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Single-scale quantities, like the QCD anomalous dimensions and Wilson coefficients, obey differ-

ence equations. Therefore their analytic form can be determined from a finite number of moments.

We demonstrate this in an explicit calculation by establishing and solving large scale recursions

by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolar-

ized deeply inelastic scattering from their Mellin momentsto 3-loop order.
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1. Introduction

Higher order calculations in Quantum Field Theories easilybecome tedious due to the larger num-
ber of terms emerging and the sophisticated form of the contributing Feynman parameter integrals.
This applies already tozero scaleandsingle scalequantities. Even more this is the case for prob-
lems containing more than one scale. While in the latter casethe mathematical structure of the
solution of the Feynman integrals is widely unknown, it is explored to a certain extent for zero-
and single scale quantities. Zero scale quantities emerge as the expansion coefficients of the run-
ning couplings and masses, as fixed moments of splitting functions, etc. They can be expressed
by rational numbers and certain special numbers asmultiple zeta-values (MZVs)[1, 2] and related
quantities.

Single scale quantities depend on a scalezwhich may be given as a ratio of Lorentz invariants
s′/s in the respective physical problem. One may perform aMellin transformoverz

∫ 1

0
dz zN−1 f (z) = M[ f ](N) .

All subsequent calculations are then carried out in Mellin space and one assumesN ∈ N, N > 0.
By this transformation the problem at hand becomes discrete. One may seek a description in terms
of difference equations. Zero scale problems are obtained from single scale problems treatingN as
a fixed integer or considering the limitN → ∞.

A main question concerning zero scale quantities is: Do the corresponding Feynman integrals
always lead to MZVs? In the lower orders this is the case. However, starting at some order, even
for single-mass problems, other special numbers will occur[3]. This makes it difficult to use
methods likePSLQ [4] to determine the analytic structure of the corresponding terms even if one
may calculate them numerically at high enough precision since one has to known the respective
basis completely.1

Zero scale problems are much easier to calculate than singlescale problems. In some analogy
to the determination of the analytic structure in zero scaleproblems through integer relations over
a known basis (PSLQ) one may think of an automated reconstruction of the all–N relation out of a
finite numberof Mellin moments given in analytic form. This is possible for recurrent quantities.
At least up to 3-loop order, presumably even to higher orders, single scale quantities belong to this
class. Here we report on a general algorithm for this purpose, which we applied to the problem
being currently the most sophisticated one: the determination of the anomalous dimensions and
Wilson coefficients to 3–loop order for unpolarized deeply-inelastic scattering [8]. Details of our
calculation are given in Ref. [9].

2. Single Scale Feynman Integrals as Recurrent Quantities

For a large variety of massless problems single scale Feynman integrals can be represented as
1In a recent analysis [2] the relations between all MZVs in thenon-alternating and alternating case were determined

up to weightw = 12 and up tow = 24 in the non-alternating case using shuffle-, stuffle- and generalized doubling
relations. These relations lead to basis lengths accordingto the conjectures by Broadhurst [5] and Broadhurst-Kreimer-
Zagier [6], which meets the upper bound set by Terasoma, Goncharov and Deligne [7]. In the non-alternating case we
verified that the latter bound is valid at least tow= 26 and stopped the calculation afterwards due to the large complexity
involved. All this does not exclude the existence of exotic relations reducing the basis further.
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polynomials in the ring formed of the nested harmonic sumsSa1,...,ak(N), [10, 11] and the MZVs
ζa1,...,al over the rational function fieldQ(N). Here,

Sb,~a(N) =
N

∑
k=1

(sign(b))k

k|b|
S~a(k), ai ,b∈ Z\{0}, (2.1)

ζb,~a =
∞

∑
k=1

(sign(b))k

k|b|
S~a(k), ai ,b∈ Z\{0} .

If b = 1, the meaning ofζb,~a is symbolic, since it diverges. The degree of divergence is apositive
power ofS1(∞). Rational functions inN and harmonic sums obey recurrence relations. Thus, due
to closure properties [14] also any polynomial expression in such terms is a solution of a recurrence.
Consider as an example the recursion

F(N+1)−F(N) =
sign(a)N+1

(N+1)|a|
.

It is solved bySa(N). Corresponding difference equations hold for harmonic sums of deeper nest-
edness. Feynman integrals can often be decomposed into a combination containing terms of the
form

∫ 1

0
dz

zN−1−1
1−z

H~a(z),
∫ 1

0
dz

(−z)N−1−1
1+z

H~a(z) ,

with H~a(z) being a harmonic polylogarithm, [12]. This structure also leads to recurrences, cf. [13].
It is very likely that single scale Feynman diagrams do always obey difference equations.

3. Establishing and Solving Recurrences

We assume that a sufficiently large set of moments at integer valuesNi is given for a physical
quantity, which obeys a recurrence relation. One seeks

l

∑
k=0

[

d

∑
i=0

ci,kN
i

]

F(N+k) = 0 . (3.1)

The method for determining potential recurrences is available in standard packages [14]. The cor-
responding linear system is dense. Rational number arithmetics is not feasible for the large systems
to be solved. Let us consider as an example the difference equation being associated to the contri-
bution of the color factorC3

F for the 3-loop Wilson coefficientC(3)
2,q in unpolarized deeply inelastic

scattering. 11 Tb of memory would be required to establish (3.1) in a naive way. Therefore refined
methods have to be applied. We use arithmetic in finite fields together with Chinese remainder-
ing [15], which reduces the storage requirements to a few Gb of memory. The linear system
approximately minimizes forl ≈ d. If one finds more than one recurrence the different recurrences
are joined to reducel to a minimal value. It seems to be a general phenomenon that the recurrence
of minimal order is this with the smallest integer coefficients, cf. also [16]. For even larger prob-
lems than those dealt with in the present paper, a series of further technical improvements may be
carried out, [17].
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For the solution of the recurrence low orders are clearly preferred. It is solved in depth-optimal
ΠΣ fields [18]; here we apply advanced symbolic summation methods as: efficient recurrence
solvers and refined telescoping algorithms. They are available in the summation packageSigma
[19] implemented in the computer algebra system Mathematica.

The solutions are found as linear combinations of rational terms inN combined with functions,
which cannot be further reduced in theΠΣ fields. In the present application they turn out all to be
nested harmonic sumsS~b(N), (2.1). Other or higher order applications may lead to sums of different
typeas well, which are uniquely found by the present algorithm.

4. Determination of the 3-Loop Anomalous Dimensions and Wilson Coefficients

We apply the method to determine the unpolarized anomalous dimensions and Wilson coefficients
to 3-loop order. Here we use the above method to all the contributions to a single color/ζi -factor.
These are 186 terms. As input to the calculation we use the respective Mellin moments, which
were calculated by aMAPLE-code based on the harmonic sum representation [8]. We need very
high moments and calculate the input recursively. As an example, let us illustrate the size of the
moments for theC3

F -contribution to the Wilson coefficientC2,q(N). The highest moment required is
N = 5114. It cannot be calculated simply withsummer [11] because of time and storage reasons.
The highest moment is a rational number with a numerator of 13388 and a denominator 13381
digits. Below we give the moments forN = 3 andN = 500.

N=3:
#11 digits / #10 digits

-98268084191 / 1166400000

N=500:
#1262 digits / #1256 digits

1641840770424196780953020619176376506284303544481262083057197600746507008493793994
4224110323441591630311482222058287688942209570859151121677307585313995100978363179
2518952817622034037186132846974627021672678012913675099511203807811938593043910803
5044345920218696052588332036355325089998361354226882367322149037631053761764348772
5403810874264968729520075619227285471802419403727207822473765999900236383740315299
2050533601633484348249454757555344664210814111140065475391136798689167410065076749
3578709478683390573977410013520894494463909291327425815766566386397276158317387748
5945471392646089700875157445075073192328542890965462004805711998748144414379386093
9937361798029044425789953726133675199790523770427298500510063464061985840066296071
3372543015648919155964069606994597363886301185067827291937065300754786947063672848
9382081926871078600328628131936766057475970450896556667622163365895808773428119721
5352792131089063577045069693962213061198894057033606068695607123271969726981060056
0115846094360239986233917872260722277322690450132376836253549152130116645670565045
9666945920164586023958060271746606798898861360772333088030741775605546518788793327
2264368297071217405654474375844238250889238538974548421298170425909521742559494728
72017877003947396562261659860366839154407853462338171648227013134266795320251847
/
3057444614247225372882570514367358697278130741348282122206492932820352440850471902
7491046962105336645563654873675690796713906565688820365601907263710863954826386081
3227580037879361869941003802807590860358894142891046776447162895908787986423254678
5776778283337231702130612499429819559798501074020676282769289102955679421885795867
1982932998601320344971927374905889934059987271939760212836368619501189238215442366
3805773701929509268157747992859384837403751183019423692868569168206789710047557452
5131217382272060267681480496298975522467614707848639773185909858278799786637303834
1017166676276847525704755493166263297079720470719813623901545811953853986456533543
9994182050551827959988760121168490745476969259468454613431624179198860751513076481
0304734205926703138519418575731315944374873897873646706993620825697218523316375559
4068222004765962715924208526106008109740402380126260947524640509361283802755722132
4856690051525724685919792641506082307567956962328560073471086799287131287564668441
6256698083504233897436484702002471314330803421467773925541151273924985946178771189
2312437162213438137703896064734987157020801413153555435311326719739117599044341913
5922693587373856609594245948237469293148702516714038297077639382332251255360181047
49658623247509112659762997679737527882711111677459300352000000000000000000

N=5114:
#13388 digits / #13381 digits
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The corresponding difference equations (3.1) are determined by a recurrence finder. Furthermore,
the order of the difference equation is reduced to the smallest value possible. The difference equa-
tions are then solved order by order using the summation packageSigma.

For theC3
F -term inC2,q(N) the recurrence was established after 20.7 days of CPU time. Here

4h were required for the modular prediction of the dimensionof the system, 5.8 days were spent
on solving modular linear systems, and 11 days for the modular operator GCDs. The Chinese
remainder method and rational reconstruction took 3.8 days. 140 word size primes were needed. As
output one obtains a recurrence of 31 Mb, which is of order 35 and degree 938, with a largest integer
of 1227 digits. The recurrence was solved bySigma after 5.9 days. We reached a compactification
from 289 harmonic sums needed in [8] to 58 harmonic sums, where the representation in [8] (see
a corresponding attachment) has already been compactified following an idea of one of the present
authors. The determination of the 3-loop anomalous dimensions is a much smaller problem. Here
the computation takes about 18 h only for the complete result.

For the three most complicated cases, establishing and solving of the difference equations took
3+1 weeks each, requiring≤ 10Gb on a 2 GHz processor. This led to an overall computation time
of about sixteen weeks, with the possibility to parallelizefour times. Here we did not yet consider
parallelization w.r.t. the 140 primes chosen, which would significantly reduce the computational
time of theC3

F term discussed above and for other comparably large contributions.

In the final representation, we account for algebraic reduction [20]; for this task we used the
packageHarmonicSums [21] which complements the functionalities ofSigma. One observes
that different color factor contributions lead to the same,or nearly the same, amount of sums at
a given quantity. This points to the fact that the amount of sums contributing, after the algebraic
reduction has been carried out, is governed by topology rather than the field- and color structures
being involved. The linear harmonic sum representations used in [8] require many more sums than
in the representation reached by the present analysis. A further reduction can be obtained using the
structural relations, which leads to maximally 35 different sums up to the level the 3-loop Wilson
coefficients [13]. It is not unlikely that the present methodcan be applied to single scale problems
in even higher order. As has been found before in [13,22–24] representing a large number of 2- and
3-loop processes in terms of harmonic sums, the basis elements emerging are always the same. This
applies to the anomalous dimensions and Wilson coefficientsof the space- and time-like polarized
and unpolarized case, the polarized and unpolarized Drell-Yan process and hadronic Higgs-Boson
production in the heavy mass limit, deep-inelastic heavy flavor production in the limitQ2 ≫ m2

Q,
higher order QED corrections ine+e− annihilation, as well as to soft and virtual corrections to
Bhabha scattering.

In practice no method does yet exist to calculate such a high number of moments ab initio as
required for the determination of the allN formulae in the 3–loop case. On the other hand, a proof of
existence has been delivered of a quite general and powerfulautomatic difference-equation solver,
standing rather demanding tests, which is ready to help in the solution of present day problems in
higher order Quantum Field Theory. It opens up good prospects for the development of even more
powerful methods.
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5. Conclusions

We established a general algorithm to calculate the exact expression for single scale quantities from
a finite (suitably large) number of moments, which are zero scale quantities. The latter ones are
much more easily calculable than single scale quantities. We applied the method to the anomalous
dimensions and Wilson coefficients up to 3-loop order. To solve 3-loop problems this way is not
possible at present, since the number of required moments istoo large for the methods available.
We established and solved the recurrences for all color resp. ζ -projections at once, which forms
a rather voluminous problem. Yet we showed that giant difference equations [order 35; degree
∼ 1000] can be reliably and fast established and solved unconditionally for the most advanced
problems in Quantum Field Theory.

Acknowledgment. We would like to thank J. Vermaseren for discussions.
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