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Abstract

We explain the construction of fields of formal infinite series in several vari-
ables, generalizing the classical notion of formal Laurent series in one variable.
Our discussion addresses the field operations for these series (addition, mul-
tiplication, and division), the composition, and includes an implicit function
theorem.
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1. Introduction

The purpose of this article is twofold. In the first part (Sections 2–4), we
explain how to construct fields of formal Laurent series in several variables.
This part has an expository flavor. The construction we present is not new;
similar constructions can already be found in the literature. However, the
justification of their validity is usually kept brief or more abstract than neces-
sary. We have found it instructive to formulate the arguments in a somewhat
more concrete and expanded way, and we include these proofs here in the
hope that this may help to demystify and popularize the use of formal Lau-
rent series in several variables. The results in the second part (Sections 5–6)
seem to be new. We discuss there the circumstances under which we can rea-
sonably define the composition of multivariate formal Laurent series, and we
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present a version of the implicit function theorem applicable to multivariate
formal Laurent series.

Recall the situation of a single variable. The set K[[x]] of formal power
series f(x) =

∑∞
n=0 anx

n with coefficients in some field K forms an integral
domain together with the usual addition and multiplication. Such a series
f(x) admits a multiplicative inverse g(x) ∈ K[[x]] if and only if a0 6= 0
(see, e.g., [14, 10]). If f(x) is any nonzero element of K[[x]], then not all its
coefficients are zero, and if e is the smallest index such that ae 6= 0, then
we have f(x) = xeh(x) for some h(x) ∈ K[[x]] which admits a multiplicative
inverse. The object x−eh(x)−1 qualifies as multiplicative inverse of f(x). In
the case of a single variable, we may therefore define K((x)) as the set of all
objects xeh(x) where e is some integer and h(x) is some element of K[[x]].
Then K((x)) together with the natural addition and multiplication forms a
field. This is the field of formal Laurent series in the case of one variable.

The case of several variables is more subtle. The set K[[x, y]] of formal
power series f(x, y) =

∑∞
n,k=0 an,kx

nyk in two variables x, y with coefficients
in K also forms an integral domain, and it remains true that an element
f(x, y) ∈ K[[x, y]] admits a multiplicative inverse if and only if a0,0 6= 0. But
in general, it is no longer possible to write an arbitrary power series f(x, y)
in the form f(x, y) = xe1ye2h(x, y) where h(x, y) ∈ K[[x, y]] admits a mul-
tiplicative inverse in K[[x, y]]. As an example, consider the series f(x, y) =
x+y = x1y0+x0y1 ∈ K[[x, y]]. If we want to write f(x, y) = xe1ye2h(x, y) for
some h(x, y) ∈ K[[x, y]], we have h(x, y) = x1−e1y−e2 +x−e1y1−e2 . In order for
h(x, y) to have a nonzero constant term, we can only choose (e1, e2) = (1, 0)
or (e1, e2) = (0, 1), but for these two choices, h(x, y) is 1 + x−1y or xy−1 + 1,
respectively, and none of them belongs to K[[x, y]].

There are at least three possibilities to resolve this situation. The first and
most direct way is to consider fields of iterated Laurent series [17, Chapter 2],
for instance the field K((x))((y)) of univariate Laurent series in y whose
coefficients are univariate Laurent series in x. Clearly this field contains
K[[x, y]], and the multiplicative inverse of x+y in K((x))((y)) is easily found
via the geometric series to be

1

x + y
=

1/x

1− (−y/x)
=
∞∑
n=0

(−1)nx−n−1yn.

Of course, viewing x + y as an element of K((y))((x)) leads to a different
expansion.
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The second possibility is more abstract. This construction goes back to
Malcev [11] and Neumann [13] (see [15, 17] for a more recent discussion).

Start with an abelian group G (e.g., the set of all power products xi1
1 · · ·x

ip
p

with exponents i1, . . . , ip ∈ Z and the usual multiplication) and impose on
the elements of G some order 4 which respects multiplication (see Section 3
below for definitions and basic facts). Define K((G)) as the set of all formal
sums

a =
∑
g∈G

agg

with ag ∈ K for all g ∈ G and the condition that their supports supp(a) :=
{ g ∈ G | ag 6= 0 } contain no infinite strictly 4-decreasing sequence. If
addition and multiplication of such series is defined in the natural way, it
can be shown that K((G)) is a field (cf. Thm. 5.7 in [13] or Cor. 3.1-11
in [17]).

The third possibility is more geometric and goes back to MacDonald [12].

He considers formal infinite sums of terms of the form ai1,...,ipx
i1
1 · · ·x

ip
p where

the exponent vectors (i1, . . . , ip) are constrained to some fixed cone C ⊆ Rp.
It turns out that for every cone C not containing a line, these series form a
ring (Theorem 10 below; see Section 2 below for definitions and basic facts
concerning cones). MacDonald shows using a multivariate generalization
of the Newton-Puiseux method that for every polynomial f(x1, . . . , xp, y) ∈
K[x1, . . . , xp, y] one can find a cone such that the corresponding ring con-
tains a series g(x1, . . . , xp) (possibly with fractional exponents) such that
f(x1, . . . , xp, g(x1, . . . , xp)) = 0. The rings of MacDonald are no fields, but
Aroca, Cano and Jung [2, 3] observe that a field can be obtained by taking the
union of all the rings for some suitable collection of shifted cones (similar to
Theorem 15 below). Again allowing fractional exponents, Aroca et al. show
that the fields constructed in this way are even algebraically closed. Their
elements can thus be considered as the natural multivariate generalizations
of Puiseux series.

The construction we give below is, in a sense, a mixture of the approach by
Malcev and Neumann on the one hand, and MacDonald-Aroca-Cano-Jung
on the other hand. Our goal was to keep the geometric intuition inherent
to the latter while at the same time avoiding any technical considerations
related to Newton polygons. Our construction is more specific than Malcev-
Neumann’s in that we do not consider arbitrary groups as carriers of the
series, and it is more specific than MacDonald-Aroca-Cano-Jung’s in that we
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do not consider rational exponents. Our series are thus formal infinite sums
of terms of the form ai1,...,ipx

i1
1 · · ·x

ip
p where (i1, . . . , ip) ranges over (some

suitable subset of) Zp. A need to reason about such series arises for instance
in lattice path counting (see, e.g., [6] and references given there), in Ehrhart’s
theory of counting integer points in polytopes (see, e.g., [4] and references
given there), or in MacMahon’s theory of integer partitions (see, e.g., [1] and
references given there). We want to promote them as natural multivariate
generalization of the notion of formal Laurent series.

2. Cones

In general, a cone C ⊆ Rp is a set with the property that whenever u ∈ C
and c ≥ 0, then cu ∈ C. The cones we consider here have the following
special properties.

Definition 1. A cone C ⊆ Rp is called

1. finitely generated if there exist v1, . . . ,vn ∈ Rp such that

C = { z1v1 + z2v2 + · · ·+ znvn | z1, z2, . . . , zn ≥ 0 }.

In this case {v1, . . . ,vn} is called a generating set for C.

2. rational if it is finitely generated and has a generating set

{v1, . . . ,vn} ⊆ Zp.

3. line-free if for every v ∈ C \ {0} we have −v 6∈ C.

Since we will be only considering rational finitely generated cones in this
article, we drop these attributes from now on and only say “cone”. With
this convention, cones are obviously closed, they obviously all contain 0, and
they are obviously unbounded or equal to {0}. It is also easy to see that
all cones are convex (i.e., for all u,v ∈ C and for all c ∈ [0, 1] we have
cu + (1 − c)v ∈ C as well), and that u,v ∈ C implies u + v ∈ C. Finally,
when C,D are cones, then so is C + D = {u + v | u ∈ C,v ∈ D }. The
following facts are less obvious, but also well-known.

Proposition 2. Let K ⊆ Rp be a closed and convex set.
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1. K is unbounded if and only if there exist u,v ∈ Rp with v 6= 0 such
that u + cv ∈ K for all c ≥ 0 (i.e., K contains a ray).

2. Let w ∈ Rp and R = { cw | c ≥ 0 }. Then for all u,v ∈ K we have
u + R ⊆ K ⇐⇒ v + R ⊆ K.

Proof. See statements 1 and 2 in Section 2.5 of Grunbaum [9].

In order to give a meaning to an operation (e.g., multiplication) for formal
infinite series, we will ensure that every coefficient of the result (e.g., the
product) depends only on finitely many coefficients of the operands (e.g., the
factors). For some of the operations defined below, it turns out that this
property can be shown using the following two lemmas.

Lemma 3. Let C ⊆ Rp be a cone and A ⊆ Rp be a closed and convex set
with C ∩ A = {0}. Then for every a ∈ Rp, the set C ∩ (a + A) is bounded.

Proof. Fix a ∈ Rp and set K = C ∩ (a + A) ⊆ Rp. Assume that K is
unbounded. Since C and A are closed and convex, K is also closed and
convex, and Proposition 2.(1) implies the existence of u,v ∈ Rp with v 6= 0
and u + cv ∈ K for all c ≥ 0. We show that v ∈ C ∩ A = {0} in order to
arrive at a contradiction.

Indeed, with c = 0 it first follows that u ∈ K ⊆ C. Since also 0 ∈ C, it
follows from Proposition 2.(2) that cv ∈ C for all c ≥ 0. In particular v ∈ C.

Similarly, Proposition 2.(2) applied to the convex set a + A and the points
u ∈ K ⊆ a+A and a ∈ a+A implies a+ cv ∈ a+A for all c ≥ 0. Therefore
a + v ∈ a + A, and finally v ∈ A.

Lemma 4. Let C ⊆ Rp be a line-free cone and S ⊆ C ∩ Zp. Then there
exists a finite subset {s1, . . . , sn} of S such that S ⊆

⋃n
i=1(si + C).

Proof. If C is the cone generated by the unit vectors (i.e., C ∩ Zp = Np),
then this is the classical Dickson Lemma [8, 5].

The general case is reduced to this situation as follows. Let {v1, . . . ,vk} ⊆ Zp

be a set of generators of C. Then each s ∈ S can be written s = s1v1 + · · ·+
skvk for some nonnegative s1, . . . , sk ∈ Q. Setting ni := bsic (i = 1, . . . , k),
we have s = n1v1+· · ·+nkvk+c for some c ∈ Zp which is a linear combination
of the vi with coefficients in [0, 1].
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Since {z1v1 + · · ·+ zkvk : z1, . . . , zk ∈ [0, 1]} is a bounded set, its intersection
with Zp is finite, say {c1, . . . , c`}. For a fixed vector c, let Nc ⊆ Nk be the set
of all vectors (n1, . . . , nk) ∈ Nk such that n1v1 + · · ·+nkvk +c ∈ S. Then by
the original Dickson Lemma, for each of these sets Nc there is a finite subset
Bc ⊆ Nc such that for all (n1, . . . , nk) ∈ Nc there exists (b1, . . . , bk) ∈ Bc

with (n1, . . . , nk) ∈ (b1, . . . , bk) +Nk, viz. ni − bi ≥ 0 for i = 1, . . . , k. Then,
since C is a cone, we also have n1v1+· · ·+nkvk+c ∈ b1v1+· · ·+bkvk+c+C.

It finally follows that the finite set
⋃`

i=1{b1v1 + · · ·+ bkvk +ci : (b1, . . . , bk) ∈
Bci} has the desired property.

3. Orders

Definition 5. A total order 4 on Zp is called additive if for all i, j,k ∈ Zp

we have
i 4 j =⇒ i + k 4 j + k.

An additive order 4 is called compatible with a cone C ⊆ Rp if 0 4 k for
all k ∈ C ∩ Zp.

We take the freedom to write i < j instead of j 4 i, and i X4 j instead of
i 4 j ∧ i 6= j, and similar shorthand notations.

The additivity of an order 4 implies that when v,w ∈ Zp are such that
v,w < 0, then also av + bw < 0 for every nonnegative a, b. Note that
this is not only true for integers a, b but also for any rational numbers a, b
for which av + bw ∈ Zp. The reason is that for an additive order we have
v < 0 ⇐⇒ dv < 0 for every positive integer d, which allows us to clear
denominators.

Example 6. 1. Let n = (n1, . . . , np) ∈ Rp be some vector whose compo-
nents are linearly independent over Q. For i, j ∈ Zn, define

i 4n j ⇐⇒ i · n ≤ j · n,

where · refers to the standard scalar product on Rp. Then 4n is an
additive order.
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Geometrically, i 4n j can be inter-
preted as follows. The affine hyper-
plane H = i + n⊥ divides Rp into two
open half spaces, one towards the di-
rection to which n points and one to-
wards the opposite direction. We have
i 4n j if and only if j belongs to the
half space in the direction of n.

• j

• iHHH
H

HH
H

HH
H

H

�
��

n

The requirement that the coordinates of n be linearly independent over
Q ensures that 4n is indeed a total order, for if i, j ∈ Zp are such that
i 4n j and j 4n i, then n · i = n · j, so n · (i− j) = 0, and hence, since
the coordinates of i and j are integers, i = j.
If C is a line-free cone and n ∈ C, then 4n is compatible with C.
Moreover, it follows from Lemma 3 that for every i ∈ Zp there exist
only finitely many j ∈ C ∩ Zp such that j 4n i. This need not be the
case for every additive order, as shown in the following example.

2. For i, j ∈ Zp, the lexicographic order is defined by letting i 4lex j if and
only if i = j or the leftmost nonzero coordinate of the vector i − j is
negative. This is an additive order.
If C is a cone which contains no vector (i1, . . . , ip) where any of the
coordinates i1, . . . , ip−1 is negative, then 4lex is compatible with C. With
this order, it may happen that for a fixed i ∈ Zn there are infinitely
many j ∈ C ∩ Zp with j 4lex i. For instance, if C ⊆ R2 contains (1, 0)
and (0, 1), then (u, 0) 4lex (0, 1) for every u ∈ N.
However, it is still true that 4lex is a well-founded order on C ∩ Zn.
We show in Lemma 8 that this is true for every additive order.

The following two lemmas contain the key properties regarding cones and
additive orders which we will use below. The first of them is straightforward,
and the second is a reformulation of Lemma 4.

Lemma 7. Let C,D ⊆ Rp be cones and let 4 be an additive order on Zp.
Let {v1, . . . ,vk} be a set of generators for C.

1. If C is compatible with 4, then C is line-free.

2. C is compatible with 4 if and only if vi < 0 for all i.

3. If C,D are compatible with 4, then C + D is also compatible with 4.

Proof.
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1. If C = {0}, then C is trivially line-free. If C 6= {0}, take some v ∈
C \ {0}. Then v < 0, because C is compatible with 4. Then −v 4 0,
because 4 is an additive order. Since v 6= 0, also −v 6= 0, and hence
−v 6∈ C.

2. The direction “⇒” is clear because vi ∈ C for all i. The direction “⇐”
follows from the observation made after Definition 5 that v,w < 0 and
a, b ≥ 0 implies av + bw < 0.

3. Let {w1, . . . ,wm} be a generating set for D. Since C +D is generated
by v1, . . . ,vk, w1, . . . ,wm, the claim follows from part 2.

Lemma 8. Let 4 be an additive order and C be a cone. If 4 is compatible
with C, then 4 is a well-founded order on C ∩ Zp, i.e., every strictly de-
creasing sequence a1 < a2 < a3 < . . . of elements in C ∩ Zp terminates, or
equivalently, every subset of C ∩ Zp contains a 4-minimal element.

Proof. Let S ⊆ C ∩Zp. By Lemma 4, there exists a finite subset {s1, . . . , sn}
of S such that S ⊆

⋃n
i=1(si +C). From the assumption that C is compatible

with 4 it follows that when v,w ∈ Zp are such that v ∈ w +C, then w 4 v.
Therefore, the 4-minimum of the finite set {s1, . . . , sn} is also the minimum
of S whose existence was to be shown.

4. Construction

LetK be a field and x1, . . . , xp be indeterminates. We consider formal infinite
series of the form

f(x) := f(x1, . . . , xp) =
∑
k

akx
k

where the sum runs over all k = (k1, . . . , kp) ∈ Zp, the ak are elements of K,

and xk is a short-hand notation for xk1
1 xk2

2 · · ·x
kp
p .

These objects form a vector space over K together with the natural addition
and scalar multiplication, for if

f(x) =
∑
k

akx
k and g(x) =

∑
k

bkx
k
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then the coefficient of xk in uf(x) + vg(x) is simply u ak + v bk, which is
clearly an element of K for any fixed u, v ∈ K.

Multiplication is more delicate. In the natural definition

f(x)g(x) :=
∑
k

(∑
i

aibk−i

)
xk,

the inner sum ranges over infinitely many elements aibk−i of K, which is
not meaningful in general. To make this summation finite, we restrict the
attention to series f(x) =

∑
k akx

k whose support supp f(x) := {k ∈ Zp |
ak 6= 0 } is contained in a fixed line-free cone.

Definition 9. Let C ⊆ Rp be a line-free cone. Then we define the set

KC [[x]] := { f(x) | supp f(x) ⊆ C }.

Using Lemma 3, it can be shown that every coefficient in the product of two
elements of KC [[x]] is determined by a sum with only finitely many nonzero
terms. The support of the product is again contained in C, as is the support
of the sum of two elements of KC [[x]]. Therefore:

Theorem 10. KC [[x]] together with the natural addition and multiplication
forms a ring.

Proof. To see that multiplication is well defined, we need to show that for
every k ∈ Zp there exist only finitely many i ∈ Zp such that i ∈ C and
k − i ∈ C. Since C is line-free, we have C ∩ −C = {0}. We can therefore
apply Lemma 3 to C, A = −C and a = k, and obtain that C ∩ (k − C)
is bounded. A bounded subset of Rp can only contain finitely many points
with integer coordinates, so C ∩ (k− C) ∩ Zp is finite, and this is what was
to be shown.

To see that KC [[x]] is closed under multiplication, consider some k ∈ Zp. In
order for the coefficient of some term xk in the product of two elements of
KC [[x]] to be nonzero, there must be at least one i ∈ C such that k− i ∈ C
as well. Since C is a cone and cones are closed under addition, k ∈ C.

Closure under addition is obvious, and it is also obvious that the neutral
elements 0 and 1 = x0 belong to KC [[x]].
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When C is the cone consisting of all vectors with nonnegative components,
KC [[x]] is the usual ring K[[x]] of formal power series in x1, . . . , xp. This
ring is an integral domain, and a series f(x) ∈ K[[x]] admits a multiplicative
inverse if and only if its constant term is different from zero. Both properties
generalize to rings KC [[x]] for arbitrary line-free cones C. The proof ideas
are the same as for the usual formal power series ring K[[x]].

Theorem 11. If C ⊆ Rp is a line-free cone, then KC [[x]] is an integral
domain.

Proof. Let f(x) =
∑

k akx
k and g(x) =

∑
k bkx

k be two nonzero elements
of KC [[x]]. This means both supp f(x) and supp g(x) are nonempty. Let
h(x) = f(x)g(x). We show that h(x) is not zero, i.e., that supph(x) is not
empty.

Fix some additive order 4 on Zp which is compatible with C and let m :=
min4(supp f(x) + supp g(x)). If u ∈ supp f(x) and v ∈ supp g(x) are such
that u + v = m, then we necessarily have u = min4 supp f(x) and v =
min4 supp g(x), because min4 supp f(x) X4 u or min4 supp g(x) X4 v would
imply

m 4 min4 supp f(x) + min4 supp g(x) X4 u + v.

Therefore, the coefficient of xm in h(x) is∑
i

aibm−i =
∑

i∈supp f(x)

j∈supp g(x)

i+j=m

aibj = aubv 6= 0,

because au 6= 0 and bv 6= 0.

Theorem 12. Let C ⊆ Rp be a line-free cone and f(x) =
∑

k akx
k ∈

KC [[x]]. Then there exists g(x) ∈ KC [[x]] with f(x)g(x) = 1 if and only
if a0 6= 0.

Proof. Assume that a0 = 0. We show that no multiplicative inverse of
f(x) exists. Indeed, if g(x) =

∑
k bkx

k is any element of KC [[x]] then the
coefficient of x0 in the product f(x)g(x) is a0b0 = 0, while for a multiplicative
inverse we would need a0b0 = 1.
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Assume now a0 6= 0. We show that a multiplicative inverse of f(x) exists.
Fix an additive order 4 compatible with C. Let g(x) =

∑
k bkx

k be a series
with undetermined coefficients bk. Set b0 = 1/a0, which is possible because
a0 6= 0. Then the constant term of f(x)g(x) is 1, regardless of the values
of the other bk. We now show by noetherian induction on k that there is a
unique way to choose the coefficients bi for 0 X4 i 4 k such that the coefficient
of xi in f(x)g(x)− 1 is equal to 0 for all i 4 k.

Assume as induction hypothesis that this is true for all i with i X4 k. Then
for the coefficient of xk in f(x)g(x) we have∑

i

aibk−i =
∑
04i4k

aibk−i = a0bk +
∑
0X4i4k

aibk−i.

Since a0 6= 0 and all the bk−i on the right hand side are uniquely determined
by induction hypothesis, we can (and have to) take bk = −a−10

∑
0X4i4k aibk−i.

With this (and only this) choice, the coefficient of xk in f(x)g(x) will be zero,
as desired.

In the univariate case, if the constant term of some nonzero series f(x) ∈
K[[x]] is zero, we can write f(x) = xeh(x) for some e ∈ N and h(x) ∈ K[[x]]
with h(0) 6= 0. Then h(x) has a multiplicative inverse and we find x−eh(x)−1

as the multiplicative inverse of f(x) if we allow terms with negative expo-
nents. Defining formal Laurent series via K((x)) :=

⋃
e∈Z x

eK[[x]] therefore
already leads to a field.

In the multivariate case, it is not always possible to write a given f(x) ∈
KC [[x]] in the form f(x) = xeh(x) for some h(x) ∈ KC [[x]], as already
illustrated in the introduction. But in cases where this is not possible, we can
still write f(x) in the desired form if we allow h(x) to belong to an enlarged
ring KC′ [[x]] for a suitably chosen line-free cone C ′ containing the original
cone C. Then h(x) has a multiplicative inverse in this ring by Theorem 12,
and we can regard x−eh(x)−1 as the multiplicative inverse of f(x).

Example 13. Consider the power series f(x, y) = x + y ∈ K[[x, y]] from
the introduction. (C is the cone generated by the two unit vectors (1, 0) and
(0, 1) here.) This series can also be viewed as an element of KC′ [[x, y]],
where C ′ is the cone generated by (1, 0) and (−1, 1). Then we have f(x, y) =
x1y0h(x, y) with h(x, y) = 1 + x−1y1 ∈ KC′ [[x, y]]. In this ring, h(x, y) has
a multiplicative inverse, and therefore we can regard x−1y0h(x, y)−1 as the
multiplicative inverse of f(x, y).
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If a collection of rings is such that for any two rings R1, R2 from the collection,
the collection contains some other ring R3 with R1 ⊆ R3 and R2 ⊆ R3, and
if for any two rings R1, R2 from the collection, the respective addition and
multiplication of these rings coincide on R1 ∩R2, then the union over all the
rings from the collection forms again a ring in a natural way.

We can therefore make the following definition.

Definition 14. Let 4 be an additive order on Zp. Then we define the sets

K4[[x]] :=
⋃
C∈C

KC [[x]] and K4((x)) :=
⋃
e∈Zp

xeK4[[x]],

where C is the set of all cones C ⊆ Rp which are compatible with 4.

Theorem 15. If 4 is an additive order on Zp, then K4[[x]] is a ring and
K4((x)) is a field.

Proof. To see thatK4[[x]] is a ring, consider two ringsKC1 [[x]], KC2 [[x]] from
the collection, i.e., consider two cones C1, C2 that are compatible with 4. By
Lemma 7, the cone C3 := C1 +C2 is also compatible with 4, so KC3 [[x]] also
appears in the union. Furthermore, it is clear that addition and multipli-
cation of the rings KC1 [[x]] and KC2 [[x]] agree on KC1 [[x]] ∩KC2 [[x]]. This
shows that K4[[x]] is well-defined as a ring.

To see that K4((x)) is a field, consider two nonzero elements f(x), g(x) ∈
K4((x)). We show that their sum, their product, and the multiplicative
inverse of f(x) also belong to K4((x)). Let A,B ⊆ Rp be cones compatible
with 4 and let a,b ∈ Zp be such that f(x) = xaa(x) and g(x) = xbb(x)
for some a(x) ∈ KA[[x]] and b(x) ∈ KB[[x]]. Then f(x)g(x) belongs to
xa+bKA+B[[x]] and f(x) + g(x) belongs to xmin4(a,b)KC [[x]] where C is the
cone generated by a generating set of A, a generating set of B, and the single
vector max4(a,b)−min4(a,b) < 0. Note that A+B and C are compatible
with 4 by Lemma 7. It follows that K4((x)) is closed under addition and
multiplication.

As for the multiplicative inverse, let f(x) 6= 0 and e := min4 supp f(x).
This minimum exists by Lemma 8 and because supp f(x) is nonempty for
nonzero f(x). Let {s1, . . . , sn} ⊆ supp f(x) ⊆ A be a finite set such that
supp f(x) ⊆

⋃n
i=1(si +A). Such a finite set exists by Lemma 4. Let C be the

cone generated by a generating set of A, and s1−e, . . . , sn−e. By the choice

12



of e, we have si − e < 0 for all i, so by Lemma 7, the cone C is compatible
with 4. Now we can write f(x) = xeh(x) for some h(x) ∈ KC [[x]] with
nonzero constant term. By Theorem 12 there exists a multiplicative inverse
h(x)−1 ∈ KC [[x]] ⊆ K4[[x]]. Hence f(x)−1 = x−eh(x)−1 belongs to K4((x)),
as claimed.

Example 16. Consider the univariate polynomial f(x) = 1 + x. The only
two additive orders on Z are the natural order and its reverse.

With respect to the natural order ≤, the smallest exponent of f(x) is 0, so
f(x) has a multiplicative inverse in K≤[[x]] = K[[x]]. Its coefficients can be
determined following the proof of Theorem 12, the result being

f(x)−1 = 1− x + x2 − x3 + x4 − x5 + · · · .

Let now ≤−1 denote the reversed order, i.e., i ≤−1 j ⇐⇒ j ≤ i. Then
the smallest exponent of f(x) with respect to this order is 1. Write f(x) =
x(1 + x−1). The smallest exponent of 1 + x−1 with respect to ≤−1 is 0, so
this series does have a multiplicative inverse in K≤−1 [[x]] = K[[x−1]]. Its first
terms are 1−x−1 +x−2−x−3 + · · · . Consequently, the multiplicative inverse
of f(x) in K≤−1((x)) reads

f(x)−1 = x−1 − x−2 + x−3 − x−4 + · · · .

More generally, the various possible series expansions of a multivariate ra-
tional function r(x) = u(x)/v(x) ∈ K(x) can be obtained as follows. An
exponent vector e ∈ supp v(x) ⊆ Zp qualifies as minimal element if there
exists an affine hyperplane H ⊆ Rp which contains e and which is further-
more such that all other elements of supp v(x) belong to the same of the two
open halfspaces defined by H. Geometrically, these points e are the corner
points in the convex hull of supp v(x). For each such corner point e, the cone
C generated by the elements of supp v(x)− e is line-free, and there exists a
series expansion of r(x) in x−eKC [[x]].

The coefficients in these series expansions all satisfy a multivariate linear
recurrence equation with constant coefficients, which can be read off from
the denominator polynomial. In the univariate case, also the converse is
true: every sequence satisfying a linear recurrence with constant coefficients
is the coefficient sequence of a series expansion of a rational function. The
latter implication is no longer valid in the case of several variables. As

13



worked out by Bousquet-Melou and Petkovsek [7], a multivariate power series
whose coefficient sequence satisfies a linear recurrence equation with constant
coefficients need not be rational, not even algebraic, not even differentially
algebraic.

5. Composition

Our next goal is to understand the composition of multivariate Laurent se-
ries. In order to formulate the results, it is convenient to adopt the following
notation. If f(x) =

∑
k akx

k is any series, then for any fixed k ∈ Zp we write
[xk]f(x) := ak for the coefficient of xk in f(x). Furthermore, if 4 is an addi-
tive order and f(x) a nonzero series, we call lexp4 f(x) := min4 supp f(x) ∈
Zp the leading exponent of f(x), and lt4 f(x) := xlexp4 f(x) the leading term.
We may omit the subscript 4 when the order is clear from the context.

For two univariate formal power series f(x) =
∑∞

k=0 akx
k and g(x), it is

natural to define the composition f(g(x)) as the power series
∑∞

k=0 akg(x)k.
The latter expression is meaningful provided that g(0) = 0 because in this
case, g(x) = xh(x) for some power series h(x), and g(x)k = xkh(x)k has zero
coefficients for all terms of degree less than k. Therefore, for every n ∈ N
the coefficient of xn in

∑∞
k=0 akg(x)k is in fact the coefficient of xn in the

finite sum
∑n

k=0 akg(x)k. Neumann [13, Thm. 4.7] and Xin [17, Thm. 3-
1.7] prove generalized versions of this criterion for compositions f(g) where
f(x) ∈ K[[x]] a univariate power series in the usual sense and g is a Malcev-
Neumann series.

We are interested here more generally in compositions f(g1(x), . . . , gm(x))
where f(y) and the g1(x) are formal Laurent series in several variables as
defined above. In order to formally define them, fix an additive order 4
on Zp, let U be any set and consider a function c : U → K4((x)) with the
following two properties:

1. For all k ∈ Zp, the set {u ∈ U | k ∈ supp c(u)} is finite.

2. There exists a line-free cone C ⊆ Rp such that supp c(u) ⊆ C for all
u ∈ U .

We can then define h(x) :=
∑

u∈U c(u) as the unique element of KC [[x]]
whose coefficient of xk is equal to

∑
u∈U [xk]c(u) for all k ∈ Zp. The first

requirement ensures that this sum is finite for every k ∈ Zp, and the second
one ensures that the support of h(x) is contained in C.

14



Composition of Laurent series can be viewed as a special case of the con-
struction just described: let ≤ be an additive order on Zq and 4 an additive
order on Zp, let f(y) =

∑
k aky

k ∈ K≤((y)) and g1(x), . . . , gq(x) ∈ K4((x)),
let U := supp f(y) ⊆ Zq and define

c : U → K4((x)), c(k) := akg1(x)k1 · · · gq(x)kq .

Then the composition f(g1(x), . . . , gq(x)) ∈ K4((x)) is defined as the sum∑
u∈U c(u), provided that this sum exists in the sense defined before.

The main result of this section is the following sufficient condition for the
existence of the composition.

Theorem 17. Let C ⊆ Rq be a line-free cone and f(y) ∈ KC [[y]]. Let
4 be an additive order on Zp and g1(x), . . . , gq(x) ∈ K4((x)) \ {0}. Let
M ∈ Zp×q be the matrix whose i-th column consists of the leading exponent
lexp(gi(x)) (i = 1, . . . , q). Let C ′ ⊆ Rp be a cone containing MC := {Mx |
x ∈ C} ⊆ Rp as well as supp

(
gi(x)/ lt(gi(x))

)
for i = 1, . . . , q. Suppose

that C ∩ kerM = {0} and that C ′ is line-free. Then f(g1(x), . . . , gq(x)) is
well-defined and belongs to the ring KC′ [[x]].

Proof. We show (1) that for every fixed k ∈ Zp there are only finitely
many (u1, . . . , uq) ∈ Zq with k ∈ supp

(
g1(x)u1 · · · gq(x)uq

)
, and (2) that

supp
(
g1(x)u1 · · · gq(x)uq

)
⊆ C ′ for all (u1, . . . , uq) ∈ supp f(y).

For the second requirement, first observe that the gi(x)/ lt(gi(x)) are el-
ements of KC′ [[x]] with nonzero constant term. Therefore, by Theorems

10 and 12, also
( g1(x)
lt(g1(x))

)u1 · · ·
( gq(x)

lt(gq(x))

)uq
is an element of KC′ [[x]] for ev-

ery choice (u1, . . . , uq) ∈ Zp. Secondly, because of MC ⊆ C ′, the expo-
nent vector of the term lt(g1(x))u1 · · · lt(gq(x))uq belongs to C ′ for every
(u1, . . . , uq) ∈ supp f(y) ⊆ C, so the term itself belongs to KC′ [[x]]. Using
once more thatKC′ [[x]] is a ring, it follows that supp(g1(x)u1 · · · gq(x)uq) ⊆ C ′

for every (u1, . . . , uq) ∈ supp f(y).

For the first requirement, let k ∈ Zp. Then by Lemma 3 with k, C ′ and −C ′
playing the roles of a, C and A, there are only finitely many n ∈ Zp such that
k ∈ n +C ′. For some fixed n ∈ Zp, consider the set {u ∈ C ∩Zq |Mu = n}.
If this set is empty, it is trivially finite. If not, fix an element w from the set.
Then every other element u of the set can be written as u = w + v for some
v ∈ kerM : if u,u′ are two elements of the set, then Mu = Mu′ = n, so
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u−u′ ∈ kerM . Therefore we can write {u ∈ C |Mu = n} = C∩(w+kerM).
By Lemma 3 with w, C and kerM playing the roles of a, C and A, it follows
that the set contains only finitely many integer points.

Altogether, we have shown that for all k ∈ Zp there are only finitely many
u ∈ C ∩ Zq such that k ∈Mu + C ′. The claim follows because

supp
(
g1(x)u1 · · · gq(x)uq

)
⊆Mu + C ′

by definition of M and C ′.

Example 18. 1. The classical condition for the composition of two power
series in a single variable is contained as a special case in Theorem 17.
In this case, C and C ′ are the positive halfline and M is a 1×1-matrix
whose single entry is positive if and only if g(0) = 0 if and only if
C ∩ kerM = {0}.

2. Consider a power series f(x) ∈ K[[x−1]] with negative exponents (i.e.,
C is the negative halfline) and let g(x) ∈ K((x))\{0} be a usual formal
Laurent series. Then M is a 1 × 1-matrix whose single entry is the
smallest nonzero exponent appearing in g(x). If this is negative, then
MC is the positive halfline, and since also lt(g(x))−1g(x) ∈ K[[x]], we
can take for C ′ the positive halfline. Therefore f(g(x)) is well-defined.
For example, for

f(x) = 1− 2x−1 + 3x−2 − 4x−3 + 5x−4 − 6x−5 + · · · ∈ Q[[x−1]]

and
g(x) = x−2 + x−1 + 1 + x + x2 + x3 + · · · ∈ Q((x))

we have

f(g(x)) = 1− 2x2 + 2x3 + 3x4 − 6x5 − x6 + 12x7 + · · · ∈ Q((x))

3. As an example with several variables, let C ⊆ R2 be the cone generated
by
(−1

1

)
and

(
0
1

)
, and let f(x, y) ∈ KC [[x, y]]. Let 4 be the lexicographic

order with x 4 y, and let g1(x, y) = x + y, g2(x, y) = 1/(x + y) =
x−1 − x−2y + x−3y2 + · · · ∈ K4((x, y)). Then lt(g1(x, y)) = x = x1y0

and lt(g2(x, y)) = x−1 = x−1y0, so

M =

(
1 −1
0 0

)
.
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The kernel of M is the vector space generated by
(
1
1

)
, therefore C ∩

kerM = {0}.
MC is the cone generated by M

(−1
1

)
=
(−2

0

)
and M

(
0
1

)
=
(−1

0

)
, and the

supports of

g1(x, y)/ lt(g1(x, y)) = 1 + x−1y2,

g2(x, y)/ lt(g2(x, y)) = 1− x−1y + x−2y2 + · · ·

belong to the cone generated by
(−1

2

)
and

(−1
1

)
. We can therefore take

for C ′ the cone generated by
(−1

2

)
and

(−1
0

)
. Note that this is indeed a

line-free cone.
In conclusion, the composition f(g1(x, y), g2(x, y)) is well-defined.

In Theorem 17, no restrictions are imposed on the series f(y) ∈ KC [[y]] into
which the gi(x) are plugged: if the theorem allows the composition of some
fixed set of gi(x) ∈ K4((x)) into some fixed element f(y) of KC [[y]], then it
also allows the composition of these gi(x) into any other element of KC [[y]].
We can therefore consider a map Φ: KC [[y]] → K4((x)) which to every
f(y) ∈ KC [[y]] assigns the composition f(g1(x), . . . , gq(x)) ∈ K4((x)). We
show next that this map preserves the ring structure, a fact that is not too
surprising but also not entirely trivial.

Theorem 19. Let C ⊆ Rq be a line-free cone, 4 an additive order on Zp,
and g1(x), . . . , gq(x) ∈ K4((x)) \ {0}. Let M ∈ Zp×q and C ′ ⊆ Rp be defined
as in Theorem 17, and assume, also as in Theorem 17, that C∩kerM = {0}
and that C ′ is line-free. Then the map

Φ: KC [[y]]→ KC′ [[x]], f(y) 7→ f(g1(x), . . . , gq(x))

is a ring homomorphism.

Proof. It is clear that Φ(1) = 1, and it is also easy to verify that Φ(a(y) +
b(y)) = Φ(a(y)) + Φ(b(y)) for all a(y), b(y) ∈ KC [[y]]. We show the case of
multiplication in some more detail.

Let a(y) =
∑

n anyn, b(y) =
∑

n bnyn ∈ KC [[y]]. Then Φ(a(y)), Φ(b(y)),
and Φ(a(y)b(y)) all belong to KC′ [[x]]. We show that for all n ∈ Zp ∩C ′ we
have [xn]Φ(a(y)b(y)) = [xn]Φ(a(y))Φ(b(y)).
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As shown in the proof of Theorem 10, for every k ∈ Zp ∩ C ′, the set

Ik := { i ∈ Zp | i ∈ C ′ and k− i ∈ C ′ } ⊆ Zp ∩ C ′

is finite. Furthermore, as shown in the proof of Theorem 17, for every i ∈ Zp,
the set

Ui := { (u1, . . . , uq) | i ∈ supp(g1(x)u1 · · · gq(x)uq) } ⊆ Zq

is finite.

Now fix an arbitrary n ∈ Zp∩C ′ and let U :=
⋃

i∈In Ui ⊆ Zq. Then U is finite
and we have Un ⊆ U because 0 ∈ In. By the definition of multiplication and
composition, and because [xn]g1(x)k1 · · · gq(x)kq = 0 whenever (k1, . . . , kq) 6∈
U , we can write

[xn]Φ(a(y)b(y)) = [xn]
∑
k

(∑
i

ak−ibi

)
gk(x) =

∑
k∈U

(∑
i∈Ik

ak−ibi

)
[xn]gk(x),

where gk(x) is a shorthand notation for g1(x)k1 · · · gq(x)kq . Furthermore, for
i, j ∈ Zp ∩ C ′ with i + j = n, we can write

[xi]Φ(a(y)) = [xi]
∑
k

akg
k(x) =

∑
k∈Ui

ak[xi]gk(x) =
∑
k∈U

ak[xi]gk(x)

and

[xj]Φ(b(y)) = [xj]
∑
k

bkg
k(x) =

∑
k∈Uj

bk[xj]gk(x) =
∑
k∈U

bk[xj]gk(x).

Consequently,

[xn]Φ(a(y))Φ(b(y)) =
∑
j∈In

(
[xn−j]Φ(a(y))

)(
[xj]Φ(b(y))

)
=
∑
j∈In

(∑
k∈U

ak[xn−j]gk(x)

)(∑
k∈U

bk[xj]gk(x)

)
=
∑
j∈In

∑
k∈U

∑
i∈Ik

ak−i [xn−j]gk−i(x) bi [xj]gi(x)

=
∑
k∈U

∑
i∈Ik

(
ak−ibi

∑
j∈In

[xn−j] gk−i(x) [xj]gi(x)

)
=
∑
k∈U

∑
i∈Ik

ak−ibi [xn]gk(x) = [xn]Φ(a(y)b(y)),
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where in the fifth step we have used gk−i(x)gi(x) = gk(x) and the definition
of multiplication. All the performed operations are legitimate because all the
sums involved are finite.

One of the consequences of Theorem 19 is an alternative way to determine
the coefficients of a multiplicative inverse of a series h(x) ∈ KC [[x]] with
[x0]h(x) = 1. For the univariate series f(y) =

∑
k≥0 y

k ∈ K[[y]] we know
(1 − y)f(y) = 1. Applying Theorem 19 to g(x) = 1 − h(x) gives Φ(1 −
y)Φ(f(y)) = 1, so

h(x)−1 =
∑
k≥0

(
1− h(x)

)k
.

Therefore, in order to determine the coefficient of some term xe in h(x)−1

we can simply choose a term order 4 compatible with C and sum up all
the powers (1 − h(x))k for which k lexp(h(x)) 4 e. The coefficient of xe in
h(x)−1 is then equal to the coefficient of xe in this sum.

6. Equations

Finally, we consider the question under which circumstances an equation
f(x, y) = 0 can be solved for y in some field of multivariate Laurent series.
The results below are variants of the implicit function theorem answering
this question. For better readability, we have split the derivation into two
theorems, the first serving as lemma used in the proof of the second. The
proof of Theorem 20 follows closely one of the many proofs of the classical
implicit function theorem [16]. In Theorem 21 we then relax the hypothesis
by making use of the fact that K4((x)) is a field.

Theorem 20. Let C ⊆ Rp be a line-free cone, and let

f(x, y) =
∞∑
k=0

ak(x)yk ∈ KC [[x]][[y]]

be such that [x0]a0(x) = 0 and a1(x) = 1. Then there exists exactly one
g(x) ∈ KC [[x]] with [x0]g(x) = 0 and f(x, g(x)) = 0.

Proof. First observe that the composition f(x, g(x)) is legitimate for every
g(x) ∈ KC [[x]] whose constant term is zero. For g(x) = 0 this is obvious,
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and for g(x) 6= 0 it follows from Theorem 17 as follows. Regard f(x, y) as an
element of KC×H [[x, y]], where H ⊆ R denotes the positive half-line. Note
that C × H ⊆ Rp+1 is a line-free cone. Taking g1(x) = x1, . . . , gp(x) = xp,
and gp+1(x) = g(x), we have M = (I, e) ∈ Zp×(p+1) where I is the identity
matrix of size p and e = lexp(g(x)). Since H is generated (as cone) by 1,
kerM is generated (as vector space) by (e,−1), and e belongs to C, we have
kerM ∩ (C × H) = {0}, as required. Because of Theorem 15, there exists
a cone C ′ ⊆ Rp containing C and supp(g(x)/ lt(g(x))), and since e ∈ C
implies M(C ×H) = C, this cone C ′ also contains MC, as required.

Turning to the claim of the theorem, fix some additive order 4 on Zp which
is compatible with C ′. Consider an ansatz g(x) =

∑
k bkx

k ∈ KC [[x]] with
b0 = 0 and otherwise undetermined coefficients bk. We show by noetherian
induction that there is precisely one way of choosing the coefficients bk such
that [xn]f(x, g(x)) = 0 for all n < 0.

Let n < 0 and suppose as induction hypothesis that the claim is true for
every k ∈ Zp with 0 4 k X4 n. The coefficient of xn in f(x, g(x)) is

bn + [xn]a0(x) +
∞∑
k=2

[xn]ak(x)g(x)k

The terms [xn]ak(x)g(x)k only depend on coefficients bk with k X4 n, because
lexp(ak(x)) < 0 and k ≥ 2 and lexp(g(x)) < 0 together imply

lexp(ak(x)) + k + (k − 1) lexp(g(x)) < n

for every k < n, and the expression on the left hand side denotes the smallest
possible exponent vector for which the corresponding coefficient may depend
on bk. By assumption, the coefficients bk for k X4 n are uniquely determined,
and hence in order to have [xn]f(x, g(x)) = 0, there is one and only one
choice for bn, as claimed.

Theorem 21. Let 4 be an additive order on Zp, let C ⊆ Rp be a cone
compatible with 4, and let

f(x, y) =
∞∑
n=0

an(x)yn ∈ KC [[x]][[y]]

be such that a1(x) 6= 0, lexp(a1(x)) X4 lexp(a0(x)), and lexp(a1(x)) 4 lexp(an(x))
for all n ∈ N with an(x) 6= 0. Then there exists exactly one g(x) ∈ K4[[x]]
with [x0]g(x) = 0 and f(x, g(x)) = 0.
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Proof. Because of Theorem 11, we have f(x, g(x)) = 0 if and only if
u(x)f(x, g(x)) = 0 for every u(x) ∈ K4((x)) \ {0}. It is therefore sufficient
to prove the theorem for

f̃(x, y) :=
∞∑
k=0

ãk(x)yk := a1(x)−1f(x, y) ∈ K4((x))[[y]]

in place of f(x, y). We show that f̃(x, y) satisfies the requirements of Theo-
rem 20. To do so, we need to show that [x0]ã0(x) = 0, ã1(x) = 1, and that
there is some line-free cone C̃ ⊆ Rp such that supp ãk(x) ⊆ C̃ for all k ≥ 0.

Since ãk(x) = a1(x)−1ak(x) for all k ∈ N by definition, it is immediate
that ã1(x) = 1, and that ãk(x) = 0 for every k ∈ N with ak(x) = 0.
Furthermore, lexp(a1(x)) X4 lexp(a0(x)) implies lexp(ã0(x)) X4 0, which in
turn implies [x0]a0(x) = 0. For k ≥ 2 with ak(x) 6= 0, we have by as-
sumption that lexp(ãk(x)) = lexp(ak(x)) − lexp(a1(x)) < 0. Lemma 4 ap-
plied to S := { lexp(ak(x)) | k ≥ 2 with ak(x) 6= 0 } yields a finite subset
{s1, . . . , sn} of S such that S ⊆

⋃n
i=1(si + C). Let C̃ be the cone gener-

ated by C, some 4-compatible cone containing supp(a1(x)−1 lt(a1(x))), and
s1− lexp(a1(x)), . . . , sn− lexp(a1(x)). Then C̃ is finitely generated, compat-
ible with 4 (hence also line-free; cf. Lemma 7), and contains supp ãk(x) for
all k ≥ 2. Therefore, by Theorem 20, there exists exactly one g(x) ∈ KC̃ [[x]]
with f̃(x, g(x)) = 0. Since Theorem 20 still applies if we replace C̃ by any
larger cone which is compatible with 4, it follows that there is exactly one
g(x) ∈ K4[[x]] with f̃(x, g(x)) = 0, as was to be shown.

The main restriction in the above theorems is that we only allow positive
powers of y in f(x, y). We may equivalently allow only negative powers of y,
but we have not been able to come up with a version of the implicit function
theorem that is applicable to series f(x, y) ∈ KC [[x, y]] where C ⊆ Rp+1

is such that its projection to the last coordinate is the full real line. Note
that there is no such restriction, not even implicitly, in Theorem 17: it may
well be possible that f(x, g(x)) can be formed even when f(x, y) contains
infinitely many positive and negative powers of y. On the other hand, the
following examples show that for such f(x, y) there may be more than one
solution g(x) with f(x, g(x)) = 0, or no solution at all. This indicates that
a naive generalization of the implicit function theorem to such series will be
false.
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Example 22. • Consider the series

f(x, y) =
∞∑
n=1

(−y)n +
∞∑
n=1

x2ny−n.

This series belongs to KC [[x, y]] where C ⊆ R2 is the cone generated
by
(
0
1

)
and

(
2
−1

)
. Because of [x0y0]f(x, y) = 0 and [x0y1]f(x, y) =

−1 6= 0, we might expect that some suitable version of the implicit
function theorem guarantees the existence of a unique series g(x) ∈
K[[x]] with f(x, g(x)) = 0. However, it turns out that there are two
different solutions:

g1(x) = x2 + x
√

1 + x2 = x + x2 + 1
2
x3 − 1

8
x5 + · · · ∈ K[[x]]

and g2(x) = x2 − x
√

1 + x2 = −x + x2 − 1
2
x3 + 1

8
x5 + · · · ∈ K[[x]],

where
√

1 + x2 =
∑∞

n=0

(
1/2
n

)
(−1)nx2n.

• Now consider the series

f(x, y) =
∞∑
n=1

(−y)n + 2
∞∑
n=1

x2ny−n,

which belongs to the same ring KC [[x, y]] as before.

Suppose that there is a nonzero g(x) with f(x, g(x)) = 0. If xe is the
leading term of g(x), then in the notation of Theorem 17, we have
M = (1 e) ∈ Z1×2, and MC is the cone generated by e and 2 − e
in R. In order for this cone to be line-free, we must either have e ≥ 0
and 2 − e ≥ 0 or e ≤ 0 and 2 − e ≤ 0. The only candidates for e ∈ Z
are therefore e = 0 or e = 1 or e = 2.

But e = 0 would imply
(
0
1

)
∈ C ∩ kerM , so this case is excluded.

Likewise, e = 2 would imply
(

2
−1

)
∈ C ∩ kerM , so this case is excluded

as well and the only remaining possibility for a solution g(x) is that its
leading term is x1 if we want to use Theorem 17 to secure the existence
of f(x, g(x)).

Make an ansatz g(x) = a1x + · · · ∈ K[[x]] for the leading coefficient a1
of g(x). Then g(x)n = an1x

n + · · · and g(x)−n = a−n1 x−n + · · · for all
n ∈ N. Therefore, equating coefficients of x1 in

f(x, g(x)) =
∞∑
n=1

(−g(x))n + 2
∞∑
n=1

x2ng(x)−n
!

= 0
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forces −a1 + 2a−11 = 0, viz. a21 = 2. Depending on the ground field K,
this equation may or may not have a solution. For example, if K = Q,
no such a1 exists, and hence no g(x) ∈ Q[[x]] with f(x, g(x)) = 0 exists.
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