Solving Parametric Linear Systems: an Experiment with
Constraint Algebraic Programming

Clemens Ballarin Manuel Kauers
Institut fiir Informatik RISC-Linz
Technische Universitdt Miinchen Johannes-Kepler-Universitat
85748 Garching, Germany 4040 Linz, Austria
ballarin@in.tum.de manuel@kauers.de
Abstract

Algorithms in computer algebra are usually designed for a fixed set of domains. For
example, algorithms over the domain of polynomials are not applicable to parameters
because the inherent assumption that the indeterminate X bears no algebraic relation
to other objects is violated.

We propose to use a technique from model theory known as constraint programming
to gain more flexibility, and we show how it can be applied to the Gaussian algorithm
to be used for parametric systems. Our experiments suggest that in practice this leads
to results comparable to the algorithm for parametric linear systems by Sit (1992) —
at least if the parameters are sparse.

1 Introduction

A common feature of many computer algebra systems, in particular general purpose ones,
is that the variable symbols they manipulate bear no algebraic or logical relation to other
objects. Their semantics is that of indeterminates, not of logical variables or parameters.
This semantics is common to many algorithms in computer algebra.

The choice of the semantics of symbols makes an important difference. Linear equation
systems are the focus of this paper. The rank of a matrix over a polynomial domain k[X]
may become smaller if values are substituted for the indeterminate X, and hence the solution
space of the corresponding equation system differs. As a consequence, the generic solution
obtained over k[X] is not necessarily correct under substitutions over k. Even worse, special
solutions can not necessarily be obtained from the generic solution or from the original ma-
trix. The following example, taken from the textbook by Noble and Daniel (1988) illustrates
this.

Example 1 The augmented matriz
1 -2 3 1
2 6 6
-1 3 xz-3|0

has the reduced row echelon form

100 %ﬁ
010 =i
It is itmmediate that x = —4 s a special case. There is another special case x = 0, which is
not obvious from the result. For x =0 and x = —4 the reduced row echelon forms are
1 0 3|3 1 0 =510
01 01 and 01 —4|0 |,
0 0 0(0 00 0|1

respectively, and the sets of solutions differ from the general case.

The effect illustrated in the example is known as specialization problem.

There are some occasions where computer algebra systems deal with the specialization
problem. The integrator of Macsyma addresses the problem by asking the user if, for exam-
ple, knowledge about the sign of a parameter is necessary for further computations (Daven-
port et al., 1993). Maple provides an assume facility, which maintains a global context of
assumptions on symbolic objects. Assumptions are asserted by the user and can be queried
during a computation (Weibel and Gonnet, 1993).

Asking the user is not practical if many queries have to be resolved. An unnerved user
likely aborts the computation after the tenth query or so. More importantly, if the symbol
was introduced during the computation itself, the user is in no position of answering such
queries. This can conceivably happen if the procedure issuing the queries is called as a
subroutine by another algorithm that introduced the symbol.

In the present paper, we propose a general approach to the specialization problem that
is based on ideas from constraint logic programming, and that allows for the exchange of
constraints between subprograms in a natural way. The approach is illustrated with the
probably simplest algorithm where the specialization problem occurs: Gaussian elimina-
tion. The approach is feasible, and the capability of solving linear systems can be improved
substantially by combining it with suitable strategies.

Sit (1992) has presented a special purpose algorithm for parametric linear systems. To-
wards the end of this paper (Section 5.3) a practical comparison of our approach with Sit’s
algorithm is presented. Both algorithms compute a set of subsets of the parameter space
such that in each subset the solution can be presented in a uniform way. These subsets
are called regimes and cover the entire parameter space. Sit’s algorithm proceeds by first
computing regime candidates and, in a second step, solving the system for each regime sepa-
rately. In contrast, in our constraint programming approach, regimes are incrementally built
up during the process of solving the system.

2 Constraint Logic Programming

The notion of a constraint store plays a central role in constraint logic programming. A
constraint store is a data-structure that maintains knowledge about objects that appear in

the current computation. The knowledge may have been asserted as part of the problem
specification, or it may have been discovered during the computation. This knowledge is
also known as context. The purpose of this section is to introduce the notion of constraint
store. We do this in the context of logic programming.

The programming language Prolog is based on the resolution principle (Robinson, 1965),
which is combined with a fixed control strategy. A Prolog program C is a set of clauses built
over a language of constant, function, variable and predicate symbols, and the negation
symbol —. A term consists, in the usual manner, of constants, functions and variables. An
atom consists of a predicate symbol and a number of terms. A [literal is either an atom or
a negated atom. A clause is a set of literals and represents their disjunction. The program
itself denotes the conjunction of its clauses. Execution of the program determines whether
a contradiction can be derived from the clause set. If this is the case, an answer substitution
o is returned that maps variables in C to terms, such that Co is not satisfiable. Satisfiability
of clause sets is not decidable in general, therefore in Prolog clauses are required to be in
Horn form — that is, only one literal may be non-negative.

During the execution of a Prolog program, the resolution rule is repeatedly applied to
pairs of clauses, and new clauses are derived and added to the clause set. The new set is
satisfiable if and only if the old set is satisfiable. The resolution rule has the following form.

RU{p(s1,-..,80)} SU{=p(ts,... 1)} (1)
RrU ST

Here 7 denotes the most general unifier (mgu) of p(s1,. .., s,) and p(t1, . .., t,), a substitution
such that (s;7 = t17) A... A(sp7 = t, 7). The rule can only be applied if such a substitution
exists. The resolution process terminates when an empty clause is derived. This means that
the set is not satisfiable. Unifiers are accumulated along the computation and provide the
answer substitution.

To a reader not familiar with logic programming this introduction to resolution may seem
a bit sketchy. The only notable point for the purpose of this paper is that the resolution
rule, together with the control strategy, describes a step-wise computation. Constraint
logic programming is based on the observation that matching two literals and unifying their
terms can be disentangled in the computation step (Frithwirth and Abdennadher, 1997).
Unification decides if (s; =t;) A... A (s, = t,) is consistent with syntactic equality of terms
built of function and constant symbols. This is also known as Clark’s equation theory.

In ordinary logic programming, this theory is fixed. The generalised resolution rule used
in constraint logic programming operates on clauses that are enriched by constraints. We
denote this by (R, C), where R is a clause and C' contains a number of equations that are
logically connected by conjunction. It is possible to extend Prolog to other equation theories
T, where satisfiability can be decided. This is achieved by a new resolution rule.

(RU{p(z1,...,20)},C) (SU{-w(y1,---,yn)} D)
(RUS,CADA(x1=y1) N A(Tp = Yn))

(2)

The rule can only be applied if C'A D is satisfiable. Note that literals now only may contain
variables, not arbitrary terms.

From an abstract point of view, the decision procedure for 7T, provides a service that can
be encapsulated in a separate module, which can also be used in applications other than logic
programming — for example, in this paper, to Gaussian elimination. Often, for reasons of
efficiency, it is required that the decision procedure is incremental. This leads to the concept
of a reasoning specialist for a theory T, with the following interface functionality.

e cs-init(): returns a 7,-valid constraint store — for example, the empty constraint store.
e cs-unsat(C): true only if C' is T,-unsatisfiable.

e cs-simp(C, D): the main functionality of the reasoning specialist. This function adds
the assertions in D to the constraint store C, obtaining a new constraint store. For
soundness it is required that if cs-simp(C, D) = C’ then C, D =1, C".

The interface functionality of the reasoning specialist is sometimes extended by other func-
tions — for example, by a function cs-normal(C, ¢) that simplifies term ¢ with respect to the
facts in constraint store C. It is not required that cs-normal computes a normal form, even
though the name of the function suggests that.

3 Gaussian Elimination for Parametric Systems

Our extension of the Gaussian algorithm to parametric systems is based on constraint pro-
gramming. Assumptions on parameters are maintained in constraint stores, and a suitable
reasoning specialist is used to decide problems in the parameter domain.

The common Gaussian elimination algorithm works as follows. In a given matrix A a
non-zero entry a;;, the pivot, is selected. Then, using suitable row transformations, all other
entries in column j are reduced to zero. Finally, the algorithm is applied recursively to
the submatrix obtained by deleting row 7 and column j, until the remaining submatrix is a
1 x 1-matrix, or contains only zero-entries.

Our constraint variant of Gaussian elimination takes both a matrix A (representing a
homogeneous system) with parametric entries and a constraint store C' as arguments. The
critical modification concerns pivot selection. Any entry p that is not the zero-term is a
suitable candidate. If p # 0 is inconsistent with C' (that is, C entails p = 0 or C = p = 0)
then p is not suitable as a pivot. If p = 0 is inconsistent with C' (that is, C' = p # 0) then
p is a suitable pivot. Otherwise, that is both p = 0 and p # 0 are consistent with C, the
algorithm branches. On one branch, p = 0 is added to the constraint store, and this relation
may be used to simplify matrix entries. On the other branch, the assumption p # 0 is added.

New matrix entries are computed during elimination as sums of products of other entries
and are thus polynomial expressions over the entries of the original matrix. The smallest
suitable theory for the reasoning specialist is thus the theory of polynomial equations and
inequations (if an elimination scheme is used that does not introduce fractions). This theory
can be decided with the radical membership test, which is based on Hilbert’s Nullstellensatz
and Buchberger’s algorithm (Cox et al., 1992), and leads to the following implementation of
the reasoning specialist, where the constraint store is represented by a set of polynomials.

e cs-init(): the empty set of polynomials.

e cs-simp(C,p = 0): returns C U {p}.
cs-simp(C, p # 0): returns C' U {py — 1} for a new variable y.

e cs-unsat(C): returns true if and only if 1 is element of the radical ideal generated by

C.
e cs-normal(C, t): returns the ideal reduction of ¢ modulo the ideal (C') generated by C.

Note that cs-normal could be extended to return a normal form of £ with respect to C' but
this would require to compute the radical ideal generated by C, a fairly expensive operation,
which is not necessary for the radical membership test.

4 Strategies for Sparse Parametric Systems

A subset of the parameter space for which a uniform solution to the equation system can
be computed is called a regime. Sit (1992) has pointed out that the number of regimes
computed by Gaussian elimination and branching is exponentially higher than necessary.
Any optimisation therefore must aim at reducing the number of regimes. The minimum
number of regimes needed to cover the parameter space is small if the number of symbolic
matrix entries is small. Again, the number of regimes needed to cover the parameter space
may grow exponentially with the number of symbolic entries. Therefore the fundamental
assumption for the following optimisations is that the matrix is symbolically sparse — that is,
only a small number of its entries is symbolic. This assumption is important also because of
the expression swell in symbolic Gaussian elimination: because the entries in the matrix tend
to become larger, solving large symbolic systems is a hard problem, even if these systems are
not parametric. While this swell is only polynomial and as such negligible for parametric
systems, it is conceivable that larger expressions may lead to more, or in some sense more
complicated regimes.

4.1 The Markowitz Criterion Goes Symbolic

A good strategy to prevent expression swell in a sparse matrix is to select a pivot such that
the number of entries that stay zero during elimination is maximal, or, phrased the other
way round, that the fill-in created by the operation is minimal. A good heuristic, used in
numerics for non-symbolic matrices, is to choose a pivot, say a;;, where the number of non-
zero entries 7; in the row and the number of non-zero entries ¢; in the column are minimal.
More precisely, the so-called Markowitz Criterion is to choose a non-zero entry for which
(ri — 1)(¢; — 1) is minimal (Duff et al., 1986).

For symbolic matrices the criterion needs to be changed. Our aim is to keep the sym-
bolic fill-in small in order to reduce the likelihood of branching. Although analogous to
Markowitz’s criterion, the criterion that we propose is more complex. Four classes of matrix
entries are distinguished:

0: This class consists of the zero element only.

1: The class of constant, non-zero polynomials.

x: Polynomials that are not constant but known to be non-zero relative to the current
constraint store.

X: All other polynomials.

The symbolic fill-in caused by an elimination step is a triple (f*, f®, f!) where f¢ denotes
the number of entries that change to class ¢ from a simpler class — that is, a class defined
earlier.

The fill-in is estimated from the class of the pivot and from the classes of the entries in
the pivot row and column. The other entries of the matrix and their values are not taken into
account, and the estimate is an upper bound of the actual fill-in. Let the matrix considered
in an elimination step be an n x m-submatrix. Let a;; be the pivot, in row ¢ and column
J- Let r; denote the entries of class ¢ in row ¢ and ¢} the number of entries in column j
(excluding the pivot — that is, m =) 7§ +1 and n =} ¢+ 1). The estimated fill-in in
class c is denoted by ff.

A pivot a;; is chosen, such that (fX, f, f) is minimal wrt. lexicographic order. If this
does not lead to a unique choice then the product of total degree and number of monomials
are compared and the pivot with the smaller value is chosen.

Formulae for the estimated fill-in can be obtained by application of the elimination scheme
to classes instead of values. They are given in Table 1. Let us illustrate the derivation of

%, 47 and é-(, where the pivot is of class 1, as an example. The elimination scheme used
in our implementation is division-free elimination with the update formula

Qg < Q45Qk — Qg4

for all rows k # 4. In order to estimate the fill-in, this is applied to a generic matrix, where
x denotes arbitrary entries.

(1 X z 1 -X q-z
T x ok k% |-1 +
1 | -1

\O S

(1 X T 1 0

0/x-1-X-X x-1—-x-X *x-1—-1-X

~]0|*x-1—- X2 *x-1—-2xz-x *x-1—1-x
0|+ 1-X-1 s-1-a-1 [+ 1-1-1|

\O‘ * * * *

The lower L-shaped region in the resulting matrix indicates entries where no fill-in occurs.
The rectangle in the middle has constant fill-in and consists of (r} — 1)(cj — 1) entries,
hence f: = (r} —1)(cj —1). In the remaining box the fill-in may be of class X, and

X=(m—r)—1)(n—¢)—1)—(r} —1)(c} —1). Note that, for example, -1 — - 1 may
belong to class X even if x is of class 1.

e}

*
*
*
*

X* % ¥
e

Class of
pivot 117 z:’; i‘;(
1 (ri =1)(c; — 1) 0 (m—r) =1)(n—c?—1)
—(r} —=1)(cj — 1)
T 0 rPn—c—=1) (m—-r)=1)(n—c§-1)

Table 1: Estimated fill-in depending on the pivot.

4.2 Deviating from the Gaussian Elimination Scheme

The Gaussian elimination scheme sometimes introduces unnecessary case splits of regimes
that cannot be avoided even by a clever pivot selection strategy. Consider the matrix

x 2—zx
11—z —-1+zx)°

All entries are symbolic and any choice of pivot leads to branching. On the other hand, the
following sequence of row transformations yields a matrix with no symbolic entries, hence
there is a uniform solution of the corresponding equation system for the entire parameter

space.
T 2—zx r 2—z + 0 2
(—1—:c —1+x) J+W<—1 1) imw(—l 1)

The observation that sometimes an arbitrary sequence of row transformations is superior to
the Gaussian elimination scheme is exploited by an algorithm we call Column Simplification
and that is invoked whenever the symbolic Markowitz Criterion fails to select a pivot that is
constant, or at least constant with respect to the current context. The algorithm focuses on
one column of the matrix — hence its name — and applies a sequence of row transformations
that reduce the degrees of the entries in this column.

The basic idea is to successively eliminate leading monomials until no more simplification
of the column elements is possible. This is similar to Buchberger’s algorithm for computing
Grobner bases. For efficiency first only a sequence of row operations is determined. In a
second phase, these transformations are applied to the entire matrix. Note that all trans-
formations in this sequence are by design equivalence transformation. They never multiply
a row by a polynomial directly, but only add multiples of one row to another row.

4.3 Further Optimisations

Two optimisations concern the simplification of matrix entries after row transformations.

It is possible to divide all entries of a row by their gcd g, but when dividing by a symbolic
expression, it has to be ensured that this expression cannot be zero under the current context.
If g # 0 is not entailed by the context, then ¢ is factored and the reduction is restricted
to the factors that can be shown to be non-zero. An alternative strategy is to apply the
cs-normal operation provided by the reasoning specialist to all matrix entries.

It is fairly unclear in which situations cs-normal is better than dividing by row gcds and
vice versa. In our implementation, division by the row gcd is performed after each row

operation whereas cs-normal is only applied immediately after a branch. The latter will be
referred to as Simplify-after-Branch.

In order to increase the likelihood of finding pivots that do not lead to branching, the
implementation employs block pivot search and performs column exchanges.

5 Experimental Results

A first step in the evaluation of the proposed method is to measure its performance on
equation systems that appear in practice. The algorithm was tested with an implementation
in the MuPAD computer algebra system. Despite some effort by the authors to use a state-of-
the-art package for Grobner bases computation, none of these packages could be readily used
within MuPAD 2.0.0 on our hardware platform. Instead, MuPAD’s own implementation of
Grobner bases was used. Recomputation of Grobner bases was avoided where possible. All
experiments were conducted on a Sparc Ultra 5 with 350 MHz and 192 MBytes of main
memory.

5.1 The Corpus

Although parametric linear systems arise in the solution of differential equations — for
example, when computing the characteristic solutions (Dautray and Lions, 1988) — and
also in coloured Petri nets (Jensen, 1996) it turned out that a collection of test data was
not available. We were only able to obtain a few symbolic matrices, and their number was
insufficient to assess the effectiveness of our method. Instead, a corpus of randomly generated
matrices was used.

For the experiments, a corpus of 540 matrices was randomly generated and then fixed for
all experiments. These matrices vary in size from 4 x4 to 6 x 6, in number of parameters from
0 to 3, in the maximum total degree of symbolic entries from 2 to 5, in number of symbolic
entries from 0 to 12 and in number of zero entries from 0 to 12. Coefficients and constant
entries are uniformly distributed from the set {—9,—8,...,—1,1,...,9}. Polynomials of
degree k were generated by adding k£ randomly generated monomials of maximum degree k.
More details on the composition of the corpus can be found in Table 4. The entire corpus
is available at http://www4.in.tum.de/ ballarin/ in various formats. There also the raw
timing data and the various solutions can be obtained.

5.2 Effectiveness of the Strategies

Within a time limit of 450 seconds, 145 matrices of the corpus could be solved without
optimisations. This increased to 226 when the combination of all three strategies was used.
See Table 4 for the distribution of solved matrices on the corpus’ classes. The success rate
was even higher when the Markowitz criterion was used as the only optimisation, but then
the number of computed regimes is usually higher.

Figure 1 and Table 2 give more insight in the effect contributed by the strategies. These
experiments are based on the 239 corpus elements that could be solved in at least one
experiment (including by Sit’s algorithm, see Section 5.3). Timeout was always 450 seconds.

200

180 - S n
+ Without optimisation

o Markowitz criterion
160 ; = .

140+ v .

[N
N
o
T
a0
1

Time (seconds)
=
o
o
T
Il

60

20 - s ag-m o
ettt o a a

et o oo
) T op ° 8 E
PR 0 0 g g % Py

oo 0a8%n o | !
60 80 100 120 140 160 180 200 220 240
Corpus entry

(a) Markowitz Criterion

+ Without optimisation

o Column simplification
160 - . 4

140 . 8

Time (seconds)
= =
o N
o o

T T

Il Il

®
=]
T
I

5
60 e o
®
&

a
a0 # .

i o

0 etk oo adh oo 2® olP m” o oo ##n o I I I

60 80 100 120 140 160 180 200 220 240
Corpus entry

(b) Column Simplification

Figure 1: Speed-up achieved by the strategies. Timeout 450 seconds. Corpus elements are
sorted by runtime without use of strategies.

200

180

140

Time (seconds)
= =
o N
o o

T T

®
o
T

60

a0+

20

P o a
e o ol m oy
s O o ek o om 80 6P 0% oo M guttegfen 0% 0)

+ Without optimisation

o Combination of strategies

= s
o+ o
%g&*w o ogo & og

60

Figure 1 continued: Speed-up achieved by the strategies. Timeout 450 seconds.

80

(c) Combination of all strategies

100 120 140 160
Corpus entry

180

elements are sorted by runtime without use of strategies.

I
200

I
220

240

N 2 307
10 4

9 - 4

8 S 1 3

Regimes g 3 ? 1 : 162
computed 5 115 1 2 6 1. M
with 1 13 5 1 2 1 1 9
M.arkf)wrcz 3 P S R 9
criterion 9) 3 1 6 9 .9 4
1 |45 .. e)))

1 2 3 4 5 6 7 8 9 10 11 12 N

Regimes computed without optimisation

(a) Markowitz Criterion

Corpus

Table 2: Comparision of the number of regimes computed with and without optimisation.
Entries denote number of solved matrices from the corpus. N refers to entries that were not

solved within 450 seconds.

N 12 1 - -2 379
11 N .
10 1
9
. 8 - 4
Regimes - .o)
co‘mputed 6 .41 1
with 5 L9 2 1
column 4 6 2 1
STmphﬁca— 3 9 8 2 . 6
tion 2| . 3 7 2 1 2 7
1145 - . . e . . .
1 2 3 4 5 6 7 8 9 10 11 12 N
Regimes computed without optimisation
(b) Column Simplification
N 2 1 1 310
10
9 .
8 -1 . 1
7 2 1 6
Regimes
coriputed 6 ' 11 12
by combi- 5 . 14 1 2 . 38
nation of 4 L L) 1 '
strategies 3 - 68l 8
2 3 8 30 4 2 2 12
1145 - . . e . . .
1 23 4 5 6 7 8 9 10 11 12 N

Regimes computed without optimisation

(¢) Combination of Strategies

Table 2 continued: Comparision of the number of regimes computed with and without
optimisation. Entries denote number of solved matrices from the corpus. N refers to entries
that were not solved within 450 seconds.

Computation of row geds was turned on. In the diagrams the 45 matrices without parametric
entries are omitted. Corpus elements are sorted by runtime without use of strategies. The
remaining 94 matrices where elimination without strategies timed out follow after those.

The symbolic version of the Markowitz Criterion alone leads to a considerable reduction
of computation time. Column Simplification can also lead to dramatic reduction of runtime.
Figure 1(b) shows that Column Simplification does either have almost no effect or, when it
can be applied, is very effective. It turns out that Column Simplification is most effective
in the univariate case because then the likelihood of finding suitable row transformations
is rather high. Simplify-after-Branch itself usually leads to a small increase of runtime. Its
main benefit is that it reduces the degree of polynomials describing the regimes and lets
appear solutions more natural.

A close inspection of the data reveals that most gain in runtime is linked to the re-
duction of regimes achieved by the strategies, and the connected savings in Grobner basis
computations.

5.3 Experimental Comparison with Sit’s Algorithm

Sit’s algorithm is based on the observation that suitable regimes can be constructed from
the determinants of the minors of the matrix. Let A be the n X n-matrix representing the
linear system and r denote the greatest integer such that the ideal generated by all r» x r
subdeterminants of A is the whole polynomial ring. Each ¢ X c-subdeterminant (¢ =r,...,n)
gives rise to a regime candidate for the solution. In a second step, the system is solved for
each consistent regime candidate. For a detailed description of Sit’s algorithm, including
refinements for reducing the number of regime candidates computed in the first step, we
refer to the original article. Note that Gaussian elimination always returns disjoint regimes,
while this is not the case for the regimes returned by Sit’s algorithm.

The number of regimes in the final result is bounded by the number of regime candidates
obtained in the first step. These are at most), (7;)2 = (*") (Sit, 1992, Theorem 4.1). In
contrast, Gaussian elimination with branching introduces a lot of additional regimes in the
worst case. A sharp bound for their total number is), (’;)ZZ' (Sit, 1992, Theorem 9.1).
Nevertheless, we will see that in practice, the discrepancy is not as dramatic as suggested
by the worst case analysis.

A direct runtime comparison of Sit’s and our algorithm has to be done with care, even
though both programs were run on the same machine, because the underlying software ar-
chitectures of MuPAD and Axiom differ: MuPAD programs are interpreted while Axiom
programs are compiled. We assume that this difference amounts to a linear factor in execu-
tion speed.! In addition to timings we again compare the number of regimes needed to cover
the parameter space. The number of regimes is a measure of how adequate the analysis of the
parameter space is: the algorithm that returns fewer regimes provides the better analysis.

Table 3 shows the comparision of branching Gaussian elimination (where all strategies
are effective) with Sit’s algorithm. The comparision is for the 190 matrices of the corpus

! Comparing the speed of Grobner basis computation in both systems on an additional set of 150 polyno-
mial basis consisting of polynomials with similar characteristics than those in the corpus showed that Axiom
was about 2.5 times faster on average. However, the variation was quite large, being 2.4 on average.

N 246 3 1 1 1 307

10 1 .

9 1 1 2

8 . 11 1

7 1 3 1 2
Regimes 6 2 1 3 1 3
computed 5 -9 5 1 .
by Sit’s 4 1 2 2 24 1 1
algorithm 3 9 2 3

2| - 52 7

1145 - -« .«

1 2 3 4 5 6 7 8 9 10 N

Regimes computed by combination of strategies

Table 3: Comparision of the number of regimes computed by Sit’s algorithm and ours.
Entries denote number of solved matrices from the corpus. N refers to entries that were not
solved within 450 seconds by the respective program.

=
o
T
+
et

10" | +++¢+ .’+

+
+
P B

Combination of strategies (time in seconds)

10 S

10 10 10
Sit's algorithm (time in seconds)

Figure 2: Comparison with Sit’s algorithm. Timeout 450 seconds. Corpus entries where
only one algorithm timed out are indicated on the upper and right hand side axis.

that could be solved with both our and Sit’s algorithm in 450 seconds. The table shows that
our algorithm usually only generates slightly more regimes than Sit’s. On the other hand,
there are also matrices where our algorithm needs less regimes to cover the parameter space.
This underlines the effectiveness of the strategies.

The comparision of timings is shown in Figure 2. Each entry in the diagram documents,
for one corpus element, the runtime of both Sit’s algorithm and ours. By using a doubly
logarithmic scale, we focus on an asymptotic comparision. To aid readability, the diagram
also shows the curves y = %:c and y = %xQ as dotted lines. The experiment shows that
for the corpus data, apart from being faster by a constant factor, our algorithm is only
about quadratically slower than Sit’s. For some matrices this comparison is even linear. In
view of Sit (1992, Theorem 9.1), which points out that branching Gaussian elimination is
exponentially slower than Sit’s algorithm in the worst case, this observation gives evidence
that our strategies serve as very efficient heuristics for the problems under consideration.

6 Conclusions

Constraint algebraic programming can be applied to parametric linear equation systems suc-
cessfully. The constraint algebraic programming version of the Gaussian algorithm computes
a complete cover of the parameter space and — for each regime — a solution. The algorithm
is also able to compute a cover for only part of the parameter space, if a suitable contraint
store is supplied with the matrix.

A feature of contraint algebraic programming is that the base algorithm can be combined
with suitable strategies. In the present example, strategies, namely Markowitz Criterion and
Column Simplification increase the performance greatly and lead to a favourable comparision
to Sit’s algorithm — at least, for the corpus of sparse matrices used in our experiments.
Understanding the connection between sparseness and the ability of our algorithm to merge
regimes would be an interesting, but probably challenging, task.

The greatest advantage of constraint algebraic programming is its flexibility. The above
algorithm is not restricted to systems where the parameter domain is polynomials. Any do-
main for which a reasoning specialist exists is suitable. An extension to parameters involving
trigonometric functions over the reals could, for example, not only exploit the algebraic re-
lation sin?z + cos®’z = 1 but also —1 < sinx,cosz < 1. The latter would allow choosing
3 —sinx as a pivot without branching.

To the surprise of the authors, it was hard to obtain symbolic matrices that could be
used as test data. Although parametric linear equation systems occur naturally in many
problems, a collection of such matrices was not available. We chose not to refine our strate-
gies further, because fine tuning only makes sense in the context of “natural” problems.
We make our own corpus of randomly generated matrices publicly available in the Internet
(http://wwwd.in.tum.de/ ballarin/), together with the raw experimental data, and we also
would like to encourage others to contribute parametric linear matrices arising in applica-
tions. Matrices may be submitted to the first author and will be made publicly available,
too.

Matrix properties Total Solved with strategies Sit’s

Size Vars Deg Symb Zero | number none m c S all | alg.
4 1 2 8 4 20 20 20 20 20 20 20
5 1 2 10 7 20 17 20 20 17 20 20
6 1 2 12 12 20 8 18 19 8 20 20
4 2 2 8 4 20 7 20 7 7 19 15
5 2 2 10 7 20 2 6 1 1 5 5
6 2 2 12 12 20 0 3 0 0 3 1
4 3 2 8 4 20 2 9 3 2 9 6
5 3 2 10 7 20 0 1 0 0 1 0
6 3 2 12 12 20 0 0 0 0 0 0
4 2 2 8 4 15 7 10 5 7 9 8
5 2 2 10 7 15 2 6 2 2 5 3
6 2 2 12 12 15 0 2 0 0 2 0
4 2 3 8 4 15 2 6 2 2 6 5
5 2 3 10 7 15 0 3 0 0 3 0
6 2 3 12 12 15 0 0 0 0 0 0
4 2 4 8 4 15 1 3 1 1 3 3
5 2 4 10 7 15 0 0 0 0 0 0
6 2 4 12 12 15 0 0 0 0 0 0
4 2 5 8 4 15 0 0 0 0 0 0
5 2 5 10 7 15 0 0 0 0 0 0
6 2 5 12 12 15 0 0 0 0 0 0
4 2 2 0 0 15 15 15 15 15 15 15
5 2 2 0 0 15 15 15 15 15 15 15
6 2 2 0 0 15 15 15 15 15 15 15
4 2 2 8 0 15 3 10 2 3 10 5
5 2 2 10 0 15 0 0 0 0 0 0
6 2 2 12 0 15 0 0 0 0 0 0
4 2 2 8 4 15 9 12 9 10 12 11
5 2 2 10 7 15 0 7 0 0 7 5
6 2 2 12 12 15 1 1 1 1 1 1
4 2 2 4 4 15 14 15 13 14 15 15
5 2 2 7 7 15 5 11 5 4 10 9
6 2 2 12 12 15 0 2 0 0 1 0

by 540 145 230 155 144 226 | 197

Table 4: Corpus details. Matrix properties are size (Size), number of variables (Vars), max-
imum degree and simultaneously maximal number of monomials of the polynomial entries
(Deg), number of symbolic entries (Symb) and number of zero entries (Zero). Strategies are
abbreviated as follows: m Markowitz Criterion, ¢ Column Simplification, s Simplify-after-
Branch. The last column shows Sit’s algorithm in comparison. The corpus is available at
http://www4.in.tum.de/~ballarin/.

Acknowledgement

We would like to thank William Sit for providing the source code of his algorithm, and for
valuable comments on a draft of this paper.

References

Cox, D., Little, J., and O’Shea, D. (1992). Ideals, Varieties, and Algorithms. Springer.

Dautray, R. and Lions, J.-L. (1988). Mathematical Analysis and Numerical Methods for
Science and Technology. Springer.

Davenport, J. H., Siret, Y., and Tournier, E. (1993). Computer Algebra: Systems and
algorithms for algebraic computation. Academic Press, second edition.

Duff, I., Erisman, A., and Reid, J. (1986). Direct Methods for Sparse Matrices. Clarendon
Press.

Frithwirth, T. and Abdennadher, S. (1997). Constraint-Programmierung: Grundlagen und
Anwendungen. Springer-Verlag.

Jensen, K. (1996). Coloured Petri Nets. Springer.
Noble, B. and Daniel, J. W. (1988). Applied linear algebra. Prentice-Hall, 3rd edition.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1), 23-41.

Sit, W. (1992). An algorithm for solving parametric linear systems. Journal of Symbolic
Computation, pages 353—394.

Weibel, T. and Gonnet, G. H. (1993). An assume facility for CAS, with a sample implemen-
tation for Maple. In J. Fitch, editor, Design and implementation of symbolic computation
systems: International Symposium, DISCO 92, Bath, U.K., April 13-15 1992: proceed-
ings, number 721 in LNCS, pages 95-103. Springer-Verlag.

