k(t, x), we want
to find a nonzero L ∈ k(t)〈Dt〉 such that L(f) = Dx(g) for
some g ∈ k(t, x). View f as an element of K(x), where
K = k(t), and consider the partial fraction decomposition

f = p+

n∑
i=1

mi∑
j=1

αi,j
(x− βi)j

(1)

of f , in which p ∈ K[x], the βi are the distinct roots in K
of the denominator of f and the αi,j are in K. We refer to
the element αi,1 as the residue of f at βi. Using Hermite
reduction, one sees that a rational function h ∈ K(x) is of
the form h = Dx(g) for some g ∈ K(x) if and only if all
residues of h are zero. Therefore to find a telescoper for f it
is enough to find a nonzero operator L ∈ K〈Dt〉 such that
L(f) has only zero residues. For example assume that f has
only simple poles, i.e., f = a

b
, a, b ∈ K[x], degx a < degx b

and b squarefree. We then know that the Rothstein-Trager
resultant [28, 24]

R := resultantx(a− zDx(b), b) ∈ K[z]

is a polynomial whose nonzero roots are the residues at the
poles of f . Given a squarefree polynomial in K[z] = k(t)[z],
differentiation with respect to t and elimination allow one to
construct a nonzero linear differential operator L ∈ k(t)〈Dt〉
such that L annihilates the roots of this polynomial. Apply-
ing L to each term of (1) one sees that L(f) has zero residue
at each of its poles. Applying Hermite reduction to L(f) al-
lows us to find a g such that L(f) = Dx(g).

The main idea in the method described above is that
nonzero residues are the obstruction to being the deriva-
tive of a rational function and one constructs a linear oper-
ator to remove this obstruction. This basic idea is classical
in the study of residues of double integrals [23, 22, 20, 21,
10]. Nonetheless, refining these ideas and combining them
with techniques of symbolic computation yields an attrac-
tive new method to compute telescopers. Understanding
how residues form an obstruction to integrability and con-
structing linear operators to remove this obstruction will be
the guiding principal that motivates the results which follow.

Acknowledgement. We would like to thank Barry Trager
for useful discussions and outlining the proof of Proposi-
tion 10. We also thank the referee for leading us to the
references [23, 22, 20, 21].

2. TELESCOPERS FOR RATIONAL
FUNCTIONS

2.1 Rational and algebraic integrability
In this section, we give a criterion which decides whether

or not 1 is a telescoper for a rational function in k(t,x).

Again, let K = k(t). A rational function f ∈ K(x) is said to
be rational integrable with respect to x if f =

∑m
j=1 Dxj (gj)

for some gj ∈ K(x). An algebraic function α ∈ K(x̂m) is
said to be algebraic integrable with respect to x̂m if α =∑m−1
j=1 Dxj (βj) for some βj ∈ K(x̂m). By taking traces,

one can show that if α is algebraic integrable with respect
to x̂m, then an antiderivative of α already exists in the
field K(x̂m)(α).

For a rational function f ∈ K(x), Hermite reduction with
respect to xm decomposes f into

f = Dxm(r) +
a

b
, (2)

where r ∈ K(x) and a, b ∈ K(x̂m)[xm] such that degxm(a) <
degxm(b) and b is squarefree w.r.t. xm. It is clear that f is
rational integrable w.r.t. x if and only if a/b in (2) is ra-

tional integrable w.r.t. x. Over the field K(x̂m), one can
write a rational function f ∈ K(x) in the form (1), where

p ∈ K(x̂m)[xm] and the αij , βi are in K(x̂m). We call
residuexm(f, βi) := αi1 the xm-residue of f at βi.

Proposition 3. Let f ∈ K(x) and β ∈ K(x̂m). Then

(i) residuexm(f, β) = 0 if f = Dxm(g) for some g ∈ K(x)

(ii) Dxj (residuexm(f, β)) = residuexm(Dxj (f), β) for all j
with 1 ≤ j ≤ m− 1.

Proof. The first assertion follows by observing the effect
of Dxm on each term in the partial fraction decomposition
of g. By Hermite reduction, we can decompose f into

f = Dxm(r) +

n∑
i=1

αi
xm − βi

.

By the first assertion, either residuexm(f, β) = αi if β =
βi or residuexm(f, β) = 0 if β 6= βi for all i = 1, . . . , n.
Applying Dxj to the two sides of the equation above yields

Dxj (f) = Dxj (Dxm(r)) +

n∑
i=1

(
Dxj (αi)

xm − βi
+
αiDxj (βi)

(xm − βi)2

)

= Dxm

(
Dxj (r)−

n∑
i=1

αiDxj (βi)

xm − βi

)
+

n∑
i=1

Dxj (αi)

xm − βi
.

Then we have either residuexm(Dxj (f), β) = Dxj (αi) if β =
βi or residuexm(Dxj (f), β) = 0 if β 6= βi for all i = 1, . . . , n.
The second assertion follows.

If f is written as in (2), then we have

residuexm(f, βi) =
a

Dxm(b)

∣∣∣
xm=βi

∈ K(x̂m)(βi).

Therefore, all the xm-residues of f are roots of the Rothstein-
Trager resultant (see [24, 28])

R := resultantxm(b, a− zDxm(b)) ∈ K(x̂m)[z].

We generalize below an old result by Picard and Simart [22,
Vol II, page 220] to the multivariate case and give a more
direct proof.

Lemma 4. Let f ∈ K(x). Then f is rational integrable
with respect to x if and only if all the xm-residues of f are
algebraic integrable with respect to x̂m.



Proof. By the Hermite reduction and partial fraction de-
composition, f can be written as

f = Dxm(r) +

n∑
i=1

αi
xm − βi

,

where r ∈ K(x), αi, βi ∈ K(x̂m) and the βi are pairwise
distinct.

Suppose that all the xm-residues αi of f are algebraic
integrable with respect to x̂m, i.e., αi =

∑m−1
j=1 Dxj (γi,j) for

some γi,j ∈ K(x̂m)(αi). Note that for each j we have

Dxj (γi,j)

xm − βi
= Dxj

(
γi,j

xm − βi

)
+Dxm

(
γi,jDxj (βi)

xm − βi

)
.

Then we get

αi
xm − βi

=

m−1∑
j=1

Dxj

(
γi,j

xm − βi

)
+Dxm

(m−1∑
j=1

γi,jDxj (βi)

xm − βi

)
.

Therefore, f is rational integrable w.r.t. x by taking

gj =

n∑
i=1

γi,j
xm − βi

and gm = r +

n∑
i=1

m−1∑
j=1

γi,jDxj (βi)

xm − βi
.

By a Galois-theoretic argument, gj and gm are in K(x).
Suppose now that f is rational integrable with respect

to x, i.e., f =
∑m
j=1 Dxj (gj) for some gj ∈ K(x). For any i ∈

{1, 2, . . . , n}, taking the xm-residues of f and
∑m
j=1 Dxj (gj),

respectively, and using Proposition 3 we get

residuexm(f, βi) = αi =

m−1∑
j=1

Dxj (residuexm(gj , βi)),

which implies that αi is algebraic integrable w.r.t. x̂m.

Example 5. Let f = 1/(xn1 + xn2 ) for some fixed n ∈ Z.
Then the x2-residue of f at ωx1 with ωn = −1 is 1

n
(ωx1)1−n.

This residue is algebraic integrable w.r.t. x1 if and only if
n 6= 2. Lemma 4 implies that f is rational integrable w.r.t. x1

and x2 if and only if n 6= 2. Indeed, when n 6= 2 we have

f = Dx1

(
−(n− 2)−1x1

xn1 + xn2

)
+Dx2

(
−(n− 2)−1x2

xn1 + xn2

)
.

2.2 Equivalence
Theorem 6. Let f ∈ k(t,x). Then L ∈ k(t)〈Dt〉 is a
telescoper for f if and only if L is a telescoper for every
xm-residue of f .

Proof. By a similar calculation as in the proof of Proposi-
tion 3, we have

L(residuexm(f, β)) = residuexm(L(f), β) (3)

for any L ∈ k(t)〈Dt〉 and β ∈ k(t, x̂m). If L ∈ k(t)〈Dt〉 is a
telescoper for f , then L(f) =

∑m
j=1 Dxj (gj) for some gj ∈

k(t,x). By Proposition 3 and Equation (3), for the xm-
residue α := residuexm(f, β) at any pole β of f with respect
to xm, we have

L(α) =

m−1∑
j=1

Dxj (residuexm(gj , β)).

So L is a telescoper for α. Conversely, assume that L is a
telescoper for any xm-residue of f . Note that any xm-residue

of L(f) is of the form L(residuexm(f, β)), which is algebraic
integrable by assumption. Then L(f) is rational integrable
by Lemma 4. Therefore, L is a telescoper for f .

Now we can present an explicit translation between the
two telescoping problems by using Theorem 6.

If we can solve Problem 2, then for a rational function f ∈
k(t,x), first, we can perform Hermite reduction to decom-
pose f into f = Dxm(r) + a/b; second, we compute the
resultant R := resultantxm(a − zDxm(b), b) ∈ k(t, x̂m)[z];
finally, we get a telescoper for f by constructing telescop-
ers for all the roots of R in k(t, x̂m) and taking their least
common left multiple.

On the other hand, if we can solve Problem 1, then for
an algebraic function α ∈ k(t, x̂m) with minimal polyno-
mial F ∈ k[t, x̂m, xm], we compute a telescoper L for the
rational function f = xmDxm(F )/F . Note that α is the
xm-residue of f at α. Therefore, L is a telescoper for α.

Example 7. Consider the rational function

f =
2y(1− x)x(x+ 1)(x+ 2)(t+ x)(xy − y − t4)

1− x(2− x+ (x+ 1)(x+ 2)(t+ x)(xy − y − t4)2)
.

In order to find a telescoper for f , we view f as a ratio-
nal function in y with coefficients in k(t, x) and determine

its residues in k(t, x). Write a and b for the numerator
and denominator of f . Since b is squarefree, the residues
of f are precisely the roots of the Rothstein-Trager resultant
resultanty(a − zDy(b), b) ∈ k(t, x)[z]. In the present exam-
ple, these are

t4

x− 1
± 1√

x(x+ 1)(x+ 2)(x+ t)
.

According to Theorem 6, it now suffices to find a telescoper
for this algebraic function. This problem is discussed in the
following section.

3. TELESCOPERS FOR ALGEBRAIC
FUNCTIONS

We showed above how focusing on residues can yield a
technique to find telescopers of rational functions by reduc-
ing this question to a similar one for algebraic functions.
In this section we describe an algorithm to solve this latter
problem for algebraic functions of two variables. In what
follows, the term “algebraic function” will always refer to al-
gebraic functions of two variables t and x. When one tries
to use residues to solve the problem of finding telescopers
for algebraic functions one must deal with several complica-
tions. The first is a technical complication. One does not
have a global way of expressing a function similar to partial
fractions and so must rely on local expansions. This forces
one to look at differentials rather than functions in order to
define the notion of residue in a manner that is independent
of local coordinates. The second complication is a more sub-
stantial one. There are differentials αdx having zero residues
everywhere that are not of the form dβ = Dx(β)dx, i.e. α
is not the derivative of an algebraic function. Nonetheless,
one knows that there must exist an operator L ∈ k(t)〈Dt〉 of
order equal to twice the genus of the curve associated to f
such that L(α)dx = dβ for some algebraic β. This will force
us to add an additional step to find our desired telescoper.



In Section 3.1, we will gather some facts concerning differ-
entials in function fields of one variable that will be needed
in our algorithm. In Section 3.2 we describe the algorithm.

3.1 Derivations and Differentials
In this section we review some notation and facts concern-

ing function fields of one variable (cf. [2, 4, 8, 12, 17]). In
the previous section the results and calculations depended
heavily on the notion of the residue of a rational function
of y at an algebraic function βi of x. In the present section
we shall also need to use the notion of a residue but since
we are dealing with algebraic functions instead of rational
functions, the appropriate notion is that of a residue of a
differential ω at a place P of the associated function field E.
We will denote this by residueP ω and refer to the above
mentioned books for basic definitions and properties. We
note that when f ∈ E = K(x)(y), and βi ∈ K(x), then
residuey(f, βi) = residueP ω, where ω = fdx and P is the
place (y − βi) of E.

Let K be a differential field of charactersitic zero with
derivation denoted by Dt (for example, K = k(t) with Dt
as above). Let x be transcendental over K and E = K(x, y)
an algebraic extension of K(x). We may extend the deriva-
tionDt to a derivationDx

t onK(x) by first lettingDx
t (x) = 0

and then taking the unique extension to E. We define a
derivation Dx on K(x) by letting Dx be zero on K, Dx(x) =
1 and taking the unique extension of Dx from K(x) to E.
We shall also assume that the constants EDx = {c ∈ E |
Dx(c) = 0} are precisely K. This is equivalent to saying
that the minimal polynomial of y over K(x) is absolutely ir-
reducible (cf. [11]). In [8], Chapter VI, §7, Chevalley shows
that Dx

t can be used to define a map (which we denote again
by Dx

t ) on differentials such that Dx
t (fdx) = (Dx

t (f))dx.
The map Dx

t furthermore has the following properties:

1. Dx
t (dg) = d(Dx

t g) for any g ∈ E, and

2. for any place P of E and any differential ω,

residueP(Dx
t ω) = Dx

t (residueP(ω)).

Given α ∈ E we will want to find an operator L ∈ K〈Dx
t 〉

and an element β ∈ E such that L(α) = Dx(β). In terms of
differentials, this latter equation may be written as L(ω) =
dβ, where ω = αdx.

We shall have occasion to write our field E as E = K(x̄, ȳ)
for some other x̄ which is transcendental over K and ȳ alge-
braic over K(x̄) and work with the derivation Dx̄

t defined in
a similar manner as above. We will need to know that if we
can find a telescoper with respect to the derivation Dx̄

t then
we can convert this into a telescoper with respect to Dx

t .
The following lemma and proposition allow us to do this.

Lemma 8. Let x and x̄ be as above and let ω be a differential
of E. For any i = 1, 2, . . . there exists ui ∈ E such that

(Dx̄
t )i(ω)− (Dx

t )i(ω) = dui. (4)

Proof. Write ω = ᾱdx̄. Lemma 1 of [17] (see also Lemma 3
in Chapter VI, §7 of [8]) implies that

Dx̄
t (ω)−Dx

t (ω) = −d(ᾱDx
t (x̄)).

Letting u1 = −ᾱDx
t (x̄), we have equation (4) for i = 1. One

can verify by induction that (4) holds for ui+1 = Dx̄
t (ui) −

viD
x
t (x̄), where vi = (Dx

t )i[ᾱDxx̄] ·Dx̄(x).

Proposition 9. Let α ∈ E, ω = αdx,

(Dx̄
t )n + an−1(Dx̄

t )n−1 + . . .+ a0 ∈ K〈Dx̄
t 〉,

and β̄ ∈ E such that(
(Dx̄

t )n + an−1(Dx̄
t )n−1 + . . .+ a0

)
(ω) = dβ̄.

One can effectively find β ∈ E such that(
(Dx

t )n + an−1(Dx
t )n−1 + . . .+ a0

)
(α) = Dx(β).

Proof. From Lemma 8 we have that(
(Dx̄

t )n + an−1(Dx̄
t )n−1 + . . .+ a0

)
(ω)

= ((Dx
t )n(ω) + dun) + an−1((Dx

t )n−1(ω) + dun−1)

+ . . .+ a0ω.

Therefore, taking into account that the ai belong to K,(
(Dx

t )n + an−1(Dx
t )n−1 + . . .+ a0

)
(ω)

= d
(
β̄ − un − an−1un−1 − . . .− a1u1

)
,

which implies the conclusion of the proposition with β =
β̄ − un − an−1un−1 − . . .− a1u1.

In the algorithm described in the next section, we will
consider a differential ω in E = K(x, y) and assume that
(1) ω has no poles at any place above the place of K(x) at
infinity, and (2) the places where ω does have a pole are
all unramified above places of K(x). We describe below an
algorithm that allows one to select an x̄ ∈ E such that E =
K(x̄, y) and such that ω satisfies two conditions above for
K(x̄). The algorithm of Section 3.2 can be used to produce
a telescoper with respect to Dx̄

t and Proposition 9 allows one
to convert this telescoper to a telescoper with respect to Dx

t .
In the following proposition, the proof that condition (2) can
be fulfilled was outlined to us by Barry Trager [26, 27].

Proposition 10. Let ω be a differential in E = K(x, y).
One can effectively find an x̄ ∈ E such that E = K(x̄, y)
and

1. ω has no poles at any place above the place of K(x̄) at
infinity, and

2. the places where ω does have a pole are all unramified
above places of K(x̄).

Proof. If 1. does not hold, let c ∈ K be selected so that ω
has no poles above x = c, let

x̄ =
cx

x− c .

This change of variables interchanges c and the point at in-
finity, so 1. is now satisfied with respect to K(x̄) and we
shall henceforth abuse notation and assume that 1. is satis-
fied with respect to K(x).

Let C be a nonsingular curve that is a model of E. The
elements of E can be considered as functions on C. As noted
in [26, p. 63], ramification occurs when the line of projection
from the curve down to the x-axis is tangent to the curve
and, for each pole of ω, there are only a finite number of
projection directions that are tangent to the curve at this
pole. Therefore for all but finitely many choices of an inte-
ger m, if we let x̄ = x+my, ω will satisfy 2. with respect to
K(x̄). One can refine this argument and produce a finite set
of integers m that are to be avoided. This is done as follows.



Let M be an indeterminate and consider the field E1 =
E(M) = k1(x̄, y), where k1 = K(M) and x̄ = x + My. Let
o = K[M ] and assume that (after a possible change of y),
y satisfies a monic polynomial over o[x̄]. The behavior of
various objects in E1 when one reduces o modulo a prime
ideal of o is considered in [12, Chapter III, §6]. We shall
be interested in reducing modulo ideals of the form (M −
m), where m is an integer. One can effectively calculate an
integral basis {wi(M)} of the integral closure of k1[x̄] in E1

(cf. [13, 26]) and from this a complementary basis {w′i(M)}
([2, Chapter 5, §2], [4, §22]). In Chapter III §6.2 of [12],
Eichler gives a method that will produce a finite set S ⊂ Z
such that for m /∈ S, the set {wi(m)} is again an integral
basis of the integral closure of K[x̄] in E. This method can
be refined (and the set S slightly increased if need be) so
that {w′i(m)} is also a complementary basis. Expressing ω
in terms of this complementary basis,

ω =
1

b(x̄)

n∑
i=1

pi(M, x̄)w′i(M)dx̄,

one sees that ω will have poles precisely at the zeroes of b(x̄).
If one selects m ∈ Z such that b(x̄) is relatively prime to
D(x̄), the discriminant of the integral basis {wi(m)}, then
ω will not have poles at ramification points. The finitely
many values of m that do not satisfy this latter condition
are roots of

S(M) = resultantX( resultantY (b(X +MY ), F (X,Y )),

resultantY (D(X +MY ), F (X,Y ))),

where F ∈ K[X,Y ] is the minimal polynomial of y over
K(x).

3.2 An Algorithm to Calculate Telescopers for
Algebraic Functions

We assume we are given a function field of one variable
E = K(x, y) and a differential ω in E. We shall furthermore
assume that ω satisfies conditions 1. and 2. of Proposition 10.
We will describe an algorithm to find a0, . . . , an ∈ K, not
all zero, and β ∈ E such that

(an(Dx
t )n + an−1(Dx

t )n−1 + . . .+ a0)(ω) = dβ.

If ω = αdx, then L = an(Dx
t )n + an−1(Dx

t )n−1 + . . .+ a0 is
a telescoper for α with certificate β. The algorithm has two
steps. The first step finds an operator L1 such that applying
this operator to ω results in a differential L1(ω) with only
zero residues. The second step finds an operator L2 of order
at most twice the genus of E and an element β ∈ E such
that L2(L1(ω)) = dβ.

Step 1. We describe two methods for constructing an op-
erator that annihilates the residues of ω. The first requires
calculations in algebraic extensions of K while the second
only requires calculations in K. Throughout, let F (x, Y ) ∈
K[x, Y ] be a minimal polynomial of y over K(x) and let

ω = αdx =
A

B
dx

for some A ∈ K[x, y] with no finite poles and B ∈ K[x].

Method 1. We make no assumptions concerning ramification
at the poles but for convenience we do assume that the poles
of ω only occur at finite points. Let a ∈ K be a root of B.

For any branch of F (x, Y ) = 0 at x = a, we may write

ω = pa(z)dz,

where z = (x − a)1/m for some positive integer m and pa
is a Laurent series in z with coefficients in K. One can
calculate the coefficient of 1/z in pa and this will be the
residue of ω at this place. In this way, one can calculate
the possible residues {r1, . . . , rs} of ω. Let K1 be a Galois
extension of K containing {r1, . . . , rs}. Let C be the field of
Dt-constants in K1 and {r̃1, . . . , r̃`} be a C-basis of Cr1 +
. . .+ Crs. Let L(Y ) = wr(Y, r̃1, . . . r̃`) where wr(. . .) is the
Wronskian determinant. One sees that L(Y ) is a nonzero
linear differential polynomial with coefficients in K1 such
that L(ri) = 0 for i = 1, . . . , s. Define

L1(Y ) = lclm{Lσ(Y ) | σ ∈ G},

where G is the Galois group of K1 over K, Lσ(Y ) denotes
the linear differential polynomial resulting from applying σ
to each coefficient of L and lclm denotes the least common
left multiple. We then have that L1(Y ) has coefficients in
K and annihilates the residues of ω.

Method 2. We now assume that ω has poles only at finite
places and that there is no ramification at the poles. This
implies that at any place corresponding to a pole, we may
write α =

∑
i≥i0 αi(x − x0)i for some αi ∈ K̄. Therefore

the residue of ω at this place is

α−1 =
1

(−i0 − 1)!

(
D−i0−1
x [(x− x0)−i0α]

)
x=x0

.

This is the key to the following, parts of which in a slightly
different form appear in [7].

Proposition 11. Given ω as above, one can compute a
polynomial R ∈ K[Z] of degree

m := degZ(R) ≤ degY (F ) degx(B∗),

with B∗ the square free part of B, such that if a is a nonzero
residue of ω then R(a) = 0. Furthermore, one can compute a
nonzero operator L1 = am(Dx

t )m+am−1(Dx
t )m−1+. . .+a0 ∈

K〈Dx
t 〉 such that ω̃ := L1(ω) has residue zero at all places.

Proof. We may write

αdx =
A

B
dx =

A1

B1
dx+

A2

B2
2

dx+ · · ·+ A`
B``

dx,

where the A,Ai ∈ K(x, y) are regular at finite places and
B = B1B

2
2 · · ·B`` ∈ K[x] is the squarefree decomposition

of B. To achieve our goal it is therefore enough to prove the
claim for a differential of the form αdx = A

Bn dx, where A ∈
K(x, y) is regular at finite places and B ∈ K[x] is squarefree.
Following [7], let u be a differential indeterminate and let

h =
(Au−n)(n−1)

(n− 1)!
∈ K(x, y)〈u〉,

where K(x, y)〈u〉 is the ring of differential polynomials in u

with coefficients in K(x, y) and (. . . )(i) denotes i-fold differ-
entiation with respect to x. Let P be a place where α has
a pole and let a and b denote the values of x and y at the
place. Since A is regular at P and P is not ramified, any
derivative of A is also regular at P (the hypothesis that these



places are unramified is used in this step). By the rules of
differentiation, we have

h =
p(x, y, u, u′, . . . , u(n−1))

q(x)ut
,

where p(x, Y, z0, z1, . . . , zn−1) ∈ K[x, Y, z0, z1, . . . , zn−1], t is
some positive integer and q(x) ∈ K[x] does not vanish at P,
i.e. q(a) 6= 0. Let

p̃ = p(x, Y,B′, 1
2
B′′, 1

3
B(3), . . . , 1

n
B(n)) ∈ K[x, Y ] and

q̃ = q(x)(B′)t ∈ K[x].

One then shows, as in [7], that p̃(a, b)/q̃(a) is the residue of
A
Bn dx at P.

The above argument shows that the polynomial

R = resultantx
(
resultantY (p̃− Zq̃, F ), B

)
∈ K[Z]

vanishes at the residues of αdx. The degree estimate for R
follows from the general degree estimate for resultants which
states for any S, T ∈ K[u, v] that degu(resultantv(S, T )) is
at most degu(S) degv(T ) + degv(S) degu(T ). This implies
first that the inner resultant in the definition of R has Z-
degree at most degY (F ). (Note that no degree estimates
for p̃ and q̃ are needed because degZ(F ) = 0.) Applying
the rule again to the outer resultant gives the desired bound
degY (F ) degx(B).

Let R ∈ K[Z] be the polynomial above. If necessary,
we may replace R by a squarefree polynomial having the
same nonzero roots so we shall assume that R is square-
free and of degree m. Using the fact that R and dR

dZ
are

relatively prime, there exist polynomials Ri ∈ K[Z] of de-
gree at most m − 1 such that if γ is a root of R, then
Di
t(γ) = Ri(γ) for i = 0, 1, . . .. Since each Ri has degree

at most m − 1, there exist am, . . . , a0 ∈ K, not all zero,
such that (am(Dx

t )m + am−1(Dx
t )m−1 + . . . + a0)(γ) = 0

for any root γ of R. Using the fact that residueP(Dx
t ω) =

Dx
t (residueP(ω)) for any place P, one sees that for L1 =

am(Dx
t )m + am−1(Dx

t )m−1 + . . . + a0, ω̃ = L1(ω) has zero
residue at any place.

Although Method 2 does not require calculations in an
algebraic extension of K, one needs the condition on ramifi-
cation for its correctness. This condition is painful to verify
and although Propositions 9 and 10 imply that we can make
a transformation, if necessary, to guarantee that the differ-
ential has poles at places that are not ramified, making such
a transformation can increase the complexity of the data. In
practice, one should compute the operator L1 above without
testing if the places at poles are ramified, calculate the op-
erator L2 as in step 2 below (which requires no assumption
concerning ramification) and then test whether L2 ◦ L1 is
a telescoper by checking if the identity L2(L1(α)) = Dx(β)
holds, a simple calculation in K(x, y). If this equality does
not hold, then one can make a change of variable x̄ := x+my
for a random m and try again. Proposition 10 guarantees
that after a finite number of trials one will succeed.

Example 12 (continuing Ex. 7). Let F = y2−x(x+1)(x+
2)(x+ t) and consider

ω =
( t4

x− 1
+

1

y

)
dx =

u

v
dx,

where u = (x − 1)y + t4x(x + 1)(x + 2)(t + x) and v =
x(x+ 1)(x+ 2)(x+ t)(x− 1). The only pole of ω is a simple

pole at x = 1, so the residues of ω are the roots of

resultantx(resultanty(u− zDx(v), F ), v) = (. . .)(z − t4)2z8,

where (. . .) stands for some factors which are free of z and
therefore irrelevant here. The only nonzero residue t4 is an-
nihilated by L1 := tDt − 4, so

ω̃ = (tDt − 4)(ω) = − (9t+ 8x)y

2x(x+ 1)(x+ 2)(x+ t)2
dx

has no nonzero residues.

Remark. 1. In [26], Trager develops a Hermite reduction
method for algebraic functions which, when applied
to the differential ω above, shows how one can write
ω = (Dx(g1) + g2)dx, where g1, g2 ∈ E and g2 has
only simple poles at finite points. Regretably, g2 may
have poles (of higher order) at infinity. Nonetheless, it
would be interesting to see if Trager’s procedure can
be used to increase efficiency in our algorithm.

2. The above argument strongly relies on the assumption
that the places where ω has poles are not ramified
above places in K(x). It would be of interest to give
a method to calculate an operator L1 satisfying the
conclusion of Proposition 11 without this assumption.

Step 2. Let ω̃ be as in the conclusion of Proposition 11.
Again using the fact that residueP(Dx

t ω̃) = Dx
t (residueP(ω̃))

for any place P, we have for all i ∈ Z that (Dx
t )i(ω̃) is again

a differential with zero residues at all places. Such a differ-
ential is called a differential of the second kind ([8], p. 50)
and a differential of the form dγ, γ ∈ E is called an exact
differential. Note that any exact differential is a differential
of the second kind. Corollary 1 of ([8], p. 130) states that
the factor space of the space of differentials of the second
kind by the space of exact differentials is a K-vector space
of dimension equal to 2G, where G is the genus of E. There-
fore, there exist ã2G, . . . , ã0 ∈ K, not all zero, such that for
L2 = ã2G(Dx

t )2G + ã2G−1(Dx
t )2G−1 + . . . + ã0, L2(ω̃) = dβ

for some β ∈ E. Such L2 and β can be found as follows.
Let ω̃ = α̃dx and let [E : K(x)] = m. For each i ≥ 0,

there exist αi,0, . . . , αi,m−1 ∈ K(x) such that

(Dx
t )i(α̃) = (1, y, . . . , ym−1)

 αi,0
...

αi,m−1

 .

In addition, there exists an m×m matrix A with entries in
K(x) such that

(Dx(1), Dx(y), . . . , Dx(ym−1)) = (1, y, . . . , ym−1)A.

Let a0, . . . , a2G be elements of K and β0, . . . , βm−1 elements
ofK(x). Letting β = β0+β1y+. . .+βm−1y

m−1, the equation

dβ = (a2G(Dx
t )2G(α̃) + . . .+ a0α̃)dx

is equivalent to

Dx

 β0

...
βm−1

+A

 β0

...
βm−1

 =

2G∑
i=0

ai

 αi,0
...

αi,m−1

 . (5)

In [3], Barkatou describes a decision procedure for deciding if
there exist nontrivial β0, . . . , βm−1 ∈ K(x) and a0, . . . , a2G ∈
K satisfying (5). One can apply this to K = k(t) to produce
a desired L2 and β.



Example 13 (continuing Ex. 12). Let again F = y2−x(x+
1)(x+ 2)(x+ t) and consider the differential

ω̃ = − (9t+ 8x)y

2x(x+ 1)(x+ 2)(x+ t)2
dx.

Since the field E has genus 1 and ω̃ has only zero residues,
there exists a telescoper for ω̃ of order 2. Indeed, the algo-
rithm outlined above finds that L2(ω̃) = dβ, where

L2 = 4(99t5 − 540t4 + 1055t3 − 870t2 + 256t)D2
t

+ 4(297t4 − 1269t3 + 1900t2 − 1152t+ 256)Dt

+ 3(99t3 − 306t2 + 307t− 96) and

β =
3(429t3 + 330t2x− 891t2 − 648tx+ 384t+ 256x)y

(t+ x)3
.

For the differential ω from Example 12, it follows that we
have Lω = dβ with

L = L2 ◦ (tDt − 4) = 4(t− 2)(t− 1)t2(99t2 − 243t+ 128)D3
t

+ 4t(99t4 − 189t3 − 210t2 + 588t− 256)D2
t

− 3(1089t4 − 4770t3 + 7293t2 − 4512t+ 1024)Dt

− 12(99t3 − 306t2 + 307t− 96).

By Theorem 6, this L is also a telescoper for the trivariate
rational function f from Example 7. Certificates g, h with

L(f) = Dx(g) +Dy(h)

can be obtained from β following the calculations in the proof
of Lemma 4. They are however too long to be printed here.

Remark. Telescopers and certificates for holomorphic differ-
entials arise in Manin’s solution of Mordell’s Conjecture [17,
18] and Step 2 of our procedure is just an effective version of
considerations that appear in these papers. Telescopers for
holomorphic differentials are also referred to as Picard-Fuchs
Operators and are a special case of Gauss-Manin Connec-
tions.

Combining the estimates on the order of the operators
computed in steps 1 and 2 gives the following bound on the
order of telescopers for algebraic functions. It can be viewed
as a generalization of Corollary 14 in [5], which says that
for every rational function f = A/B ∈ K(x) there exists a
telescoper of order at most degxB

∗, where B∗ is the square
free part of B.

Theorem 14. Let E be an algebraic extension of K(x), α =
A/B ∈ E so that A is regular at finite places and B ∈ K[x].
Let B∗ be the square free part of B. Then there exists β ∈ E
and a nonzero operator L ∈ K〈Dt〉 with L(α) = Dx(β) and

degDt
(L) ≤ [E : K(x)] degx(B∗) + 2 genus(E).

4. IMPLEMENTATION AND OTHER
EXAMPLES

We have produced a prototype implementation of the al-
gorithms described above on top of Koutschan’s Mathemat-
ica package “HolonomicFunctions.m” [14] and compared the
performance to the built-in creative telescoping implemen-
tations of this package. In order to make the comparison as
fair as possible, we have tried to reuse much of Koutschan’s
code, so that the timings will not implicitly compare two
different implementations of some subroutine but reflect as

closely as possible the speed-up (or slow-down) offered by
the ideas presented above.

Five different methods to solve the creative telescoping
problem for a rational function f ∈ k(t, x, y) were consid-
ered: (CC) first use Chyzak’s algorithm [9] to find a holo-
nomic system S of operators in k(t, x)〈Dt, Dx〉 such that
for all L ∈ S there exists a rational function g ∈ k(t, x, y)
with L(f) = Dy(g), afterwards apply the same algorithm
to S to obtain a telescoper L ∈ k(t)〈Dt〉 for f ; (CK) first
compute S ⊆ k(t, x)〈Dt, Dx〉 as in variant (CC), then apply
Koutschan’s ansatz [15] to S to obtain a telescoper L for f ;
(K) compute a telescoper for f directly with Koutschan’s
ansatz; (EC) use the reduction from Section 2, then ap-
ply Chyzak’s algorithm to the resulting algebraic functions,
and then take the least common left multiple of the results;
(EA) use the reduction from Section 2, then apply the al-
gorithm from Section 3 to the resulting algebraic functions,
and then take the least common left multiple of the results.

Table 1 shows the performance of these five approaches
for the following examples.

1. The rational function f from Example 7 above. This
example is not representative but was designed to be
easy for our algorithms and difficult for the known
ones.

2. Here f := 1
xy
h( t

xy
, x, y) with h(t, x, y) =

(
1 − x

1−x −
y

1−y −
t

1−t −
xy

1−xy −
xt

1−xt −
yt

1−yt −
xyt

1−xyt

)−1
. This is

the problem of enumerating diagonal 3D-Queens walks
raised in [6]. Our calculation confirms the correctness
of the telescoper conjectured there.

3. Let now h(t, x, y) =
(
1− xy

1−xy−
xt

1−xt−
yt

1−yt−
xyt

1−xyt

)−1

and f = 1
xy
h( t

x2y
, x, y). This is a variation of the

previous problem, with the points (2n, n, n) replacing
the diagonal and not allowing steps along the axes.

4. The rational function h(t, x, y) = 2t2/((1− t)(3− (x+
y+t+xy+xt+yt)+3xyt)) appears in [19] in a certain
combinatorial context. Here we compute the diagonal
series coefficients of f by applying creative telescoping
to f = 1

xy
h( t

xy3
, x, y). As can be seen in this example,

our algorithms are not always superior.

5. With h as before, we now consider f = 1
xy
h( 1

x2y2
, x, y).

Note the large difference between CC and CK.

We have put timings for many further examples on the
website [1]. Also our code and the certificates for Exam-
ple 12 can be found there. Our experiments indicate that
the reduction from rational functions to algebraic functions
can cause a decent speed-up, especially when the Rothstein-
Trager resultant factors into several small factors. This
situation is advantageous because solving several small in-
stances of Problem 2 is cheaper than solving a single big one.
Whether after the reduction, the algorithm of Section 3 or
some other method is applied to the resulting algebraic func-
tions, makes usually not much of a difference. Our algorithm
tends to be faster when Step 1 in Section 3.2 already finds
a great part of the telescoper, leaving only a small coupled
differential system to be solved in Step 2.

In conclusion, it does not seem that our method is system-
atically superior to other techniques. In some examples we
are much faster, whereas in others we are much slower. In



CC CK K EC EA
telescoper statistics

order degree bytecount
1 >150h 4000.89 469.03 1.30 1.04 3 6 3464
2 16029.55 40043.01 >100h 1390.14 1646.53 6 71 76472
3 >150h 350495.88 >150h 203.44 328.08 9 93 140520
4 638.70 1099.08 >40Gb 37606.28 216201.88 10 32 41840
5 23823.70 676.13 19085.67 1114.34 3117.43 7 27 25320

Table 1: Runtime comparison for the examples described in the text. Timings were taken on a 64bit Linux
machine with 100Gb RAM and 24 Intel Xeon processors with 3GHz each.

general, we observed a large performance variance for all the
algorithms tested. For solving hard practical problems, it is
therefore advantageous to have several different approaches,
because this increases the chances that at least one of them
will succeed on the example at hand. We believe that the
approach proposed here is at least a valuable contribution
in this sense.

5. REFERENCES
[1] http://www.risc.jku.at/people/mkauers/residues/

[2] E. Artin. Algebraic numbers and algebraic functions.
Gordon and Breach Science Publishers, New York,
1967.

[3] M. A. Barkatou. On rational solutions of systems of
linear differential equations. J. Symbolic Comput.,
28(4–5):547–567, 1999.

[4] G. A. Bliss. Algebraic functions. Dover Publications
Inc., New York, 1966.

[5] A. Bostan, S. Chen, F. Chyzak, Z. Li. Complexity of
creative telescoping for bivariate rational functions.
Proc. ISSAC’10, pp. 203–210, 2010.

[6] A. Bostan, F. Chyzak, M. van Hoeij, L. Pech. Explicit
formula for the generating series of diagonal 3D rook
paths. Semin. Lothar. Combin., 66:B66a, 2011.

[7] M. Bronstein. Formulas for series computations. Appl.
Algebra Engrg. Comm. Comput., 2(3):195–206, 1992.

[8] C. Chevalley. Introduction to the Theory of Algebraic
Functions of One Variable. Mathematical Surveys,
No. VI. AMS, New York, N. Y., 1951.

[9] F. Chyzak. An extension of Zeilberger’s fast algorithm
to general holonomic functions. Discrete Math.,
217(1–3):115–134, 2000.

[10] E. Cotton. Sur les intégrales dépendant d’un
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Acta Math., 9(1):321-380, 1887.

[24] M. Rothstein. A new algorithm for integration of
exponential and logarithmic functions. In Proceedings
of the 1977 MACSYMA Users Conference (Berkeley,
CA), pages 263–274. NASA, Washington, DC, 1977.

[25] N. Takayama. An approach to the zero recognition
problem by Buchberger algorithm. J. Symbolic
Comput., 14(2–3):265–282, 1992.

[26] B. M. Trager. Integration of Algebraic Functions. PhD
thesis, MIT, 1984.

[27] B. M. Trager. Personal communication, Nov. 2011.

[28] B. M. Trager. Algebraic factoring and rational
function integration. In SYMSAC’76: Proceedings of
the Third ACM Symposium on Symbolic and Algebraic
Computation, pages 219–226. ACM, New York, 1976.

[29] H. S. Wilf and D. Zeilberger. An algorithmic proof
theory for hypergeometric (ordinary and “q”)
multisum/integral identities. Invent. Math.,
108(3):575–633, 1992.

[30] D. Zeilberger. A holonomic systems approach to
special functions identities. J. Comput. Appl. Math.,
32(3):321–368, 1990.

[31] D. Zeilberger. The method of creative telescoping. J.
Symbolic Comput., 11(3):195–204, 1991.


	Introduction
	Telescopers for rationalfunctions
	Rational and algebraic integrability
	Equivalence

	Telescopers for algebraicfunctions
	Derivations and Differentials
	An Algorithm to Calculate Telescopers for Algebraic Functions

	Implementation and otherexamples
	References

