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ABSTRACT
In this short note, we give an algorithm that returns an
explicit expression of the Lüroth invariant in terms of the
Dixmier-Ohno invariants of plane quartic curves. We also
obtain an explicit factorized expression on the locus of Ciani
quartics in terms of the coefficients. After this calculation,
we extend our methods to answer two open theoretical ques-
tions concerning the sub-locus of singular Lüroth quartics.

Categories and Subject Descriptors
J.2 [Computer applications]: Mathematics and statistics

Keywords
Invariant ; ternary quartic ; genus 3 ; Ciani quartic ; algo-
rithm ; Dixmier-Ohno invariants.

1. LÜROTH QUARTICS
This note considers Lüroth quartics, which are plane quar-

tics containing the ten vertices of a non-degenerate penta-
lateral. To make these notions precise, we give the following
definitions. Let V be a three-dimensional vector space over
the complex field C.

Definition 1. A complete pentalateral in the projective
plane PV is a curve C ⊂ PV consisting of the union of five
lines `1, . . . , `5 that are three by three linearly independent
(which is to say that the pairwise intersections of the lines
`i yield exactly 10 distinct points).
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The vertices of a complete pentalateral C are the double
points of C, that is, the 10 points

⋃
i6=j((`i = 0)∩ (`j = 0)).

Definition 2. Let Q ⊂ PV be a non-singular quartic.
Then Q is called a non-singular Lüroth quartic if it contains
the vertices of a complete pentalateral in PV .

The set of plane quartics in PV can be identified with
the projective space PSym4(V ∗) over the fourth symmetric
power of the dual vector space V ∗ of V . This inherits an
action of the group GL(V ) and its derived subgroup SL(V ),
which act canonically on V . Choosing a basis, as we will
do during our calculations, identifies V with C3 and the
set of quartics P Sym4(V ∗) with the projectivization of the
vector space on the homogeneous degree 4 monomials in the
canonical basis x, y, z of the dual space (C3)∗. We will in
turn identify this projective space with P14 by choosing some
ordering of these 15 monomials. In this way, P14 inherits an
action of the groups GL3(C) and SL3(C).

The classical study of Lüroth quartics culminated in 1919
with the work of Morley [9]. This showed that the Zariski
closure of the locus of non-singular Lüroth quartics in the
projective space P Sym4(V ∗) is an irreducible hypersurface
described as the vanishing locus of a single homogeneous
polynomial function L on the projective space of quartics
PSym4(V ∗), well-defined up to scalars. We shall call this L
the Lüroth invariant. Morley showed that L is of degree 54.

Definition 3. Let Q ⊂ PV be a quartic. Then Q is
called a Lüroth quartic if L(Q) = 0.

In recent years, after the seminal work of [1], several authors
have revived this subject in [2, 11, 12, 13] (see also [14] on
the undulation invariant).

However, an explicit expression of L was still missing. In
the following section we explain how to compute such an
expression. Our main new technique lies in an effective
use of [10], an unfortunately unpublished article in which
Ohno gives a complete set of generators for the invariants of
ternary quartics under the action of SL3(C), completing the
set of primary invariants found in [3]. These invariants were
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also used in [5], and new effective methods to verify their
correctness can be found in [4]. Our calculations use the
implementation of these invariants in Magma, which is due to
Kohel.

2. THE ALGORITHM
The key point is the following observation:

Proposition 1. The homogeneous polynomial function
L on PSym4(V ∗) is GL(V )-invariant up to scalars. In par-
ticular, L is SL(V )-invariant.

Proof. Since we are working over an algebraically closed
field, this is obvious from the obvious fact that any GL(V )-
transform of a Lüroth quartic is again a Lüroth quartic.

Let

R = S[P Sym4(V ∗)]SL(V )

be the ring of SL(V )-invariant homogeneous polynomial func-
tions on PSym4(V ∗), which coincides with those functions
that are GL(V )-invariant up to scalars. The structure of the
ring R is known. Indeed, let I = (I3, I6, I9, I12, I15, I18, I27)
be the primary invariants for ternary quartics under the
action of SL3(C) found by Dixmier in [3], and let J =
(J9, J12, J15, J18, I21, J21) be the secondary invariants found
by Ohno [10]. In both cases, the index specifies the degree
of the invariant as a homogeneous function. Then we have:

Theorem 1 (Dixmier-Ohno). We have R = C[I, J ].

We now choose a basis for V and a corresponding coordi-
natization of PSym4(V ∗) ∼= P14 as the projective space over
the degree 4 monomials in x, y, z. The function L then be-
comes a homogeneous expression in the coefficients of these
monomials. It is unlikely that this function can be written
down in any reasonable way (see also the final remark in
Section 5). However, by Proposition 1 and Theorem 1, we
can express L as a polynomial in the invariant functions in
I and J . This expression is not unique, since as we shall
see, there are relations between these invariant monomials
in degree 54.

To obtain an expression for L, we apply the method of
evaluation-interpolation. This is based on the following ob-
servation:

Proposition 2. Let S = C[x3, . . . , x27, y9, . . . , y21, y
′
21]

be a graded polynomial algebra in 13 variables, weighted by
indices, and consider the surjection q given by

q : S −→ R

xk 7 −→ Ik

y` 7 −→ J`.

Let R54 ⊂ R be the set of homogeneous functions of degree
54, and define S54 ⊂ S analogously. Let K be the kernel of
the map S54 → R54. Then the dim(K) = 215.

Let X be a finite set of Lüroth quartics. Consider the
linear map q′ : S54 → CX given by evaluating at the poly-
nomials in X. Let K′ be the kernel of q′, and suppose that

dim(K′) = 216. Let L̃ be an element of K′\K. Then the

image L = q(L̃) equals the Lüroth invariant.

Proof. One calculates that the dim(S54) = 1380. Since
calculating the Hilbert polynomial of R as in [15, p.1045]

yields dim(S54) = 1165, we indeed find that dim(K) = 215.
The rest is straightforward considering the uniqueness of L
up to scalars.

The details of the calculation are therefore as follows.

1. Construct the 1380 monomials

I = {I183 , I163 I6, I
15
3 I9, I

15
3 J9, . . . , J

3
18, I

2
27}

of degree 54 that generate the C-vector space of invari-
ants of degree 54.

2. Generate a sufficiently large finite set Q of cardinality
q of random plane quartics with rational coefficients.

3. Generate a sufficiently large finite set L of cardinality
l of random Lüroth quartics of the form

`1`2`3`4 + c1 · `2`3`4`5 + c2 · `1`3`4`5
+ c3 · `1`2`4`5 + c4 · `1`2`3`5

where `1 = x, `2 = y, `3 = z, `4 = x+ y+ z, `5 is a line
with random rational coefficients and ci are rational
coefficients.

4. Compute the matrix M1 = (I(q))I∈I,q∈Q, evaluating
the monomials in I at the quartics in Q.

5. Compute the matrix M2 = (I(q))I∈I,q∈L, evaluating
the monomials in I at the Lüroth quartics in L.

6. Compute the 215-dimensional kernel N1 of M1. This
gives a basis of the homogeneous relations of degree
54 that are satisfied by the invariants of all ternary
quartics.

7. Compute the 216-dimensional kernel N2 of M2. This
gives a basis of the homogeneous relations of degree 54
that are satisfied by all Lüroth quartics.

8. A non-zero element in the complement of N2 in N1

is an expression for L in terms of the Dixmier-Ohno
invariants.

All these computations were done with Magma software.
Over finite fields Fp with prime cardinality p = 2017, 10007,
100003 or even 1000003, computations can be done in less
than a minute. However, getting the result over the ratio-
nals is more challenging. The main concern is to deal with
matrices M1 and M2 whose coefficients are as small as pos-
sible. So, at Step (2) of the algorithm, we generate plane
quartics with random integer coefficients only equal to −1,
0, or 1. Similarly, we restrict Step (3) to Lüroth forms de-
fined by integer coefficients ci bounded in absolute value by
4.

We can estimate the size of the computations involved in
this run of the algorithm by using the Hadamard bounds for
our matrices M1 and M2; the quartics under consideration
yield bounds slightly smaller than 2200 000 forM1 and 2350 000

for M2. As a sanity check before running the code over the
rationals, we verify that this subset of quartics yields a valid
result modulo small primes.

Most of the time is spent at Step (6) and Step (7) of the
algorithm, precisely 5 and 9 hours on our laptop (based on
a Intel Core i7 M620 2.67GHz processor).
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A program to get the result is available on the web page
of the authors1. It uses the implementation of the Dixmier-
Ohno invariants in Magma by Kohel2. The 1.4Mb result is
also available online3. It is given by 1164 monomials with
rational coefficients, the largest of which is a quotient of a
680-digit integer by a coprime 671-digit integer. Modulo
1000003, the expression starts as

I183 +469313I23 I
8
6 +710780I96 +969230I33 I

6
6 I9

+ 374233I3I
7
6 I9 + 276144I23 I

5
6 I

2
9

+ 602674I66 I
2
9 + 527614I33 I

3
6 I

3
9

+ 538637I3I
4
6 I

3
9 + 392526I43 I6I

4
9

+ 645841I23 I
2
6 I

4
9 + 914224I36 I

4
9 + 207808I33 I

5
9

+ 31577I3I6I
5
9 + 635768I69 + 668878I153 J9

+ 507293I33 I
6
6J9 + 318476I3I

7
6J9

+ 59775I23 I
5
6 I9J9 + 581086I66 I9J9

+ 830307I33 I
3
6 I

2
9J9 + 804817I3I

4
6 I

2
9J9

+ 6418I63 I
3
9J9 + 578316I43 I6I

3
9J9

+ 741618I23 I
2
6 I

3
9J9 + 452974I36 I

3
9J9

+ 36214I33 I
4
9J9 + 522408I3I6I

4
9J9

+ 253043I59J9 + 469299I23 I
5
6J

2
9 + . . .

3. CIANI QUARTICS
We call a Ciani quartic a plane quartic of the form

ax4 + bx2y2 + cx2z2 + dy4 + ey2z2 + fz4.

A generic Ciani quartic has automorphism group isomorphic
with Z/2Z × Z/2Z, and conversely every quartic with this
property is C-isomorphic to a Ciani quartic. The dimension
of the substratum of Ciani quartics in the full dimension 6
moduli space of plane quartics equals 3.

In [7, Sec.5], using different techniques, Hauenstein and
Sottile obtained the factorization on Ciani quartics of the
Lüroth invariant as

G4H2J

with G,H, J ∈ C[a, b, c, d, e, f ] homogeneous of respective
degree 6, 9 and 12. Using our expression, it is easy to confirm
their decomposition. We give a slightly different version of
the result, which is due to the fact the coefficients b, c, e are
replaced by 2b, 2c, 2e in [7, Sec.5]:

G = a·d·f ·(adf−(1/4)ae2−(1/4)b2f−(1/4)bce−(1/4)c2d),

H = (adf − (1/4)ae2 − (1/4)b2f + (1/4)bce+ (3/4)c2d)

· (adf − (1/4)ae2 + (3/4)b2f + (1/4)bce− (1/4)c2d)

· (adf + (3/4)ae2 − (1/4)b2f + (1/4)bce− (1/4)c2d),

1
http://iml.univ-mrs.fr/~ritzenth/programme/luroth/

luroth.m
2
http://echidna.maths.usyd.edu.au/kohel/alg/index.html

3
http://iml.univ-mrs.fr/~ritzenth/programme/luroth/

LurothInvF.m

J = a4d4f4 − (1/49)a4d3e2f3 + (51/19208)a4d2e4f2

− (1/38416)a4de6f + (1/614656)a4e8 − (1/49)a3b2d3f4

− (205/9604)a3b2d2e2f3 − (3/38416)a3b2de4f2

+ (1/153664)a3b2e6f + (15/343)a3bcd3ef3

+ (29/9604)a3bcd2e3f2 − (5/38416)a3bcde5f

− (1/153664)a3bce7 − (1/49)a3c2d4f3

− (205/9604)a3c2d3e2f2 − (3/38416)a3c2d2e4f

+ (1/153664)a3c2de6 + (51/19208)a2b4d2f4

− (3/38416)a2b4de2f3 + (3/307328)a2b4e4f2

+ (29/9604)a2b3cd2ef3 − (5/19208)a2b3cde3f2

− (3/153664)a2b3ce5f − (205/9604)a2b2c2d3f3

+ (2/2401)a2b2c2d2e2f2 + (55/153664)a2b2c2de4f

+ (3/307328)a2b2c2e6 + (29/9604)a2bc3d3ef2

− (5/19208)a2bc3d2e3f − (3/153664)a2bc3de5

+ (51/19208)a2c4d4f2 − (3/38416)a2c4d3e2f

+ (3/307328)a2c4d2e4 − (1/38416)ab6df4

+ (1/153664)ab6e2f3 − (5/38416)ab5cdef3

− (3/153664)ab5ce3f2 − (3/38416)ab4c2d2f3

+ (55/153664)ab4c2de2f2 + (3/153664)ab4c2e4f

− (5/19208)ab3c3d2ef2 − (17/76832)ab3c3de3f

− (1/153664)ab3c3e5 − (3/38416)ab2c4d3f2

+ (55/153664)ab2c4d2e2f + (3/153664)ab2c4de4

− (5/38416)abc5d3ef − (3/153664)abc5d2e3

− (1/38416)ac6d4f + (1/153664)ac6d3e2 + (1/614656)b8f4

− (1/153664)b7cef3 + (1/153664)b6c2df3

+ (3/307328)b6c2e2f2 − (3/153664)b5c3def2

− (1/153664)b5c3e3f + (3/307328)b4c4d2f2

+ (3/153664)b4c4de2f + (1/614656)b4c4e4

− (3/153664)b3c5d2ef − (1/153664)b3c5de3

+ (1/153664)b2c6d3f + (3/307328)b2c6d2e2

− (1/153664)bc7d3e+ (1/614656)c8d4.

The product G4H2J has 1695 monomials. Note that the
total amount of weighted monomials in a, b, c, d, e and f in
a generic degree 54 invariant is 3439.

4. SINGULAR LÜROTH QUARTICS
Let L ⊂ PSym4(V ∗) be the locus of Lüroth quartics, and

let D ⊂ P Sym4(V ∗) be the discriminantal hypersurface de-
fined by the equation I27 = 0. We will now obtain new re-
sults on the geometry of the locus L ∩ D of singular Lüroth
quartics. Work by Le Potier and Tikhomirov [8] shows that

L ∩ D = L1 ∪ L2,

where L1 and L2 are irreducible subschemes of P Sym4(V ∗)
of codimension 2 whose respective degrees as subschemes
of D equal 24 and 30 respectively. Moreover, while L1 is
reduced, the reduced subscheme (L2)red of L2 is of degree
15.

In [12], Ottaviani and Sernesi showed that no new de-
gree 15 invariant vanishes on (L2)red, which implies that
this scheme is not a principal hypersurface in L. We will
prove a stronger result, namely that none of L1, L2, (L2)red
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is a complete intersection. We apply the same methods as
in Section 2. The main problem now is to generate quartics
in L1 and L2.

For L2, we can proceed by using Remark 3.3 in [12]: we
now choose the lines in Step (3) above such that three of
them have a common point of intersection.

For L1, we have to perform the constructions and results
in [12, p. 1759]. The procedure is as follows.

1. Construct a cubic surface S with two skew lines l, m.

2. Calculate the double cover f : l → m sending p ∈ l
to the intersection TpS ∩m of the tangent plane TpS
to p at S with the line m, and construct g : m → l
analogously.

3. Let Bf ⊂ m (resp. Bg ⊂ l) be the branch divisor of
f (resp. g). Construct morphisms f ′ : l → P1 (resp.
g′ : m→ P1) ramifying over Bg (resp. Bf ).

4. Construct Q ∈ m ⊂ S such that f−1(Q) is also a fiber
of f ′.

5. Construct the ramification locus of the degree 2 pro-
jection S → P(TQS) from the point Q ∈ S. Then by
Proposition 3.1(i) of [12], we obtain a quartic in L1.

The following string of propositions and remarks show
how these steps can be implemented without extending the
base field (we will take k = Q throughout).

Proposition 3. Let k be a field, and suppose that we are
given six rational points p1, . . . , p6 ∈ PV (k) in the projective
plane over k. Suppose additionally that this set of points
is sufficiently general in the sense that the complete linear
system C of cubics passing through them has dimension 4.
Construct the Clebsch rational map c : PV → PC, and let
S ⊂ PC be the Zariski closure of c(PV ). Then S is the
vanishing locus of a quaternary cubic form F ∈ Sym3(C∗)
over k.

The rational map c restricts to a birational map between
PV and S. Let l0 ⊂ PV be the rational line containing p1
and p2, and let m0 ⊂ PV be the rational line containing p1
and p3. Let x and x′ be two points in l not equal to p1 or
p2, and let y and y′ be two points in l not equal to p1 or p3.
Then the images c(x) and c(x′) are well-defined elements of
S, and the line l through them is defined over k and included
in S. Analogously, one obtains a line m through c(y) and
c(y′). The lines l and m are skew.

Proof. This is a standard result from the theory of cubic
surfaces, see [6, Section V.4].

This deals with part 1. To perform the calculations in
point 2 explicitly, choose coordinates on l by taking two
points l1, l2 on l and sending (x : y) ∈ P1 to xl1 + yl2, and
similarly on m by choosing m1,m2 ∈ m. To determine the
morphism f : l → m explicitly in these in coordinates, we
choose two equations M1 = M2 = 0 defining m. Given p ∈ l
with coordinates (x : y) ∈ P1, the point f(p) = TpS ∩ m
corresponds to the vector space that is the kernel of the
matrix whose rows are given by M1, M2 and the partial
derivatives of F . A generating vector for this space will be
a combination of m1 and m2 with homogeneous quadratic
coefficients f1(x, y), f2(x, y) in (x, y). The morphism f now
corresponds to the map P1 → P1 given by (f1, f2). Similarly,
one determines g. For point 3, we use the following result.

Proposition 4. Let l be a projective line over k, with
homogeneous coordinates x and y, and let D be a k-rational
divisor of degree 2 on l. Then the following formulae de-
termine a degree 2 morphism f ′ : l → P1 over k whose
ramification locus equals D.

• If D consists of two points (x1 : y1) and (x2 : y2) that
are rational over k, then one can take

f ′(x : y) = ((y1x− x1y)2 : (y2x− x2y)2).

• If D is defined by an equation rx2 + ty2 = 0, then one
can take

f ′(x : y) = (rx2 − 2txy − ty2 : rx2 + 2txy − ty2);

• If D is defined by an equation rx2 +sxy+ ty2 = 0 with
s 6= 0, then one can take

f ′(x : y) =(r2sx2 + 2r(s2 − 2rt)xy + (s3 − 3rst)y2 :

r(rsx2 + 4rtxy + sty2)).

Proof. Once the answer is given, the verification is triv-
ial. But let us illustrate how to find these expressions by
treating the thir case, where the points of D are defined
over a proper quadratic extension of k. We use the affine
coordinate t = x/y on l. Suppose that using this coordinate,
the divisor D = [d] + [d] consists of two conjugate points,
not summing to zero because we are in case (iii). Then
f ′ = ((t − d)/(t − d))2 of above now has the property that
f ′ = 1/f ′. But then one verifies that (df ′ + d)/(df ′ + d) is
a fractional linear transformation of f ′ that is stable under
conjugation and hence defines a morphism over the ground
field. Homogenizing, one obtains the more elegant expres-
sion given in the statement of the proposition.

We now treat point 4.

Proposition 5. Let f, f ′ : P1 → P1 be two degree 2 mor-
phisms, neither of which can be obtained from the other by
postcomposing with an automorphism of P1. Then the q in
P1 such that the fiber of f over q is also a fiber of f ′ over a
point q′ can be obtained as follows.

Write

f(x : y) = (a1x
2 + b1xy + c1y

2 : a2x
2 + b2xy + c2y

2)

and

f ′(x : y) = (a′1x
2 + b′1xy + c′1y

2 : a′2x
2 + b′2xy + c′2y

2).

Then q = (λ1 : λ2), where (λ1, λ2, λ
′
1, λ
′
2) generates the ker-

nel of the matrix a1 −a2 −a′1 a′2
b1 −b2 −b′1 b′2
c1 −c2 −c′1 c′2

 .

Proof. If we let q = (λ1 : λ2) and q′ = (λ′1 : λ′2), then
finding q and q′ comes down to solving the equation

λ2(a1x
2 + b1xy + c1y

2)− λ1(a2x
2 + b2xy + c2y

2)

= λ′2(a′1x
2 + b′1xy + c′1y

2)− λ′1(a′2x
2 + b′2xy + c′2y

2),

which evidently corresponds to the determination of the ker-
nel of the matrix in question.

To calculate point 5, we choose an isomorphism PC ∼= P3

mapping the point Q to (1 : 0 : 0 : 0) and apply the following
elementary result.
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Proposition 6. Let S ⊂ P3 be a cubic surface containing
Q = (1 : 0 : 0 : 0) that is defined by a quaternary cubic
form F ∈ k[w, x, y, z]. Let q be the projection S → P(TQS)
from the point Q ∈ S. Then the ramification locus of q
is isomorphic to the quartic curve in P2 determined by the
vanishing of the discriminant of the quadratic polynomial
F (1, xt, yt, zt)/t.

Proof. Since S is a subscheme of P3, we get an induced
coordinatization of TQS by sending (x : y : z) to the tangent
direction given by the line through the points (1 : 0 : 0 : 0)
and (1 : x : y : z). Then (x : y : z) is a ramification
point of the projection S → P(TQS) if and only if the equa-
tion F (1, xt, yt, zt) = 0 has a double root outside 0, or in
other words if the discriminant of the quadratic polynomial
F (1, xt, yt, zt)/t vanishes. This discriminant is a homoge-
neous quartic form in the variables x, y, z, which defines the
plane quartic in L1 that we were looking for.

A program to generate quartics in L1 by using the steps
above is available online4.

Remark 1. We also tried to generate quartics in L1 by
using Remark 3.4 of [12]. We take cubics S of the form

t2x+ t(ax2 + 2bxy + 2cxz + dy2 + 2eyz + fz2) + g(x, y, z)

with g a random degree 3 homogeneous polynomial, such that
S is non singular and e2 = df . The last condition ensures
that p = (0 : 0 : 0 : 1) belongs to the Hessian H of S and,
after checking that p is non singular, we take quartics which
are tangent plane sections of H at p. Unfortunately, it seems
that these quartics are special in L1, since there are degree 24
relations between their invariants (there is a 27 dimensional
space of relations in degree 24 between randomly generated
quartics of this form).

Having generated a sufficiently large database5 of curves
in L1 by choosing random 6-tuples {p1, . . . , p6}, we can again
proceed as in Section 2. Up to degree 30, all invariants
vanishing on the quartics in this databases for L1 and L2 are
multiples of I27. Since the codimension 2 components L1,
L2, (L2)red of L∩D have degree at most 24 ·27,24 ·30,24 ·15,
which are all smaller than (30)2, we have the following result.

Theorem 2. The subschemes L1, L2, (L2)red of the pro-
jective space of quartic curves PSym4(V ∗) (and hence their
images in the coarse moduli space of plane quartic curves)
are not complete intersections. In particular, they are not
principal hypersurfaces in the discriminant locus D.

As there is no degree 24 invariant vanishing on L1, Mor-
ley’s putative construction of such an invariant I24 in [9,
p.282] is incorrect. On the authors’ webpage, a Magma pro-
gram6 is available to check all steps on the way to Theorem 2.

5. OPEN QUESTIONS
The expression L of the Lüroth invariant that we found

depends on several arbitrary choices that may explain its

4
http://iml.univ-mrs.fr/~ritzenth/programme/luroth/

GenerateL1.m
51024 curves over Q are available at http://iml.univ-mrs.
fr/~ritzenth/programme/luroth/L1Database.m
6
http://iml.univ-mrs.fr/~ritzenth/programme/luroth/

SingularLurothInv.m

cumbersomeness. First, there is the choice of the basis of
invariants. Though some of the Dixmier invariants have ge-
ometrical interpretations that are ‘natural’, the same is far
from evident for the new Ohno invariants. Secondly, our
choice can be modified by any element of the kernel N1. Be-
yond a cancellation of the coefficients of 215 of these mono-
mials that we have already accomplished by simple linear
algebra, further minimization of the number of monomials
in the expression for L could in theory be achieved by tech-
niques based on coding theory. Still, the parameters seem
too large to make this feasible in practice.
The negative answers concerning the existence of degree 24
and 30 invariants in Section 4 exclude the decomposition
from [12, p.1764]. The geometry of the situation does not
seem to give a clue for the existence of another such decom-
position.
An expression in terms of the 15 coefficients of the generic
quartic would of course be useful. However, it is not even
practically achievable to formally express the fundamental
Dixmier-Ohno invariants in this way, since these expressions
contain far too many monomials, as is for instance the case
for the discriminant I27. A count of weighted monomials
in 15 variables for degree 54 invariants leads to a total of
62 422 531 333. Of course only a fraction of these monomials
may occur in the final expression of L, but we could not
figure out their number, let alone the Newton polytope of
L.
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