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ABSTRACT
Creative telescoping algorithms compute linear differential
equations satisfied by multiple integrals with parameters.
We describe a precise and elementary algorithmic version of
the Griffiths–Dwork method for the creative telescoping of
rational functions. This leads to bounds on the order and
degree of the coefficients of the differential equation, and to
the first complexity result which is single exponential in the
number of variables. One of the important features of the
algorithm is that it does not need to compute certificates.
The approach is vindicated by a prototype implementation.
Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations — Algebraic Algorithms
General Terms: Algorithms, Theory.
Keywords: Integration, creative telescoping, algorithms,
complexity, Picard-Fuchs equation, Griffiths–Dwork method

1. INTRODUCTION
In computer algebra, creative telescoping is an approach intro-
duced by Zeilberger to address definite summation and inte-
gration of a large class of functions and sequences [28,29,27].
Its vast scope includes the computation of differential equa-
tions for multiple integrals of rational or algebraic functions
with parameters. Within this class, creative telescoping is
similar to well-studied older approaches whose key notion is
the Picard–Fuchs differential equation, see e.g. [23].
We study the multivariate rational case: Given a ratio-

nal function F (t, x1, . . . , xn), we aim at finding n rational
functions Ai(t, x1, . . . , xn) and a differential operator T with
polynomial coefficients, say

∑r

j=0 cj(t)∂
j
t , such that

T (F ) def=
r∑
j=0

cj(t)∂jtF =
n∑
i=1

∂iAi, (1)
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where ∂jt denotes ∂j

∂tj
and ∂i denotes ∂

∂xi
. The operator T is

a telescoper and the tuple (A1, . . . , An) is a certificate for T .
The integer r is the order of T and maxj deg cj is its degree.
Throughout the article, the constant field k of F is as-

sumed to be of characteristic zero. Under suitable additional
hypotheses, T (I) = 0 is a differential equation satisfied by an
integral I(t) =

∫
Fdx over a domain γ, without boundaries,

where F has no pole. A misbehavior may occur when the cer-
tificate has poles outside those of F : it may not be possible
to integrate term by term the right-hand side of Equation (1),
see §4.1. The certificate is called regular when it does not
contain poles other than those of F . For integration, there is
no need to compute the certificate provided that it is regular.
Several methods are known that can find a telescoper

and the corresponding certificate [17, 26, 7, 15]. However,
the practical cost of using these methods in multivariate
problems remains high and a better understanding of the size
or complexity of the objects of creative telescoping is clearly
needed. The present work is part of the on-going effort in this
direction [2,3,4]. The study of the rational case is motivated
both by its fundamental nature and by its applications to the
computation of diagonals in combinatorics, number theory
and physics [17, 6, 20]. The rational case with n variables
also includes the algebraic case with n− 1 variables [4].

Previous works. An obviously related problem is, given a
rational function F (x1, . . . , xn), to decide whether there exist
rational functions A1, . . . , An such that F equals

∑n

i=1 ∂iAi.
When n = 1, this question is easily solved by Hermite

reduction. This is the basis of an algorithm for creative
telescoping [3] that we outline in §2.1. Picard [25, chap. 7]
gave methods when n = 2 from which he deduced that a
telescoping equation exists in that case [24]. This too has
led to an algorithm [4]. The Griffiths–Dwork method [8, §3;
9, §8; 12] solves the problem for a general n, in the setting
of de Rham cohomology and under a regularity assumption.
The method can be viewed as a generalization of Hermite
reduction. Independently, Christol used a similar method to
prove that diagonals of rational functions, under a regularity
hypothesis, are differentially finite [5]; then he applied a
deformation technique, for which he credits Dwork, to handle
singular cases [6]. The Griffiths–Dwork method is also used
in point counting [1, 11] and the study of mirror maps [20].
In terms of complexity, in more than two variables, not

much is known. If a rational function F (t, x1, . . . , xn) has
degree d, a study of Lipshitz’s argument [17] shows that there
exists a telescoper of order and degree dO(n) with a regular
certificate of size dO(n2). Most algorithms [17, 28, 26, 7, 2, 15]
cannot avoid the computation of the certificate, which im-
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pacts their complexity. The complexity of Lipshitz’s algo-
rithm is dO(n2) operations in k; the complexity of no other
algorithm is known. Pancratz [22] developed an approach
similar to ours, under a restrictive hypothesis, much stronger
than Griffiths’ regularity assumption. He proceeds to a com-
plexity analysis of his algorithm but in terms of operations
in k(t) rather than in the base field k. Algorithms based
on non-commutative Gröbner bases and elimination [28, 26]
or based on the search of rational solutions to differential
equations [7] resist complexity analysis. The method of
Apagodu and Zeilberger [2] requires a generic exponent and
specialization seems problematic.
For the restricted class of diagonals of rational functions,

there is a heuristic based on series expansion and differential
approximation [14]; it does not need to compute a certifi-
cate. However, even using the bounds in dO(n), its direct
implementation has a complexity of dO(n2) operations in k.

Contributions. Our main result, obtained with the Griffiths–
Dwork method and a deformation technique, is the existence
of a telescoper with regular certificate of order at most dn
and degree dO(n) that can be computed in dO(n) arithmetic
operations in k. For generic homogeneous rational functions,
the telescoper computed is the minimal order telescoper with
regular certificate. Theorems 6, 10 and 12 state precise com-
plexity and size estimates. To the best of our knowledge,
the bounds on the order and degree are better than what
was known and it is the first time that a complexity single
exponential in n is reached. For a generic rational func-
tion, every pair (telescoper, regular certificate) has a size
larger than dO(n), see Remark 11, but our algorithm does
not need to compute the certificate. A prototype implemen-
tation shows that this algorithm can lead to a spectacular
improvement over previous methods, though the domain of
improvement is not satisfactory yet.

Acknowledgement. We are grateful to G. Christol for many
rewarding discussions, and we thank G. Villard and W. Zhou
for communicating their complexity results in linear algebra.

2. OVERVIEW OF THE METHOD
In this section we introduce the basics of the Griffiths–Dwork
method. In dimension 1, this method coincides with classical
Hermite reduction, which we first recall.

2.1 Dimension one: Hermite reduction
Let F be a rational function in x, over a field L, written
as a/f `, with a and f two polynomials not necessarily co-
prime, the latter being square-free, i.e. the polynomials ∂xf
and f are coprime. In particular a equals uf+v∂xf for some
polynomials u and v. Then, if ` > 1, the function F rewrites

F =
u+ 1

`−1∂xv

f `−1 + ∂x

(
−v

(`− 1)f `−1

)
.

Iterating this reduction step ` times gives F as U
f

+ ∂x
V

f`−1

for some polynomials U and V . Next, Euclidean division
allows to write U as r + sf , with r of degree less than the
degree of f , yielding the additive decomposition

F = r

f
+ ∂x

(
V

f `−1 +
∫
s

)
.

The rational function r/f is the reduced form of F and is
denoted by [F ]. This form features important properties:

(Linearity) f being fixed, [F ] depends linearly on F ;
(Soundness) if [F ] is zero, then F is a derivative w.r.t. x;
(Confinement) [F ] lies in a finite-dimensional vector space

over L depending only on f (with dimension degx f);
(Normalization) if F is a derivative w.r.t. x, then [F ] is zero.

These properties are enough to compute a telescoper: Assume
now that L is k(t) for a field k. If for some elements of L,
say a0, . . . , ap, the reduced form

[∑
i
ai∂

i
tF
]
vanishes, then

the operator
∑

i
ai∂

i
t is a telescoper, thanks to the soundness

property. Thanks to the linearity property, this is equivalent
to the vanishing of

∑
i
ai
[
∂itF
]
. Thanks to the confinement

property, it is always possible to find such a relation. Thanks
to the normalization property, every telescoper arises in this
way. In particular, so does the telescoper of minimal order.

2.2 Griffiths–Dwork reduction
Let F be a rational function in n variables x1, . . . , xn, written
as a/f `, with f a square-free polynomial. If ` > 1 and
if a lies in the ideal of L[x1, . . . , xn] generated by f and its
derivatives ∂if , then we can write a as uf +

∑
i
vi∂if , for

some polynomials u, v1, . . . , vn, and F rewrites

F =
u+ 1

`−1
∑n

i=1 ∂ivi

f `−1 +
n∑
i=1

∂i

(
−vi

(`− 1)f `−1

)
.

Provided that this ideal contains 1, any F can be reduced
to a function with simple poles by iteration of this identity.
The soundness and linearity properties are naturally satisfied,
but extending further the reduction to obtain at least the
confinement property is not straightforward and requires
stronger assumptions [21, §4]. A difficulty with this approach
is that the degrees of the cofactors vi at each reduction step
are poorly controlled: we lack the Euclidean division step
and we reduce poles at finite distance at the cost of making
worse the pole at infinity. This difficulty is overcome by
working in the projective space. The translation between
affine and projective is discussed more precisely in Section 7.
Now, assume that a and f are homogeneous polynomi-

als in L[x] = L[x0, . . . , xn], with f of degree d. A central
role is played by the Jacobian ideal Jac f of f , the ideal
generated by the partial derivatives ∂0f, . . . , ∂nf . Note that
since f is homogeneous, Euler’s relation, which asserts that f
equals 1

d

∑n

i=0 xi∂if implies that f ∈ Jac f .
We now decompose a as r +

∑
i
vi∂if . In contrast with

the affine case, each nonzero vi can be chosen homogeneous
of degree precisely deg a− deg ∂if . If ` > 1, we obtain

F = r

f `
+

1
`−1
∑n

i=0 ∂ivi

f `−1︸ ︷︷ ︸
F1

+
n∑
i=0

∂i

(
−vi

(`− 1)f `−1

)
. (2)

If r is not zero, the order of the pole need not decrease,
contrary to the affine case, but r is reduced to a normal
form modulo Jac f ; this will help us obtain the confinement
property, see Proposition 2. The reduction process proceeds
recursively on F1, which has pole order ` − 1, and stops
when ` = 1. This procedure is summarized in Algorithm 1.

3. PROPERTIES OF THE GRIFFITHS–
DWORK REDUCTION

Let f in L[x] be a homogeneous polynomial of degree d,
where L is a field of characteristic zero. It is clear that the
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Input F = a/f ` a rational function in x0, . . . , xn
Output [F ] such that there exist rational

functions A0, . . . , An such that F = [F ] +
∑

i
∂iAi

Precompute a Gröbner basis G for (∂0f, . . . , ∂nf)
procedure Reduce(a/f `)

if ` = 1 then return a/f `

Decompose a as r +
∑

i
vi∂if using G

F1 ← 1
`−1
∑

i
∂ivi

f`−1

return r
f` + Reduce(F1)

Algorithm 1. Griffiths–Dwork reduction

reduction procedure satisfies the soundness and the linearity
properties. Analogues of confinement and normalization hold
under the following regularity hypothesis:

L[x]/Jac f is finite-dimensional over L. (H)
Geometrically, this hypothesis means that the hypersurface
defined by f in Pn is smooth. In particular f is irreducible.
The ring of rational functions in L(x) whose denominator

is a power of f is denoted by L[x, 1
f

]. Let L[x, 1
f

]p denote the
subspace of homogeneous functions of degree p, i.e. the set
of F in L[x, 1

f
] such that F (λx) equals λpF (x). Note that

each derivation ∂i induces a map from L[x, 1
f

]p to L[x, 1
f

]p−1.
Let Df denote the subspace of L[x, 1

f
] consisting of ratio-

nal functions
∑

i
∂iAi for some Ai in L[x, 1

f
]−n. A major

character of this study is the quotient space L[x, 1
f

]−n−1/Df ,
denoted by Hpr

f .
The reduced form of F in L[x, 1

f
]−n−1 is denoted by [F ].

It is by definition the output of the algorithm Reduce. It
depends on a choice of a Gröbner basis of Jac f , but its
vanishing does not, see Theorem 1 below.

The choice of the space L[x, 1
f

]−n−1 and the degree −n−1
may seem arbitrary. It is motivated by it being isomorphic
to the space of regular differential n-forms on Pn \V (f). The
evaluation of x0 to 1 is the restriction map to An \ V (f).
The space Hpr

f is the nth de Rham cohomology space of the
algebraic variety Pn \ V (f) over L.

Theorem 1 (Griffiths [12, §4]). If f satisfies Hy-
pothesis (H), then for all F in L[x, 1

f
]−n−1, the reduced

form [F ] vanishes if and only if F is in Df .

Theorem 1 gives access to the dimension of Hpr
f . Let A be

the finite dimensional vector space L[x]/Jac f . For a positive
integer `, let A` denote the linear subspace of A generated
by homogeneous polynomials of degree `d− (n+ 1). Let B
denote ⊕`A`. Finally, for ` > 0 let (g`,i)16i6n` be a basis
of A`, with n` = dimLA`.

Proposition 2. Under Hypothesis (H), the family of ra-
tional functions

(
g`,i/f

`
)

0<`,i6n`
induces a basis of Hpr

f .

Proof. Suppose there exists a linear relation between
the g`,i/f ` moduloDf , that is

∑
`,i
u`,ig`,i/f

`, denoted by F ,
lies in Df for some elements u`,i of L, not all zero. Let `0
be the maximum ` such that u`,i is not zero for at least
one i. By Theorem 1, [F ] = 0 so that

∑
`,i
u`,ig`,if

`0−`, the
numerator of F , lies in Jac f . Since f itself is in Jac f , so is
the sum

∑
i
u`0,ig`0,i, contradicting the fact that the g`0,i

are a basis of A`0 . Thus the g`,i/f ` form a free family.

To prove that this family generates Hpr
f , we first notice

that the family of all the fractions [F ], for F in L[x, 1
f

]−n−1,
generatesHpr

f since [F ] equals F moduloDf . Now we assume
for a moment that each g`,i is reduced with respect to a
Gröbner basis G of Jac f . Then each polynomial of L[x] of
degree `d−n−1 which is reduced with respect to G is a linear
combination of the g`,i. Thus for all F = a/f ` in L[x, 1

f
]−n−1,

the reduction [F ] is in the span of all the g`,i/f `. This makes
the g`,i/f ` a system of generators of Hpr

f and by the previous
paragraph a basis of it. Thus Hpr

f has the same dimension
as B and any free family of Hpr

f of cardinal dimLB is a basis
of Hpr

f . In particular, the g`,i/f ` form a basis even if the g`,i
are not reduced with respect to G.

Corollary 3. Under Hypothesis (H), Hpr
f has dimension

1
d

(
(d− 1)n+1 + (−1)n+1(d− 1)

) (
6 dn

)
.

Proof. It has the dimension of B, see [19, thm. 8.3] for
its computation. The inequality is clear.

4. CREATIVE TELESCOPING
We now introduce an algorithm, based on the Griffiths–Dwork
reduction, that computes a telescoper of a rational function
under Hypothesis (H).
In Equation (1), the telescoper T is said to have a regular

certificate if the irreducible factors of the denominators of
the Ai’s, as rational functions over k(t), divide the denomina-
tor of F ; in other words, the Ai’s have no pole outside those
of F , over k(t). Algorithm 2, described in §4.2, returns the
telescoper of minimal order having regular certificate. For
the application of creative telescoping to integration, this
class of telescopers is more interesting than the general one;
that is the object of §4.1.

4.1 Telescopers with regular certificate
Back to the affine case, let F (t, x1, . . . , xn) be a rational
function over C and γ be a n-cycle in Cn over which F has no
pole for a generic t in C. A common use of creative telescoping
is the computation of a differential equation satisfied by the
one-parameter integral I(t) =

∫
γ
Fdx. As mentioned in the

introduction, it is not always possible to deduce from the
telescoping equation (1) that T (I) vanishes. It may happen
that the polar locus of the certificate meets γ for all t ∈ C,
and so some

∫
γ
∂iAidx need not be zero. An example of this

phenomenon is given by Picard [23] for a bivariate algebraic
function and translated here into a rational example, using
the method in [4, Lemma 4]:

x− y
z2 − Pt(x)Pt(y) = ∂x

2Pt(x)
(x−y)(z2−Pt(x)Pt(y))+

∂y
2Pt(y)

(x−y)(z2−Pt(x)Pt(y)) + ∂z
3(x2+y2)z

(x−y)(z2−Pt(x)Pt(y)) , (3)

where Pt(u) = u3+t. Note the factor x−y in the denominator
of the certificate. The operator 1 is a telescoper of the left-
hand side F , however there exists a 3-cycle γ on which F
has no pole and such that

∫
γ
Fdx is not zero. It is thus

impossible to find a regular certificate for the telescoper 1.
Nevertheless, a differential equation for I(t) can be ob-

tained in two ways. First, one can carefully study the inte-
gral

∑
i

∫
γ
∂iAidx and compute a differential equation for it.

Usually this includes the analysis of the poles of the Ai’s, and
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Input F = a/f ` a rational function in L[x, 1
f

]−n−1, with f
satisfying (H)

Output T (t, ∂t) an operator such that T (F ) =
∑

i
∂iAi for

some rational functions Ai

procedure Telesc(F )
G0 ← Reduce(F )
i← 0
loop

if rankL(G0, . . . , Gi) < i+ 1 then
solve

∑i−1
k=0 akGk = Gi w.r.t. a0, . . . , ai−1 in L

return ∂it −
∑

k
ak∂

k
t

else
Gi+1 ← Reduce(∂tGi)
i← i+ 1

Algorithm 2. Creative telescoping, regular case

the search of a telescoper for some rational function with one
variable less. The second way is to find a telescoper for F
such that the certificate does not contain new poles, a tele-
scoper with regular certificate. Contrary to the telescoper (3),
the operator ∂t is a telescoper with regular certificate:

∂tF = ∂x
(
− x

3tF
)

+ ∂y
(
− y

3tF
)

+ ∂z
(
− z
t
F
)
.

This proves that ∂tI = 0. More generally we have:

Proposition 4. If T ∈ C(t)〈∂t〉 is a telescoper of F with
regular certificate, then T (I) is zero.

In this case, the certificate itself is not needed to prove the
conclusion, its existence and regularity are sufficient. The
Griffiths–Dwork method always produces a telescoper with
regular certificate, see Equation (2).

4.2 Algorithm
In this section L is k(t) for some field k and f is a homo-
geneous polynomial over L of degree d satisfying Hypothe-
sis (H). For F a rational function in L[x, 1

f
]−n−1 we want

to find a nonzero operator T in L〈∂t〉 such that T (F ) lies
in Df . Algorithm 2 describes the procedure Telesc that
outputs such a telescoper. Note that L[x, 1

f
]−n−1 is stable

with respect to the derivation ∂t.

Proposition 5. Algorithm 2 terminates and outputs the
minimal telescoper of F that has regular certificate.

Proof. The sequence (Gk) is defined by G0 = [F ] and
the recurrence relation Gk+1 = [∂tGk]. We show by induc-
tion that for all k the fraction Gk equals [∂kt F ]. This is clear
for k = 0. Assume that Gk equals [∂kt F ]. By the soundness of
the reduction the operator Gk−∂kt F lies in Df . And then so
does ∂tGk−∂k+1

t F since ∂t commutes with the ∂i’s. By The-
orem 1 and linearity, this implies that [∂tGk] equals [∂k+1

t F ].
At the ith step of the loop the algorithm is looking for a

linear relation between [F ], . . . , [∂itF ]. By Theorem 1, there is
one if and only if there is a telescoper with regular certificate
of order i. If there is such a relation, the algorithm computes
it and returns the corresponding telescoper. By Proposition 2,
the algorithm terminates. The telescoper admits a regular
certificate by design, see Equation (2).

5. EFFECTIVE BOUNDS FOR CREATIVE
TELESCOPING

We now review the steps of the algorithm with the aim
of bounding the degrees and orders of all polynomials and
operators that are constructed. This is then used in the next
section to assess the complexity of this approach.
For the needs of Section 7, we track the degrees not only

with respect to the parameter t but also to another free
variable ε of the base field. In other words, we assume
that L is k(t, ε). For p a polynomial in k[t, ε], the bi-
degree (degt p,degε p) of p is denoted by δ(p). If p =

∑
I
pIxI

is a polynomial in t, ε and x, then δ(p) denotes the supremum
of the δ(pI)’s, component by component.

Theorem 6. Let f ∈ L[x] be homogeneous of degree d
satisfying (H). Let a/f ` in L[x, 1

f
]−n−1 be a rational func-

tion, with a a polynomial in t and ε. The minimal telescoper
of a/f ` with regular certificate has degree

O
(
dnδ(a) +

(
`d2n + d3n) enδ(f)

)
,

uniformly in all the parameters. It has order at most dn.

The last part of the theorem is a direct consequence of the
confinement property of Corollary 3. We now study more
precisely the decomposition used in Algorithm 1 in order to
control the degree of the telescoper and complete the proof.
The notation a(n) = O(b(n)), for a tuple n, means that

there exists C > 0 such that for all n > 1, with at most a
finite number of exceptions, we have a(n) 6 Cb(n). The no-
tation a(n) = Õ(b(n)) means that a(n) = O(b(n) logk b(n))
for some integer k. We emphasize that when there are sev-
eral parameters in a O, the constant is uniform in all the
parameters and there is at most a finite number of exceptions.

5.1 Reduction modulo the Jacobian ideal
An important ingredient of the Griffiths–Dwork reduction
is the computation of a decomposition r +

∑
i
ui∂if of a

homogeneous polynomial a. This can be done by means of
a Gröbner basis of Jac f , but instead of following the steps
of a Gröbner basis algorithm, we cast the computation into
a linear algebra framework using Macaulay’s matrices, for
which Cramer’s rule and Hadamard’s bound can then be
used. While not strictly equivalent, both methods ensure
that r depends linearly on a and vanishes when a is in Jac f .
For a positive integer q, let ϕq denote the linear map

ϕq : (ui) ∈ L[x]n+1
q−d−n −→

n∑
i=0

ui∂if ∈ L[x]q−n−1.

Let Matϕq be the matrix of ϕq in a monomial basis. It
has dimension Rq × Cq, where Rq denotes

(
q−1
n

)
and Cq de-

notes (n+ 1)
(
q−d
n

)
, and we note for future use that Cq 6 Rq

for all positive integers n and d > 2. Up to a change of or-
dering of the bases of the domain and codomain, Matϕq
has the form (A B

C D ), where A is a square submatrix of
maximal rank. Note that D is necessarily CA−1B. Then,
the endomorphism ψq defined by the matrix

(
A−1 0

0 0

)
satis-

fies ϕqψqϕq = ϕq; it is called a split of ϕq. It depends on
the choice of the maximal rank minor. The map id−ϕqψq,
denoted by πq, performs the reduction in degree q − n− 1:
it is idempotent; if a of degree q − n− 1 is in Jac f then it
equals ϕq(b) for some b and thus πq(a) vanishes; and for all a
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in L[x]q−n−1 it gives a decomposition

a = πq(a) +
∑
i

ψq(a)i∂if.

Under Hypothesis (H), the map ϕq is surjective when q is
at least (n + 1)d − n. Let D denote this bound, known as
Macaulay’s bound [18, chap. 1; 16, corollaire, p. 169].
For q larger than D, a split of ϕq can be obtained from

a split ψD of ϕD in the following way. Let S be the set of
monomials in x of total degree q−D. Choose a linear map µ
from L[x]q−n−1 to L[x]SD−n−1 such that each a in L[x]q−n−1
equals

∑
m∈Smµm(a). Then a split of ϕd is defined by

ψd(a) =
∑
m∈S

mψD(µm(a)).

Let q be a positive integer and let Eq be the least common
multiple of the denominators of the entries of Matψq. The
entries of Matψq and Matπq are rational functions of the
form p/Eq, with p polynomial. Let δE denote the supremum
of all δ(p) and all δ(Eq), for q ∈ N \ {0}.

Proposition 7. The supremum δE is finite and bounded
above by endnδ(f). Moreover, if q > D then Eq equals ED.

Proof. Assume first that q > D. In this case, the en-
tries of Matψq are entries of MatψD and πq is zero. Thus
the inequalities will follow from the case where q 6 D.
Let Matψq and Matπq be written respectively as N/Eq
and P/Eq with N and P polynomial matrices. Let r be the
rank of ψq. The maximal rank minor A in the construction
of ψq has dimension r. Cramer’s rule and Hadamard’s bound
ensure that δ(N) is at most (r − 1)δ(f) and that δ(Eq) is at
most rδ(f). Since P equals Eq id−(Matϕq)N and δ(Matϕd)
equals δ(f), the degree δ(P ) is also at most rδ(f).
Next, r is bounded by Rq, the row dimension of Matφd.

Since q 6 D, we have Rq 6 RD and we conclude using
inequality

(
p
n

)
6
(
p e
n+1

)n, with p > n an integer.

Algorithm 3 is a slightly modified version of Algorithm 1
which uses the construction above. Its output is in general not
equal to the output of the former version, for any monomial
order, but of course it satisfies Theorem 1. In particular
the output of the algorithm Telesc does not depend on the
reduction method in Reduce. From now on the brackets [·]
denote the output of Algorithm 3.

5.2 Degree bounds for the reduction

Proposition 8. Let a/f ` ∈ L[x, 1
f

]−n−1, with a a poly-
nomial in t and ε. Then[

a

f `

]
= 1
P`

n∑
k=1

bk
fk
,

where P` =
∏`

i=1 Eid and bk in L[x]kd−n−1 is a polynomial
in t and ε such that δ(bk) 6 δ(a) + `δE, for 1 6 k 6 n.

Proof. Using Algorithm 3, we obtain[
a

f `

]
= p

E`df `
+ 1
E`d

[
g

f `−1

]
,

where g and p are polynomials in x, t and ε, with δ(p)
and δ(g) at most δ(a) + δE . Induction over ` yields[

a

f `

]
=
∑̀
k=1

pk

fk
∏`

j=k Ejd

Input F = a/f ` a rational function in L[x, 1
f

]−n−1, with f
of degree d

Output [F ] such that there exist rational
functions A0, . . . , An such that F = [F ] +

∑
i
∂iAi

For all 1 6 i 6 `, precompute a split ψid of ϕid (§5.1)
procedure Reduce(a/f `)

if ` = 1 then return a/f `

F1 ←
1

`− 1
∑
i

∂iψ`d(a)i
f `−1

return π`d(a)
f` + Reduce(F1)

Algorithm 3. Griffiths–Dwork reduction, linear algebra variant

with pk polynomials such that δ(pk) 6 δ(a) + (`− k + 1)δE .
For k > n, and hence kd > D, the map πkd is 0 and thus so
is pk. Thus[

a

f `

]
= 1∏`

j=1 Ejd

min(`,n)∑
k=1

pk
∏k−1
j=1 Ejd

fk
.

This proposition applied to ∂it(a/f `) asserts that[
∂it
a

f `

]
= 1
P`+i

n∑
k=1

bi,k
fk

= 1
P`+i

b′i
fn

(4)

for some polynomials bi,k and b′i such that
δ(bi,k) 6 δ(a) + iδ(f) + (i+ `)δE , (5)

and δ(b′i) 6 δ(a) + (i+ n)δ(f) + (i+ `)δE . (6)

5.3 Degree bounds for the telescoper

Proposition 9. Let T =
∑r

i=0 ci∂
i
t, with coefficients ci

in k[t, ε], be the minimal telescoper with regular certificate
of a/f `. Then

δ(ci) 6 rδ(a) +
(
r2 + r`

)
endnδ(f).

Proof. The operator T is the output of Telesc(a/f `).
The rational functions ci/cr form the unique solution to the
following system of inhomogeneous linear equations over L,
with the Yi’s as unknown variables:

r−1∑
i=0

[
∂it
a

f `

]
Yi = −

[
∂rt

a

f `

]
.

We write each bi,k in (4) as
∑

m∈S bi,k,mm, where S is the set
of all monomials in the variables x of degree at most nd−n−1.
The previous system rewrites as

∀m ∈ S,∀k ∈ {1, . . . , n} ,
r−1∑
i=0

Yi
bi,k,m
P`+i

= − br,k,m
P`+r

There is a set I of r indices {(k0,m0), . . . } such that the
square system formed by the corresponding equations admits
a unique solution. We apply Cramer’s rule to this system.
Let B be the square matrix (bi,kj ,mj )i,j , for 0 6 i, j < r.
Let Bi be the matrix obtained by replacing the row number i
of B by the vector (br,kj ,mj )j . We get, after simplification
of the factors P`+∗ by multilinearity of the determinant,

ci
cr

=
P`+i

P`
detBi

P`+r

P`
detB

. (7)
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So, for all i, the polynomial ci divides P`+i

P`
detBi and thus

δ(ci) 6 iδE +
r∑

j=0,j 6=i

δ(bj).

With the previous bound (5) on δ(bi) we get

δ(ci) 6 rδ(a) + r(r + 1)
2 (δ(f) + δE) + r`δE ,

which gives the result with Proposition 7.

6. COMPLEXITY
We assume that L is the field k(t) and we evaluate the alge-
braic complexity of the steps of Reduce and Telesc in terms
of number of arithmetic operations in k. All the algorithms
are deterministic. For univariate polynomial computations,
we use the quasi-optimal algorithms in [10]. For simplicity,
we assume that d > 2 so that several simplifications occur in
the inequalities since Cq 6 Rq and d > e ≈ 2.72.

Theorem 10. Under Hypothesis (H) and assuming that
d > 2, Algorithm Telesc run with input a/f ` takes

Õ
((
d5n + d4n`+ d3n`2

(
`
n

)2n) e3nδ
)

arithmetic operations in k, where δ is the larger of δ(a)
and δ(f), uniformly in all the parameters. Asymptotically
with ` and n fixed, this is Õ

(
d5nδ

)
.

Note that while this may seem a huge complexity, it is not so
bad when compared to the size of the output, which seems to
be, empirically, comparable to d3nδ, with n fixed and ` = 1.
Note also that for n = 1, the complexity improves over that
of the algorithm based on Hermite’s reduction studied in [3],
thanks to our avoiding too many rank computations.

Remark 11. Let a/f be a generic fraction with a tele-
scoper T and a regular certificate A. We claim that the size
of A is asymptotically bounded below by d(1−o(1))n2

δ, mak-
ing it crucial to avoid the computation of certificates. Indeed,
the fraction T (a/f) writes b/fr+1, where r is the order of T .
The number of monomials of b in x is

((r+1)d−1
n

)
≈ (rd)n/n!.

If a is generic then r is at least dimHpr
f , by the Cyclic Vector

Theorem; and if f is generic, it satisfies (H) and dimHpr
f is

about dn, by Corollary 3. Since T (a/f) equals
∑

i
∂i(Ai),

the size of the Ai has at least the same order of magnitude
than that of T (a/f); hence the claim.

6.1 Primitives of linear algebra
The complexity of Algorithm 2 lies in operations on matrices
with polynomial coefficients. Let A ∈ k[t]n×m have rank r
and coefficients of degree at most d. One can compute r,
a basis of kerA and a maximal rank minor in Õ(nmrω−2d)
operations in k [30]. A maximal rank minor can be inverted
in complexity Õ(r3d) [13]. In particular, a matrix B such
that ABA = A can be computed in Õ(nmrω−2d + r3d)
operations in k, or Õ(n2md), using r 6 n,m and ω 6 3.
A matrix A with rational entries is represented with the

l.c.m. g of the entries and the polynomial matrix gA.

6.2 Precomputation
Algorithm 2 needs the splits ψid for i from 1 to the larger
of n+ 1 and `. Following §5.1, it is enough to compute ψid
for i between 1 and n+ 1, each for a cost of Õ(RidC2

idδ(f))
operations in k, and then ψid can be obtained with no further

arithmetic operation for i > n+ 1. Thus the precomputation
needs Õ

(
e3nd3nδ(f)

)
operations in k.

6.3 Reduction
Let ρ(`, δ(a)) be the complexity of the variant of the al-
gorithm Reduce based on linear algebra with input a ra-
tional function a/f `. The procedure first computes ψ`d(a).
Since ψ`d is precomputed, it is only the product of a matrix
of dimensions C`d by R`d with the vector of coefficients
of a in a monomial basis. The elements of the matrix
have degree at most δE and the elements of the vector
have degree at most δ(a). Thus the product has complex-
ity Õ(R`dC`d(δ(a) + δE)). Secondly, the procedure com-
putes r as π`d(a) knowing ψ`d(a); this has the same com-
plexity. Thirdly, it computes F1, computation whose com-
plexity is dominated by that of the first step. And lastly
it computes Reduce(F1), which has complexity bounded
by ρ(`− 1, δ(a) + δE). Unrolling the recurrence leads to

ρ(`, δ(a)) = Õ
(
`
( ed`
n+ 1

)2n
(δ(a) + `δE)

)
.

6.4 Main loop
The computation of G0 has complexity ρ(`, δ(a)). Next, Gi
has shape given by (4), and is differentiated before being
reduced, so that the cost of the computation of Gi+1 is at
most ρ(n+ 1, δ(a) + (i+ 2n)δ(f) + (i+ `)δE). Summing up,
the computation of G0, . . . , Gr has a complexity
ρ(`, δ(a)) + Õ

(
(ed)2nr (δ(a) + rδ(f) + (r + `)δE)

)
. (8)

During the ith step, the procedure computes the rank
of i + 1 vectors with O(endn) coefficients of degree δ(b′i)
and computes a linear dependence relation if there is one.
This is done in complexity Õ

(
iω−1endnδ(b′i)

)
. This step is

quite expensive and doing it for all i up to r would ruin
the complexity. It is sufficient to perform this computation
only when i is a power of 2 so that the maximal i which
is used is smaller than 2r. When the rank of the family is
not full, we deduce from it the exact order r and perform
the computation in that order. Indeed, the rank over L
of G0, . . . , Gi is the least of r and i. This way, finding the
rank and solving has cost Õ(rω−1endn(δ(b′r) + δ(b′2r))). In
view of (6) and since r 6 dn and ω 6 3, the complexity
of that step is bounded by (8). Adding the cost of the
precomputation and using the bounds of the previous section
leads to Theorem 10.

7. AFFINE SINGULAR CASE
Let L denote the field k(t). Let Faff be a rational func-
tion in L(x1, . . . , xn), written as a/faff . We do not assume
that Faff is homogeneous, nor that faff satisfies a regularity
property. Let daff be the total degree of faff w.r.t. x.
In this section we show a deformation technique that regu-

larizes singular cases. In particular, it allows to transfer the
previous results to the general case and obtain the following
bounds. The algorithm is again based on linear algebra.

Theorem 12. The function Faff admits a telescoper, with
regular certificate, of order at most dn and degree

O
(
dnprδ(a) + d3n

pr enδ(faff)
)
,

where dpr is max(daff , degx a+ n+ 1). This telescoper can
be computed in complexity Õ

(
e3nd8n

pr δ
)
, with δ the larger

of δ(a) and δ(faff).
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degree of f 3 4 5 6
order of telesc. 2 6 12 20

degree of telesc. δ = 1 32 (68) 0.4s 153 (891) 46s 480 (5598) 2h 1175 (23180) 150h
— , δ = 2 66 (136) 0.6s 336 (1782) 140s 1092 (11196) 7h ? (46360) ∅
— , δ = 3 100 (204) 0.9s 519 (2673) 270s 1704 (16794) 13h ? (69540) ∅

Table 1. Empirical order and degree of the minimal telescoper with regular certificate of a random rational function a/f2

in Q(t, x0, x1, x2), with f and a homogeneous in x satisfying degx a+ 3 = 2 degx f and δ(a) and δ(f) equal to δ; together
with a proved upper bound (with a version of Theorem 9 without simplification) and mean computation time (CPU time).

It is easy to see that the bit complexity is also polynomial
in dnpr. The dependence in n of the complexity, with degx a

and daff fixed, can be improved to eO(n) rather than nO(n)

with a more careful analysis.

7.1 Homogenization and deformation
The regularization proceeds in two steps. First, let Fpr be
the homogenization of Faff in degree −n− 1, that is

Fpr = x−n−1
0 Faff

(
x1
x0
, . . . , xn

x0

)
,

which we write b/fpr for some homogeneous polynomials b
and fpr. Let dpr denote the degree of fpr; it is given by
Theorem 12. The degrees of b and fpr satisfy the hypothesis
of Theorem 6, by construction, but in general fpr does not
satisfy Hypothesis (H). (Although it does generically, as long
as dpr equals daff .) We consider a new indeterminate ε, the
polynomial freg defined by

freg = fpr + ε

n∑
i=0

xdpr
i ,

and the rational function Freg defined by b/freg. We could
also have perturbed the square-free part of fpr rather than fpr,
leading to an improvement of the complexity in Theorem 12
at the cost of more technical details.

Lemma 13. The polynomial freg satisfies Hypothesis (H)
over L(ε), that is L(ε)[x]/Jac freg has finite dimension.

Proof. This is true for ε =∞, so it is generically true.

Now, Theorem 6 gives bounds on the order and degree of a
telescoper of Freg, which is in L(ε)[x, 1

freg
]−n−1. The proof

of Theorem 12 is concluded by the following.

Proposition 14. If T in L[ε]〈∂t〉 is a telescoper of Freg
with regular certificate, then so is T |ε=0 for Faff .

Proof. By assumption, T (Freg) equals
∑n

i=0 ∂igi/f
p
reg for

some integer p and polynomials gi in L(ε)[x]. Each gi/fpreg
can be expanded in Laurent series in ε as

∑
j>N hijε

j for
some possibly negative integer N and rational functions hij
in L[x, 1

fpr
]−n. Similarly, we can write the operator T (Freg)

as T |ε=0(Fpr) + ε
∑

j>0 bjε
j for some rational functions bj

in L[x, 1
fpr

]. Since the derivations ∂i commute with ε, it
is clear that T |ε=0(Fpr) equals

∑n

i=0 ∂ihi0. Next, in this
equality, x0 can be evaluated to 1 to give

T |ε=0(Faff) = (∂0h00)|x0=1 +
n∑
i=1

∂i(hi0|x0=1).

Euler’s relation for h00 gives (with the index 00 dropped)

(∂0h)|x0=1 = −
n∑
i=1

∂i(xih|x0=1),

proving that (∂0h)|x0=1 is in Dfaff . Thus, so is T |ε=0(Faff)
and the proof is complete.

Nevertheless, a telescoper obtained in this way does not
need to be minimal, even starting from a minimal one for
the perturbed function Freg. This is unfortunate because in
presence of singularities the dimension of Hpr

f can collapse
when compared to the generic order given by Corollary 3.

7.2 Algorithm and complexity
The algorithm is based on Proposition 14. We use an
evaluation-interpolation scheme to control the complexity.
Let the operator T in k(t, ε)〈∂t〉 be the minimal telescoper
of Freg, written as ∂rt+

∑r−1
k=0

ck
cr
∂kt . It is the output of Telesc

applied to Freg. We aim at computing (εαT )|ε=0, where α is
such that this evaluation is finite and not zero.
Proposition 14, slightly adapted, shows that T |ε=u is a tele-

scoper with regular certificate of Freg|ε=u whenever cr(t, u)
is not zero, even if freg|ε=u does not satisfy (H). When it
does, the specialization gives the minimal one:

Lemma 15. If freg|ε=u satisfies hypothesis (H) and if u
does not cancel cr, then T |ε=u is the minimal telescoper with
regular certificate of Freg|ε=u.

Proof. We use the notation of Section 5, replacing f
by freg and L by L(ε). The operator T is the output of
Algorithm 2 applied to Freg. Since freg|ε=u satisfies (H),
for all d the matrix Matϕd, with coefficients in L[ε], has
the same rank as its specialization with ε = u [18, §58].
Thus, to compute the splits ψd we can choose maximal rank
minors of Matϕd that are also maximal rank minors of the
specialization. When doing so, the reduction [·] commutes
with the evaluation ·|ε=u. In particular, the polynomials Eq
do not vanish for ε = u.
In the proof of Prop. 9, Eq. (7) shows that cr, the leading

coefficient of T , divides P`+r detB. The polynomial P`+r
is a product of several Ed’s, in particular P`+r|ε=u is not
zero. Since cr|ε=u 6= 0, the determinant of B|ε=u is not zero
either. Looking at the definition of B in the proof of Prop. 9,
this implies that the [∂itFreg]|ε=u, for i between 0 and r − 1
are free over L(ε). In particular, a telescoper with regular
certificate of Freg|ε=u has order at least r. Since T |ε=u is a
telescoper of order is r, it is the minimal one.

We now present the algorithm. Let N be en(d3n+d2n+dn).
By Proposition 9, the polynomials ck have degree at most N
in ε, and at most Nδ in t. Choose a set U of 4N + 1
elements of k. Determine the set U ′ of elements u of U
such that freg|ε=u satisfies (H). This step has complex-
ity Õ ((ed)nωδ|U |): The polynomial freg|ε=u satisfies (H)
if and only if (MatϕD)|ε=u is full rank. In particular,
if freg|ε=u does not satisfy (H), then ED|ε=u vanishes. The
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polynomial ED has degree at most endn in ε, by Proposi-
tion 7, so U \ U ′ has at most endn elements. For each u
in U ′, compute Telesc(freg|ε=u) with leading coefficient
normalized to 1, denoted by Tu. This step has complex-
ity Õ(d5ne3nδ|U ′|), by Theorem 10. Determine the subset U ′′
of U ′ where the order of Tu is maximal. By Lemma 15, the
complement U ′ \ U ′′ is formed by u such that cr(t, u) = 0.
It has at most N elements since cr has degree at most N
in ε. For all u in U ′′ the operators Tu and T |ε=u coincide.
Thus U ′′ has at most 2N + 1 elements.
The r rational functions ck(t,0)

cr(t,0) can be computed using
Lemma 16 in total complexity Õ(N2rδ). If cr(t, 0) is zero, we
look for the positive integer α such that the functions εα ck(t,ε)

cr(t,ε)
are finite for ε = 0 but not zero for at least one k. The in-
teger α is at most N and thus can be found with a binary
search, using at most log2 N + 1 times Lemma 16.

Lemma 16. Let R in k(x, y) be written P/Q, with P
and Q polynomials of degree less than dx in x and dy in y.
Given evaluations R(x, v), for 2dy + 1 elements v of k, the
function R(x, 0) (or ∞ if Q(x, 0) vanishes) can be computed
using Õ(dxdy) arithmetic operations in k.

Proof. Let V the set of evaluation points. Choose a
set U of 2dx + 1 points of k. Compute R(u, v) for u ∈ U
and v ∈ V in Õ(dxdy) operations. Note that there is no need
to check that the elements of U are not poles of the R(x, v):
univariate rational reconstruction can handle that. Use
univariate rational reconstruction to compute R(u, y), for u
in U , in complexity Õ(dy|U |) operations. Reconstruct R(x, 0)
in complexity Õ(dx) from the evaluations R(u, 0).

8. EXPERIMENTS
A basic implementation of the algorithm Telesc has been
written in Maple 16. As it uses only Maple primitives to
compute with polynomial matrices, it is certainly too basic
to reflect the complexity given in Theorem 10.
Table 1 presents empirical results for some generic rational

functions, with n = 2. The bound on the order are generi-
cally exact as expected; however the bound on the degree is
not very sharp. For n = 1 and δ(a) fixed, a careful study [3]
proves that the degree of the minimal telescoper is O(d2δ),
which is tighter than the O(d3δ) given by Theorem 6. Anal-
ogy, as well as numerical evidence and theoretical clues, lead
us to think that for general n, the asymptotic behavior can
be improved from O(d3nδ) to O(d2nδ).
The relative cost of each step of Algorithm 2 in the com-

putation of telescopers of Table 1, on the example of the
telescoper of degree 12 and degree 1092 of a generic func-
tion a/f2 as described in Table 1, that is computed in about 7
hours breaks down as follows: The computation of splits of
Macaulay matrices takes about 1% of the time, the reduction
steps about 40%, and the final solving about 60% of the time.
More efficient matrix multiplication and system resolution
over univariate polynomials could improve speed dramati-
cally. We have not been able to compute more than the first
column of Table 1 with methods and programs in [15, 4].
On the other hand, the regularity hypothesis (H) is restric-

tive in applications: Even though generic polynomials satisfy
this hypothesis, examples with physical or combinatorial
meaning usually do not. The method shown in Section 7 is
only of theoretical interest. By contrast, the algorithm for
the regular case is very efficient in practice.
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