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ABSTRACT
Proving positivity of a sequence given by a linear recur-
rence with polynomial coefficients (P-finite recurrence) is
a non-trivial task for both humans and computers. Algo-
rithms dealing with this task are rare or non-existent. One
method that was introduced in the last decade by Gerhold
and Kauers succeeds on many examples, but termination of
this procedure has been proven so far only up to order three
for special cases. Here we present an analysis that extends
the previously known termination results on recurrences of
order three, and also provides termination conditions for re-
currences of higher order.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.2.1 [Discrete Mathe-
matics]: Combinatorics—Recurrences and difference equa-
tions

General Terms
Algorithms

Keywords
P-finite Sequences, Positivity, Cylindrical decomposition

1. INTRODUCTION
Special functions are interesting mathematical objects, in

particular from the point of view of symbolic computation.
They are often defined by linear recurrences, differential
equations, or mixed difference-differential equations which
makes them a suitable input for several computer algebra
methods. Nowadays, a multitude of algorithms is avail-
able that can automatically prove or derive transformations,
identities or closed forms for special functions.
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The situation is quite different for special functions in-
equalities, which arise in many applications in mathematics
and physics. These are still a serious challenge for both
humans and computers. Even for special cases such as se-
quences satisfying linear recurrence relations with constant
coefficients, deciding whether the given sequence is positive
leads to hard number theoretic questions to which no solu-
tions are known today [12, 13].

Despite these difficulties, some progress has been made
in the last decade. Only a few years ago, Mezzarobba and
Salvy have given an algorithm for effectively computing tight
upper bounds for sequences defined by linear recurrences
with polynomial coefficients [22]. Recently, Cha [6] has ex-
tended a method for finding closed form solutions of differ-
ence equations introduced by Cha, van Hoeij, and Levy [7]
to a method that determines closed form solutions that are
linear combinations of sums of squares. In the lucky case,
it suffices to prove positivity of the rational function coeffi-
cients using, e.g., Cylindrical Algebraic Decomposition [2, 9,
10, 5] (CAD), to conclude positivity of the given sequence.

In 2005, Gerhold and Kauers [14] proposed a method that
is applicable to proving inequalities concerning sequences
that satisfy recurrence equations of a very general type.
Their method consists of constructing a sequence of poly-
nomial sufficient conditions that would imply the non-poly-
nomial inequality under consideration. The truth of these
conditions can be detected for instance using CAD. If the
inequality does not hold, then the method terminates after
a finite number of steps and returns a counterexample. If
the inequality holds, then either the program terminates and
returns True or it may fail to detect this and run forever.

Despite its simplicity, the method has been quite success-
ful in applications. Not only did it provide the first com-
puter proofs of some special function inequalities from the
literature [14, 15, 18, 19], but it even helped to resolve some
open conjectures [1, 20, 19, 23]. At the same time, the lack
of termination conditions was unsatisfactory from a compu-
tational point of view. First results on a priori conditions,
for some restricted classes, guaranteeing that the method
(or some variation of it) will succeed were determined only
recently [21] for sequences defined by linear recurrence equa-
tions with polynomial coefficients (P-finite sequences) up to
order three.

The aim of this paper is to extend these known termi-
nation results for the original proving procedure introduced
by Gerhold and Kauers (Algorithm 1 below) for recurrences
of order three and to obtain new termination conditions for
recurrences of higher order. As auxiliary tool, we propose aISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
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new variation of the method (Algorithm 3 below) for proving
positivity of P-finite sequences. If Algorithm 3 terminates
on a given input, then Algorithm 1 also terminates on this
input. The new method, however, allows for a different ana-
lysis than the initial one which leads to an extension of the
known termination conditions (Theorem 2 and Corollary 1).
Some parts of the analysis are not affected by the order and
thus also termination conditions for higher orders are ob-
tained (Corollary 2 and Theorem 3). An interesting aspect
of the analysis is that algorithms for real quantifier elimina-
tion are not only used in the execution of Algorithm 1 and 3,
but also enter in the proof of the termination theorems.

2. PRELIMINARIES
A sequence f : N → K := R ∩ Q is called P-finite (or

holonomic) if there exist polynomials p0, . . . , pd ∈ K[x], not
all zero, such that

p0(n)f(n) + p1(n)f(n+ 1) + · · ·+ pd(n)f(n+ d) = 0

for all n ∈ N. Such an equation is called a (P-finite) recur-
rence, and d is called its order if p0 and pd are not vanishing
entirely. In the special case when all coefficients in the re-
currence are from the ground field K we call it a C-finite
recurrence. If pd(n) �= 0 for all n ∈ N, then the infinite
sequence f is uniquely determined by the recurrence and d
initial values f(0), f(1), . . . , f(d − 1). In this case, we may
also rewrite the recurrence with rational function coefficients
as

f(n+ d) = rd−1(n)f(n+ d− 1) + · · ·+ r0(n)f(n),

with rk(n) = − pk(n)
pd(n)

. The assumption pd(n) �= 0 for all

n ∈ N can be adopted without loss of generality, because
we can substitute g(n) = f(n +N) for some N larger than
the biggest integer root of pd and then consider g instead
of f and check non-negativity of the finitely many terms
f(0), . . . , f(N − 1) by inspection.

A P-finite recurrence is called balanced if deg p0 = deg pd
and deg pi ≤ deg p0 (i = 1, . . . , d). The characteristic poly-
nomial of a balanced recurrence is defined as

χ(x) = lcy
(
p0(y)+p1(y)x+p2(y)x

2 + · · ·+pd(y)x
d) ∈ Q[x].

Its roots α1, . . . , αd ∈ C are called the eigenvalues of the
recurrence. (The αi are not necessarily distinct.) Note that
for a balanced recurrence, the characteristic polynomial has
always degree d and it has never zero as a root.
An eigenvalue αi is called dominant if |αj | ≤ |αi| for all

j = 1, . . . , d. If none of the dominant eigenvalues αi is real
and positive, then it is clear that f will be ultimately os-
cillating [3] (if the recurrence is of minimal order), and so
f(n) ≥ 0 cannot possibly be true for all n. This case can
be sorted out trivially beforehand, and we may therefore as-
sume that there is a real and positive dominant eigenvalue.
In that case, if αi �= 1, we consider the P-finite sequence
g(n) = f(n)/αn

i instead, whose dominant eigenvalues are
of modulus 1. Since f(n) ≥ 0 ⇔ g(n) ≥ 0 it suffices to
consider the case when αi = 1 for some i and |αj | ≤ |αi|
for all j �= i. In the analysis of the terminating region we
assume that for the given sequence there is a unique dom-
inant real eigenvalue, αi = 1, in order to exploit that this
eigenvalue governs its asymptotic behaviour.

3. INDUCTION BASED PROVING
PROCEDURES

Let f(n) be a P-finite sequence of order d given in terms of
its defining recurrence relation and initial values. Based on
this information it is to be decided whether the sequence is
non-negative for all n ≥ 0. Here and in what follows we stick
to the terminology used in [21] and refer to the positivity
proving procedures as algorithms, even though identifying
conditions that imply termination is precisely the topic of
this note.

3.1 Summary of previous algorithms
The initial version of the algorithm as introduced by Ger-

hold and Kauers [14] proceeds by induction:

f(n) ≥ 0 ∧ · · · ∧ f(n+ d− 1) ≥ 0 =⇒
rd−1(n)f(n+ d− 1) + · · ·+ r1(n)f(n+ 1) + r0(n)f(n) ≥ 0

A sufficient condition for this to hold for all n ∈ N is that
the induction step formula

∀ y0, y1, . . . , yd−1 ∈ R ∀ x ∈ R :(
x ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yd−1 ≥ 0

)
=⇒ rd−1(x)yd−1 + · · ·+ r0(x)y0 ≥ 0.

is true, and this can be decided by a quantifier elimination
algorithm. If it is true, the induction step is established
and f is non-negative everywhere if and only if it is non-
negative for n = 0, . . . , d−1, which can be checked. Passing
from discrete values of n to a real variable x (and possibly
ignoring other relevant information passing from f(n+ i) to
real variables yi), the induction step formula may be false
even though the given sequence is non-negative. If the for-
mula is false, then in the next step the induction hypothesis
is extended and the formulas

f(n) ≥ 0 ∧ · · · ∧ f(n+D − 1) ≥ 0 =⇒ f(n+D) ≥ 0

for D > d are constructed. Using the recurrence, each term
f(n + i) can be rewritten as a linear combination of f(n),
. . . , f(n+d−1) with rational function coefficients, and using
this rewriting, refined induction step formulas are built :

Φ(D) := ∀ y0, y1, . . . , yd−1 ∈ R ∀ x ∈ R :(
x ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yd−1 ≥ 0

∧R0(d, x)y0 + · · ·+Rd−1(d, x)yd−1 ≥
∧R0(d+ 1, x)y0 + · · ·+Rd−1(d+ 1, x)yd−1 ≥ 0
...

∧R0(D − 1, x)y0 + · · ·+Rd−1(D − 1, x)yd−1 ≥ 0
)

⇒ R0(D, x)y0 + · · ·+Rd−1(D, x)yd−1 ≥ 0,

where the Ri(j, ·) are some rational functions. The full
method then reads as follows.

Algorithm 1.
Input: A P-finite recurrence of order d and a vector of initial
values defining a sequence f : N → Q.
Output: True if f(n) ≥ 0 for all n ∈ N, False if f(n) < 0 for
some n ∈ N, possibly no output at all.

1 for n = 0 to d− 1 do
2 if f(n) < 0 then return False
3 for n = d, d+ 1, d+ 2, d+ 3, . . . do
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4 if Φ(n) then return True
5 if f(n) < 0 then return False

In [21] a variation of Algorithm 1 was introduced that cov-
ers some of its non-terminating cases. The basic idea is
to determine a constant factor M > 0 such that the se-
quence Mnf(n) is increasing and such that this fact can be
proven by an application of Algorithm 1 without extend-
ing the induction hypothesis. We refer to this algorithm as
Algorithm 2. Termination for both variants has been investi-
gated up to recurrences of order three [21]. These results are
summarized in the figure below in terms of the coefficients
of the characteristic polynomial u1, u0, where

χ(x) = (x− 1)(x2 + u1x+ u0).

The outer triangle corresponds to the area where the roots
are in the interior of the complex unit disk, the gray shaded
area is the termination region of Algorithm 2, and the dashed
areas are terminating regions for Algorithm 1. For the latter,
the parts ID correspond to induction hypotheses of lengthD.
In particular, the region where Algorithm 1 terminates in

the first step is I3 = {(u1, u0) | 0 < u0 < u1 < 1}. This
corresponds to the trivial case when all coefficients in the
recurrence eventually are positive.

I 3
I 4

I 5

u1

u0

� 2 �1 0 1 2
�1.0

�0.5

0.0

0.5

1.0

For an induction hypothesis of length three, i.e., the case
when the induction succeeds in the first step, the algorithm
terminates only in the case when all the coefficients of the
characteristic polynomial are non-negative [21]. Induction
hypotheses of length six and more as well as higher order
cases have not been discussed in the previous paper because
of computational limitations.

3.2 Algorithm 3
Our aim is to extend the known termination results for

Algorithm 1 and our tool in the analysis is a variant of it.
This new method, Algorithm 3, has the property that if it
terminates then also the original algorithm terminates, but
it allows to obtain better statements about the terminating
region. The efficiency of Algorithm 3 is not investigated.
Let f(n) be a given P-finite sequence of order d. Instead of

proceeding by induction on the sequence itself, we consider
the shifted subsequences f(n + m), for some fixed natural
number m ≥ d, and aim at proving inductively that non-
negativity of d successive sequence elements implies non-
negativity of one such shifted sequence. That is, we prove
that

f(n) ≥ 0∧f(n+1) ≥ 0∧· · ·∧f(n+d−1) ≥ 0 ⇒ f(n+m) ≥ 0,

for n ≥ n0, for some lower bound n0 ≥ 0. Using the recur-
rence relation, f(n + m) can be expressed as linear combi-
nation of f(n), . . . , f(n+d−1) with rational function coeffi-
cients. Checking initial values f(0) ≥ 0, . . . , f(n0+m−1) ≥

0 completes the proof. The (modified) refined induction step
formula for this variation reads as

Ψ̃(m) := ∃ ξ ∀ y0, y1, . . . , yd−1 ∈ R ∀ x ∈ R :(
x ≥ ξ ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yd−1 ≥ 0

)
=⇒ R0(m,x)y0 + · · ·+Rd−1(m,x)yd−1 ≥ 0,

where the Ri(m, ·) are some rational functions. In order
to determine the lower bound ξ we perform quantifier elim-
ination on the formula where we drop the first quantifier

in Ψ̃(m). The full method then reads as follows.

Algorithm 3.
Input: A P-finite recurrence of order d and a vector of initial
values defining a sequence f : N → Q.
Output: True if f(n) ≥ 0 for all n ∈ N, False if f(n) < 0 for
some n ∈ N, possibly no output at all.

1 for n = 0 to d− 1 do
2 if f(n) < 0 then return False
3 for m = d, d+ 1, d+ 2, d+ 3, . . . do
4 Determine a quantifier free formula Ψ(m, ξ)

equivalent to

ξ > 0 ∧ ∀x, y0, y1, . . . , yd−1 ∈ R :(
x ≥ ξ ∧ y0 ≥ 0 ∧ · · · ∧ yd−1 ≥ 0

)
⇒ R0(m,x)y0 + · · ·+Rd−1(m,x)yd−1 ≥ 0,

5 if ∃ ξ0 : Ψ(m, ξ0) then
6 for n = m, . . . ,m+ �ξ0� − 1 do
7 if f(n) < 0 then return False
8 return True
9 if f(m) < 0 then return False

Essentially correctness of this algorithm follows from the
correctness of Algorithm 1.

Theorem 1. Algorithm 3 is correct.

Proof. Correctness is obvious whenever the algorithm
returns False, because this happens only when an explicit
point n with f(n) < 0 has been found. Suppose now that
the algorithm returns True at some value m of the iteration
index of the for loop. Then f(0), . . . , f(m − 1) are all non-
negative (this has been verified for the initial values in line 2
and in each iteration of the loop in line 9).

It remains to verify non-negativity for the initial values
that have not been checked yet, i.e., that f(n) ≥ 0 for m ≤
n ≤ m + n0 − 1. This is carried out in line 7. Then,
for any d consecutive, non-negative terms of the sequence
f(n), . . . , f(n+ d− 1) with n ≥ n0, it follows by the defini-
tion of Ψ (line 5) and the choice of ξ0 that f(n + m) ≥ 0,
and thus inductively that f(n) ≥ 0 for all n.

In Algorithm 3 the length of the induction hypothesis in the
refined induction step formula remains constantly equal to
the order of the recurrence, whereas in Algorithm 1 addi-
tional requirements (or additional informations) are added
to the hypothesis. In both algorithms the conclusion in
the induction step formula, however, is the same. Since
(A ⇒ B) ⇒ (

(A ∧ C) ⇒ B
)
, termination of Algorithm 3

implies termination of Algorithm 1.
In Algorithm 1 the quantifier free part in the induction

step formula is of the form

Hd(x, y0, . . . , yd−1) =⇒ C(x, y0, . . . , yd−1).

317



Both sides, the hypothesis and the conclusion, define semi-
algebraic sets and from the geometric point of view it is
checked whether the set defined by H is contained in the
set defined by C. If this is not the case, then a further
restriction is added to the hypothesis defining a new set that
can, if anything, only decrease in size. At the same time the
conclusion is altered in order to determine a set large enough
to fit the hypothesis. The process is repeated until (in the
lucky case) both sides are made to fit. On the other hand,
Algorithm 3 searches for an appropriate superset to fit the
hypothesis.

Example 1. Let f : N → K be defined by

(20n+ 1)f(n+ 3) = 3(5n+ 1)f(n+ 2)

− (13n+ 1)f(n+ 1) + (18n+ 7)f(n),

and f(0) = f(1) = 1, f(2) = 3. The characteristic polyno-
mial of this recurrence has the coefficients u0 = 9

10
, u1 = 1

4

and eigenvalues 1,− 1
8
± i

√
1415
40

. These values are chosen
outside the previously proven terminating regions.

An application [17] of Algorithm 1 succeeds proving pos-
itivity by extending the induction hypothesis up to length
nine and also Algorithm 3 succeeds proving positivity for the
shifted sequence f(n+ 9) for n ≥ 0. In general, there might
be a large gap between the length of the induction hypothe-
sis needed for Algorithm 1 and the shift length, hence we do
not advertise Algorithm 3 as an alternative for real world
problems.

Identifying the terminating region of Algorithm 3 corre-
sponds to identifying the region for which the recurrence
coefficients Ri(m, ·) are in the interior of the terminating re-
gion Im of Algorithm 1 for some m ≥ d. This is made more
precise in the next section.

4. ORDER THREE
Let f : N → K be a sequence defined by a balanced, P-

finite recurrence of order d, where we assume that the lead-
ing coefficient has no positive root and we consider the re-
currence

f(n+ d) = rd−1(n)f(n+ d− 1) + · · ·+ r0(n)f(n), (1)

with rational coefficients rk(n) = − pk(n)
pd(n)

. The main results

in this section are on recurrences of order three, i.e., d = 3.
We assume that 1 is the dominant eigenvalue, and let αk ∈
K with |αk| < 1, k = 1, . . . , d− 1, be such that

χ(x) = (x− 1)(x− α1) · · · (x− αd−1)

is the characteristic polynomial of the recurrence. Depend-
ing on the context we also use the following alternative rep-
resentations of the characteristic polynomial

χ(x) = xd − cd−1x
d−1 · · · − c1x− c0

= (x− 1)(xd−1 + ud−2x
d−2 + · · ·+ u0).

The latter allows for direct comparison of the order three
results as obtained previously [21]. These three representa-
tions are related and we may freely switch between them.
For d = 3, e.g., we have

u0 = c0 = α1α2,

u1 = c0 + c1 = −α1 − α2,

and in general, because of χ(1) = 0, that

1 = c0 + c1 + · · ·+ cd−1.

Repeated application of the recurrence (1) allows us to com-
pute f(n + m) (for some m ≥ d) from d − 1 consecutive
sequence elements f(n), f(n+ 1), . . . , f(n+ d− 1),

f(n+m) = Rd−1(m,n)f(n+ d− 1) + · · ·
· · ·+R1(m,n)f(n+ 1) +R0(m,n)f(n),

where the coefficients Rk(m, ·) are rational functions. The
repeated application of the recurrence acts also on the coef-
ficients rk(n) and it is easy to verify that for k = 0, . . . , d−1
they satisfy the recurrence

Rk(m+ d, n) = rd−1(n+m)Rk(m+ d− 1, n) + · · ·
· · ·+ r0(n+m)Rk(m,n), m ≥ 0,

(2)

with initial values Rk(j, n) = δk,j for all j = 0, . . . , d − 1
and k, where δk,j denotes the Kronecker delta. Note that
Rk(d, n) = rk(n). In particular, for the C-finite recurrence

y(n+ d) = cd−1y(n+ d− 1) + · · ·+ c1y(n+ 1) + c0y(n),

with ck being the coefficients of the characteristic polynomial
χ(x), we have that

y(n+m) = γd−1(m)y(n+ d− 1) + · · ·
· · ·+ γ0(m)y(n), m ≥ 0,

where the γk(m) satisfy the recurrences

γk(m+ d) = cd−1γk(m+ d− 1) + · · ·+ c0γk(m), (3)

with initial values γk(j) = δk,j for j, k = 0, . . . , d − 1. Also
these recurrences have characteristic polynomial χ(x) with
largest root 1 and roots αk in the interior of the complex unit
disk. Because (3) is a C-finite recurrence, it can be solved
explicitly. The general solution is a linear combination of
the sequences (1)m≥0 and sequences of the form

(αm)m≥0, (mαm)m≥0, . . . , (m
e−1αm)m≥0,

where α ∈ {α1, . . . , αd} and e denotes its multiplicity. Since
all the roots are strictly less than one in absolute value, the
limit for m tending to infinity is given by the coefficient of
the eigenvalue 1.

For the coefficients rk(n) of the defining recurrence of
f(n), we have, using the characteristic polynomial, that

lim
n→∞

rk(n) = ck, k = 0, . . . , d− 1.

The recurrences (2) and (3) satisfied by the iterated coeffi-
cient sequences Rk(m,n) and ck(m) are structurally of the
same form. This, in combination with the limit relation
above, yields that for every fixed m ≥ 0 we have

lim
n→∞

Rk(m,n) = γk(m).

With these preliminary considerations at hand, we are in
the position to prove that Algorithm 3 terminates, if all the
eigenvalues (except 1) have negative real part. Note that
until now we have not put any restrictions on the order d.
For the first termination result given below, we consider re-
currences of order d = 3. This statement is formulated in
terms of the coefficients u0, u1 in order to better compare
with the previous results.
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Theorem 2. Algorithm 3 terminates, if 0 < u1 < 2 and
max(0, u1 − 1) < u0 < 1.

Proof. The algorithm terminates if for some m ≥ d the
coefficients Rk(m,n) in the iterated recurrence

f(n+m) = R2(m,n)f(n+ 2) +R1(m,n)f(n+ 1)

+R0(m,n)f(n),

are positive which corresponds to the terminating region
I3 of Algorithm 3. Next, we define the C-finite sequences
γk(m), by

γk(m+ 3) = c2γk(m+ 2) + c1γk(m+ 1) + c0γk(m), (4)

with initial values γk(j) = δk,j , k, j = 0, 1, 2, and denote
their respective limits by ζk = limm→∞ γk(m). Then, for
any ε > 0 there is an m0 such that for all m ≥ m0,∣∣γk(m)− ζk

∣∣ < ε

2
.

On the other hand, for every fixed m0, the (iterated coeffi-
cient) sequences Rk(m0, n) tend to γk(m0) as n → ∞, i.e.,
there exists an n0 such that for all n ≥ n0,∣∣Rk(m0, n)− γk(m0)| < ε

2
.

Combining these two estimates using the triangle inequality
yields that for any ε > 0, there exist m0 and n0 such that
for all n ≥ n0, ∣∣Rk(m0, n)− ζk

∣∣ < ε.

The proof is completed once we can show that the ζk are
positive under the assumptions of the theorem.

The C-finite recurrence (4) has the eigenvalues 1, α1, α2,
where either there are two simple roots α1 �= α2 (real or
complex conjugate), or there is a double root α = α1 = α2.
In the first case the general ansatz for the closed form of the
sequence is

γk(m) = νk(0) + νk(1)α
m
1 + νk(2)α

m
2 ,

in the second case the ansatz is

γk(n) = νk(0) +
(
νk(1) +mνk(2)

)
αm.

The constants νk(0), νk(1), νk(2) are obtained using the ini-
tial values γk(j) = δk,j and solving the resulting linear sys-
tem. The limits are then given by ζk = νk(0) and in terms
of u1, u0 for either of the cases (distinct or double root) the
limits turn out to be

ζ0 =
u0

u1 + u0 + 1
, ζ1 =

u1

u1 + u0 + 1
, ζ2 =

1

u1 + u0 + 1
.

It can be shown by CAD-computations that under the given
assumptions on u1, u0 these limits are positive. Since ζk can
be computed a priori from the given recurrence, ε above is
chosen such that mink(ζk−ε) > 0. The algorithm terminates
no later than at iteration n0 +m0.

Remark 1. All CAD computations carried out in this pa-
per were performed with Mathematica’s built-in implemen-
tation of CAD [24, 25]. The computation time is negligible
for all of them and could certainly be carried out with other
implementations such as, e.g., [11, 4, 8] as well.

The strategies of Algorithms 1 and 3 can be combined to
prove that f(n+m) ≥ 0, for some m ≥ D, with an extended

induction hypothesis of length D. The proof of termination
for these variations is essentially the same as the proof of
Theorem 2, merely the choice of ε (influencing n0 and m0)
has to be adapted so that all the Rk(m0, n) appearing are in
an appropriate neighbourhood of the limits ζk. The termi-
nating region I4 for Algorithm 1 with an induction hypoth-
esis of length four is given by [21]

u1 < 1 ∧ u0 > 0 ∧ 1− u1 + u2
1 − u0 > 0

∧ (
u1 > 0 ∨ u2

1 − u0 − u1u0 + u2
0 < 0

)
.

The variant of Algorithm 3 with an extended induction hy-
pothesis of length four extends the terminating region of
Theorem 2 by the semialgebraic set defined via

− 1 < u1 < 0 ∧ u2
1 < u0 < −1 + u1 + u2

1

u1
. (5)

The computational effort for doing quantifier elimination for
analyzing variants extending the induction hypothesis be-
yond length five becomes prohibitive. However, also termi-
nation of the variation with induction hypothesis of length
four implies termination of Algorithm 1 and hence as a con-
sequence we have extended the terminating region of Algo-
rithm 1.

Corollary 1. Algorithm 1 terminates, if either −1 <

u1 < 0 and u2
1 < u0 < − 1+u1+u2

1
u1

, or 0 < u1 < 2 and

max(0, u1 − 1) < u0 < 1.

The eigenvalues corresponding to this extension are all com-
plex and of the form α1 = z1 + iz2 = α2 inside the unit disk
with either negative real part or

0 < z1 < 1
2
∧

√
3z1 < |z2| <

√
1− z21 .

The results obtained in this section are summarized in the
figure below. The dark gray area shows the terminating
region of Algorithm 3 extending the induction hypothesis up
to length four. For better comparison, the previously known
terminating region of Algorithm 1 with induction hypothesis
up to length four is indicated by dashed lines. The remaining
light gray area are the non overlapping parts of I5 and the
terminating region of Algorithm 2.

u1

u0

� 2 �1 0 1 2
�1.0

�0.5

0.0

0.5

1.0

5. ORDER FOUR AND HIGHER
The proof of the termination result of Theorem 2 car-

ries over immediately to higher orders. The induction step
formula for a given P-finite sequence of order d with a hy-
pothesis of length d,

∀ y0, y1, . . . , yd−1 ∈ R ∀ x ∈ R :(
x ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yd−1 ≥ 0

)
=⇒ rd−1(x)yd−1 + · · ·+ r0(x)y0 ≥ 0,
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is true, if the coefficients in the recurrence are eventually
positive. Hence, following the previous discussion, to obtain
a terminating region it suffices to determine the cases when
the recurrence coefficients of the shifted sequence become
eventually positive.

Again, we assume that 1 ist the unique dominant eigen-
value and let α1, . . . , α�, 1 ≤ 
 ≤ d − 1, be the distinct
eigenvalues of the given recurrence and

χ(x) = (x− 1)(xd−1 + ud−2x
d−2 + · · ·+ u0) = (x− 1)U(x).

its characteristic polynomial. Let γk(m) be the associated
C-finite sequences defined by the recurrence (3). A closed
form solution can be computed using the inverse of the gen-
eralized Vandermonde matrix. For the further reasoning
only the limits ζk = limn→∞ γk(n) are needed and so just
the coefficients of the simple eigenvalue 1 for k = 0, . . . , d−1
have to be computed. These values turn out to be

ζk =
uk

U(1)
, k = 0, . . . , d− 1.

The coefficients of U(x) are given by the elementary sym-
metric polynomials ej(α1, . . . , αd) (where the eigenvalues are
written with multiplicity) as

ud−1−j = (−1)jej(α1, . . . , αd).

If all the eigenvalues have negative real part, then all the
limits (and thus eventually all the recurrence coefficients)
are trivially positive. Note that in our setting complex roots
may only appear in pairs of complex conjugates, since for
proving positivity the sequence can only assume real values.

Corollary 2. Algorithm 3 (and thus Algorithm 1) ter-
minates, if all eigenvalues αk inside the interior of the unit
disk have negative real part.

Combining the strategies of Algorithms 1 and 3 is in the-
ory also possible for higher orders. In practice the analysis
cannot be carried out because of computational limitations.
Under the assumption that the terminating region for or-
der d is contained in the terminating region of order d + 1
at least a guess for sufficient conditions can be computed.
For recurrences of order four with an induction hypothesis of
length five, such a guess could be found in reasonable time
and verified easily using CAD. For this guess and prove-
strategy the representation

χ(x) = (x− 1)(x3 + u2x
2 + u1x+ u0)

for the characteristic polynomial was used, because the in-
volved inequalities as well as the output are simpler and
lower in degree than using the eigenvalues. The following
statement concerns only the extension beyond the cases cov-
ered in the corollary.

Theorem 3. If 0 < u2 < 1 and min
(− 1

3
u2, U

)
< u1 <

max
(
0, U

)
and V1 < u0 < min

(
u2(1 + u1 − u2), V2

)
, where

U =
u2
2(u2 − 1)

u2
2 − u2 + 1

,

V1,2 =
u1 + u2

2
∓

√
(3u1 + u2)(u2 − u1)

2
,

then Algorithm 1 terminates.

Proof. By the limit arguments used earlier it is sufficient
to prove that the induction step formula for the limiting
case of the recurrence coefficients holds. Let Ω ⊂ R3 denote
the set described by the conditions in the theorem. The
eigenvalues of a recurrence with coefficients taken from Ω
are a pair of complex conjugated roots and a simple real
root. For recurrences of order four the limits in terms of
u0, u1, u2 are given by

ζk =
uk

1 + u2 + u1 + u0
, k = 0, 1, 2,

and ζ3 = 1 − ζ2 − ζ1 − ζ0. A CAD-computation confirms
that

∀ (u2, u1, u0) ∈ Ω ∀y0, y1, y2, y3 ∈ R :

y0 > 0 ∧ y1 > 0 ∧ y2 > 0 ∧ y3 > 0

∧ (1− u2)y3 + (u2 − u1)y2 + (u1 − u0)y1 + u0y0 > 0

=⇒ ζ3y3 + ζ2y2 + ζ1y1 + ζ0y0 > 0.

Hence, as soon as the recurrence coefficients of the sequence
and of the shifted sequence are in a neighbourhood close
enough to (1 − u2), . . . , u0 and ζ3, . . . , ζ0, respectively, the
algorithm terminates.

The terminating region was determined assuming that the
complex conjugate roots are in the terminating region (5)
and applying quantifier elimination using CAD to the in-
duction step formula above with the first quantifier dropped.
A further iteration of this idea extending to recurrences of
order five is very space and time consuming and different
strategies are needed.

Besides being hard to analyze, approaches based on CAD
also (usually) do not provide insight in why the given se-
quence is non-negative and there is no human readable out-
put that can be verified independently. Future directions
may build on recent results on sums-of-squares representa-
tions [16] either to verify the final induction step formula or
in combination with recent methods to determine a repre-
sentation of a given P-finite sequence as linear combination
of squares [6].

6. REFERENCES
[1] Horst Alzer, Stefan Gerhold, Manuel Kauers, and
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