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ABSTRACT
The F5 algorithm [8] is generally believed as one of the
fastest algorithms for computing Gröbner bases. However,
its termination problem is still unclear. The crux lies in the
non-determinacy of the F5 in selecting which from the crit-
ical pairs of the same degree. In this paper, we construct a
generalized algorithm F5GEN which contain the F5 as its
concrete implementation. Then we prove the correct ter-
mination of the F5GEN algorithm. That is to say, for any
finite set of homogeneous polynomials, the F5 terminates
correctly.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms – Analysis of algorithms

Keywords
Gröbner basis; termination; F5; F5GEN

1. INTRODUCTION
In 1965 Buchberger’s [3] thesis he described the appro-

priate framework for the study of polynomial ideals, with
the introduction of Gröbner bases. Since then, Gröbner ba-
sis has become a fundamental tool of computational algebra
and it has found countless applications in coding theory,
cryptography and even directions of Physics, Biology and
other sciences.

Although Buchberger presented several improvements to
his algorithm for computing Gröbner bases in [4], the effi-
ciency is not so good. Recent years have seen a surge in
the number of algorithms in computer algebra research, but
efficient ones are few. Faugère [8] proposed the idea of sig-
natures and utilized two powerful criteria to avoid useless
computation in the F5 algorithm. Faugère and Joux broke
the first Hidden Field Equation (HFE) Cryptosystem Chal-
lenge (80 bits) by using the F5 algorithm in [9]. The proof
of the termination in [8] is based on the hypothesis that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

input polynomials are homogeneous and regular, which was
labeled as a conjecture in [15]. Gash [12] pointed out that
Theorem 2 in [8] is false and he proposed another conjecture
for the termination of the F5. The proof under that conjec-
ture, we will show in Section 6.4, can be viewed as the proof
for a possible implementation of the F5. In [1], the authors
did an inspiring work by constructing a simpler algorithm
and proving its termination. [13] gave a generalized TRB al-
gorithm and proposed the “compatible” concept that sheds
light on the sufficient and necessary conditions for the termi-
nation of the TRB. The author claimed to have proved the
termination of the F5, but it can also be viewed as a partial
proof of the original F5. Besides, his proofs for the correct-
ness are hard to understand due to mistakes. Though the
F5 algorithm seems to terminate for any homogeneous poly-
nomial ideals, the proof of it has been admitted as an open
problem in [16, 7, 5]. After our preliminary paper appeared
on the arXiv we have learned that independently of our work
here, Vasily Galkin tried to give a direct proof of the F5 in
[10] without any modifications. His proofs are different from
ours, but they are slightly too long to understand for us.

In this paper, we show that the reason why “compatible”
property is implicitly satisfied between the monomial order
and the module order in almost all signature-based algo-
rithms. We propose the F5GEN algorithm (F5 algorithm
with a generalized insertion strategy) to cover the behavior
of original F5 of [8]. Then we prove that the F5GEN termi-
nates correctly, which, on the other hand, shows the correct
termination of the F5.

The paper is organized as follows. We start by settling
basic notations in Section 2. In Section 3, we present the
strict definition of the admissible module order. Then two
admissible orders and their connection are described in Sec-
tion 4 and under the“compatible”condition, the top-reduced
S-Gröbner basis for a polynomial ideal is proved finite. Af-
ter that, the F5GEN algorithm is described and its correct
termination is proved in Section 5. We compare the F5 of
[8] with the F5GEN, and show that the F5 implements the
F5GEN in Section 6. In Section 7, we conclude this paper
with an open problem.

2. PRELIMINARIES
Let R = K[x1, . . . , xn] be the polynomial ring in n vari-

ables over the field K. An admissible monomial order
≤m on the monoidM = {Πn

i=1x
ai
i | ai ∈ N} is a linear order

(i.e. a connex, reflexive, antisymmetric and transitive order)
such that (i) 1 ≤m s,∀s ∈ M, (ii) m1 ≤m m2 ⇒ m1 · s ≤m
m2 · s, ∀s,m1,m2 ∈M.
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It can be seen that the admissible order ≤m is a well-
order on M. Sometimes we write ≤ for ≤m for brevity.
For any p ∈ R, without confusion, we denote HM(p) (resp.
HT (p), HC(p)) for the head monomial (resp. head term,
head coefficient) of p.

Let I be the ideal generated by the set F = {f1, . . . , fd} ∈
R, i.e.,

I =< f1, . . . , fd >= {p1f1 + · · ·+ pdfd | p1, . . . , pd ∈ R}.

Consider the following R-submodule of Rd ×R:

P = {(u, p) ∈ Rd ×R |u · f = p}, (1)

where f = (f1, . . . , fd) ∈ Rd and ei is ith unit vector of
Rd such that the free R-module Rd is generated by the set
Σ = {e1, . . . , ed}. The element α = (u, p) in P we call a
sig-polynomial and poly(α) is its polynomial part p. A
subset Syz = {(u, 0) ∈ P} is defined by the syzygy sub-
module for P, and NS = P \ Syz is called the set of non-
syzygy sig-polynomials. Let (u1, p1) and (u2, p2) be two
sig-polynomials in NS. The module generated by syzygies
of the form (p2u1 − p1u2, 0) is called a principal syzygy
submodule PS.

Other basic concepts not presented here can be found in
[2].

3. THE ADMISSIBLE MODULE ORDER
Let � be a quasi-order (i.e. a reflexive and transitive

order) on M and N ⊆M . Then a subset B of N is called a
Dickson basis of N w.r.t. � if for every a ∈ N there exists
some b ∈ B with b � a. We say that � has the Dickson
property, or is a Dickson quasi-order, if every subset N
of M has a finite Dickson basis w.r.t. �.

If� is a (Dickson) quasi-order onM , then we call (M,�) a
(Dickson) quasi-ordered set. For example, the natural order
≤ on N has the Dickson property. Similarly, the divisibility
relation on {xa | a ∈ N} is a Dickson quasi-order since the
map a 7→ xa is an isomorphism between (N,≤) and ({xa | a ∈
N}, |). Let now (M,�) and (N,�′) be quasi-ordered sets,
then a quasi-order �′′ on Cartesian product M×N is defined
as follows:

(a, b) �′′ (c, d) ⇔ a � b and c �′ d,

∀(a, b), (c, d) ∈ M × N . The direct product of the quasi-
order sets (M,�) and (N,�′) is denoted by (M × N,�′′).
The Dickson property can be derived as follows.

Lemma 1. [2] Let (M,�) and (N,�′) be Dickson quasi-
ordered sets, (M ×N,�′′) their direct product. Then (M ×
N,�′′) is a Dickson quasi-ordered set.

The immediate corollary is that (Nn,≤′), the direct prod-
uct of n copies of the natural numbers (N,≤) with their
natural ordering, is a Dickson quasi-ordered set. This is
Dickson’s lemma, and another version of which is given be-
low by an isomorphism: (a1, . . . , an) 7→

∏n
i=1 x

ai
i , where

(a1, . . . , an) ∈ Nn.

Corollary 1. [2] The divisibility relation | is a Dickson
quasi-order on M = {

∏n
i=1 x

ai
i |ai ∈ N }. More explicitly,

every non-empty subset S of M has a finite subset B such
that for all s ∈ S, there exists t ∈ B with t | s.

Let Md = {mei |m ∈ M, i ∈ [1, d]} ∈ Rd be the M-
monomodule. The definition of the divisibility relation | on
Md is

m1ei |m2ej ⇔ m1|m2 and i = j ∈ [1, d]. (2)

Since (M, |) is a Dickson quasi-ordered set, by Lemma 1,
(Md, |) is also a Dickson quasi-ordered set. OnMd, we will
define the admissible order similarly.

Definition 1. An admissible module order ≤s is a lin-
ear order on Md that satisfies the following restrictions.

1. ei ≤s mei, ∀mei ∈Md,

2. m1ei ≤s m2ej implies t · m1ei ≤s t · m2ej , ∀t ∈
M, ∀m1ei,m2ej ∈Md.

As any two elements of Md are comparable w.r.t. the
linear order ≤s, in this paper we always assume that e1 <s
· · · <s ed without loss of generality.

If no misunderstanding occurs, ≤s is replaced by ≤. By
Dickson’s lemma and the definition above, the admissible
module order ≤s has the following properties.

Proposition 1. The admissible ≤s is a well-order (i.e. a
well-founded connex order) on Md, and it extends the order
| on Md, which means m1ei |m2ei implies m1ei ≤s m2ei,
for all m1ei,m2ei ∈Md, i ∈ [1, d].

It should be noticed that ≤s may or may not be related
to ≤m. The compatible property [14] between ≤m and ≤s
was used by [13] for the proof of termination for the F5 and
GVW algorithms: σej ≤s µej if and only if σ ≤m µ. The
following section will show that this relation is sufficient for
the proof of finiteness.

For any α = (u, p) ∈ P, let S(α)(resp.S(u)) be the signa-
ture of α (resp. u), HM(α) = HM(p) the head monomial
of α. We call idx(α) = k the index of α if S(α) = µek.

4. PROPERTIES OF SIG-POLYNOMIALS
Without loss of generality, assume that the poly(α) is al-

ways monic for each non-syzygy α ∈ NS. We use the map

ϑ :NS 7→ Md ×M
α 7→(S(α), HM(α))

in [1] and call the image ϑ(α) a head pair.
Let α be a non-syzygy one in NS. α is called top-

reducible by B, if there exists a sig-polynomial β ∈ B
satisfying one of the following conditions,

1. HM(tβ) = HM(α) and S(tβ) <s S(α),

2. S(tβ) = S(α) and HM(tβ) <m HM(α),

3. HM(tβ) = HM(α) and S(tβ) = S(α), t ∈M;

otherwise, α is top-irreducible1 by B.
The process α − tβ is called an S-reduction (resp. M-

reduction2, super top-reduction), if item 1 (resp. 2, 3)

1By the following lemma, we will see that this notion is the
same as that of [11] and the “primitive S-irreducible” of [1].
2The term “M-reducible” has a similar meaning as the “M-
pair” in [17]. It serves as one type of rewritten criterion
which can be traced back in [1, 13, 11]. Defining so because
our version of rewritten criterion is unrelated to this term.
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is satisfied. β or tβ of item 1 (resp. 2) is called an S-reducer

(resp. M-reducer). Let γ = α− tβ, we denote α −→
B

γ.
∗−→
B

is the reflexive-transitive closure of −→
B

.

Lemma 2. Let α be a non-syzygy one in NS. α is M-
reducible by P∗ if and only if it is S-reducible by P∗.

Proof. If α isM-reducible, let tβ be itsM-reducer and
γ = α − tβ. It can be verified readily that γ ∈ P∗ can S-
reduce α. The other direction can be proved similarly.

A set G ⊂ P is called an S-Gröbner basis for the module
P, if any non-syzygy α ∈ NS is top-reducible by G. By
Lemma 2, each nonzero polynomial in I can be reduced by
{poly(α) |α ∈ G, poly(α) 6= 0}, a Gröbner basis of I. So the
“S-Gröbner basis” is in fact a term in [16], which is a simpler
version of “strong Gröbner basis” in [11].

All non-syzygy top-irreducible sig-polynomials form a spe-
cial kind of S-Gröbner basis called the top-reduced S-
Gröbner basis H for P. The signature of a top-irreducible
sig-polynomial is called a top-irreducible signature w.r.t.
P. Besides, we call two sig-polynomials α and β equiva-
lent if β 6= α and ϑ(β) = ϑ(α). If we store only one for all
equivalent sig-polynomials inH, for fixed orders ≤m and ≤s,
the top-reduced S-Gröbner basis H is uniquely determined
by the module P up to equivalence. Those top-reducible
sig-polynomials in P \ H are also called redundant sig-
polynomials.

Since (M, |) and (Md, |) are Dickson quasi-ordered sets,
by Lemma 1, we have (Md×M, |∗) is also a Dickson quasi-
ordered set of which the order |∗ is defined as follows:

ϑ(α) |∗ ϑ(β)⇔ S(α) | S(β) and HM(α) |HM(β), (3)

where α, β ∈ P∗.
The proofs of [1, Prop. 14] and [7, Lem. 15] implicitly use

the “compatible” property. Here, we reprove the following
results to show that “compatible” property is a sufficient
condition for the finiteness of the top-reduced S-Gröbner
basis.

Lemma 3. Let α and β be two arbitrary sig-polynomials
in P∗ such that ϑ(α) |∗ ϑ(β). If the admissible monomial or-
der ≤m and the admissible module order ≤s are compatible,
then β is top-reducible by α.

Proof. Let s and t be two monomials in M such that
s = S(β)/S(α) and t = HM(β)/HM(α). There are three
cases as follows.

1. If s = t, then β is super top-reducible by α.

2. If s <m t, then sHM(α) <m HM(β), i.e., β is M-
reducible by α.

3. If s >m t, as ≤m and ≤s are compatible, tS(α) <s
S(β), i.e., β is S-reducible by α.

By the above lemma and the Dickson property of |∗, we
have the following truth.

Theorem 1. The top-reduced S-Gröbner basis for P is
finite.

It can be seen that the“compatible”property is a sufficient
condition for the finiteness of the top-reduced S-Gröbner
basis H. Below we provide an example by extracting the
proof of [13, Th. 13] to show that we may get an infinite H
if the “compatible” property is not satisfied.

Example 1. Let ≤m∗=≤invlex be the inverse lexicograph-
ical order3 on M and let ≤s∗ be the order on Md with the
following definition: mei <s∗ m

′ej if

1. i > j,

2. i = j , m <lex m
′,

where ≤lex is the lexicographical order on M. Particularly,
we have mei = m′ej , if i = j and m = m′.

Readers can verify that ≤m∗ (resp. ≤s∗) is an admissible
monomial (resp. module) order and ≤m∗ and ≤s∗ are not
compatible. Let the polynomials to be computed are f1 =
x1 and f2 = x3x2 − x3x1, the initialized sig-polynomials
α1 = (e1, x1) and α2 = (e2, x3x2 − x3x1). We have

α3 = x2x3α1 − x1α2 = (x2x3e1, x3x
2
1),

and α3 cannot be top-reduced by α1 and α2. It can be in-
ferred that α3 is top-irreducible and we can generate infinite
top-irreducible sig-polynomials

αk = x2αk−1 − xk−2
1 α2 = (xk−2

2 x3e1, x3x
k−1
1 ),

for k ≥ 3. As they are not pairwise equivalent (i.e., their
head pairs are unequal), H is an infinite sequence {α`}`∈N∗ .

Hence, in the remaining sections of this paper we will
assume that the admissible monomial order ≤m and the ad-
missible module order ≤s are compatible. Suppose there are
two sig-polynomials α, β ∈ NS. Denote by Γαβ the least

common multiple lcm(HM(α), HM(β)). Let mα =
Γαβ

HM(α)

and mβ =
Γαβ

HM(β)
. If mαS(α) >s mβS(β), then mαα is

called the (first) J-pair (cf. [11]) of α and β; mββ is called
the second J-pair w.r.t. mαα; α (resp. β) is called the
first (resp. second) component of mαα; mα (resp. mβ)
is called the multiplier of α (resp. β).

5. THE F5GEN ALGORITHM

5.1 Pseudo code
Without loss of generality, we assume that inter-reducing

the input {f1, . . . , fd} (i.e. reducing each polynomial by the
rest) does not lead to zero cancellation. It can be deduced
e1, . . . , ed are top-irreducible signatures as in [17]. Let α be
a non-syzygy one in NS of signature ei, i ∈ [1, d]. If α isM-
reducible by P∗, a repeated S-reduction of α by P∗ would
generate an S-irreducible sig-polynomial β. By Lemma 2,
β is also M-irreducible. As β cannot be super top-reduced
by P∗, β is a top-irreducible sig-polynomial and ei is a top-
irreducible signature.

Note that in the computation process of the F5GEN, there
may exist syzygies in G. Let S be a set of polynomials (resp.
sig-polynomials), sort(S, ≤m (resp. ≤s)) means that we
arrange S by ascending head monomials (resp. signatures)
of polynomials (resp. sig-polynomials) with respect to the
order ≤m (resp. ≤s).
3µ ≤invlex σ if µ has smaller degree in the last variable for
which they differ.
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Algorithm 1 The F5GEN Algorithm (F5 algorithm with a
generalized insertion strategy)

1: inputs:
F = {f1, . . . , fd} ∈ R, a list of polynomials
≤m an admissible monomial order on M
≤s, an admissible module order on Md such that ≤s is
compatible with ≤m and e1 <s · · · <s ed

2: outputs:
a Gröbner basis of I =< f1, . . . , fd >

3: inter-reduce F and F :=sort({f1, . . . , fd}, ≤m), Fi =
(ei,fi) for i ∈ [1, d]

4: init:
CP := {J − pair[Fi, Fj ] | 1 ≤ i < j ≤ d},
G = {Fi | i ∈ [1, d]}

5: while CP 6= ∅ do
6: γ :=select F5(CP ) and CP := CP\{γ}
7: if S(γ) /∈ S(PS) and γ is not rewritable by G then

8: γ
∗−→
G
α

9: G :=insert F5GEN(α, G, γ)
10: if poly(α) 6= 0 then
11: CP := CP∪{J−pair(α, β) | ∀β ∈ G\Syz, β 6=

α}
12: return {poly(α) |α ∈ G \ Syz}

Algorithm 2 select F5

1: inputs:
CP , a set of J-pairs

2: i := min{idx(δ)|δ ∈ CP} and
CP i := {δ ∈ CP | idx(δ) = i}

3: D := min{deg(S(δ))|δ ∈ CP i} and
CP iD := {δ ∈ CP i | deg(S(δ)) = D}

4: γ := any J-pair in CP iD
5: return γ

The select F5 function seems to be too cumbersome for
applications, but it simulates fairly well the process of se-
lecting critical pairs in the F5 algorithm of [8]. In fact, if
γ is replaced by the ≤s-minimal J-pair at line 6, we can
also obtain another version of the F5GEN and its proof is
similar to that in Subsection 5.3. This paper is tailored to
deal with the F5 algorithm, so we do not consider other se-
lection strategies here. Call a J-pair γ being considering if
the F5GEN algorithm is executing the while-loop where γ
is selected at line 6. If the algorithm has completed that
while-loop, γ has been considered, otherwise γ has not been
considered.

Algorithm 3 rewritable

1: inputs:
mG(k), a J-pair
G := {G(1), . . . ,G(r)}

2: outputs:
true if S(mG(k)) is a multiple of another sig-polynomial
appearing later than G(k) in G

3: find the first position jb and the last position je in G
such that idx(G(k)) = idx(G(jb)) = idx(G(je))

4: for i = je to jb do
5: if S(G(i)) | S(mG(k)) then
6: return i 6= k

7: return false

Algorithm 4 insert F5GEN

1: inputs:
α, a sig-polynomial
G := {G(1), . . . ,G(r)}
γ = mG(k), the J-pair which is S-reduced to α

2: find the first position jb and the last position je in G
such that

idx(G(jb)) = idx(G(je)) = idx(α) = idx(γ)

3: insert α into G after G(i) , where jb − 1 ≤ i ≤ je, such
that α appears later in G than G(k) (i.e., k ≤ i ≤ je)

4: return

It is important to note that after the execution of line 3
in the insert F5GEN function, α is in G: α in G may be of
the form G(k + 1) or G(k + 100) (k + 100 ≤ je + 1). We
will show that the original F5 algorithm of [8], which did
not specify an order when adding critical pairs of the same
degree into Rule[idx(α)], can be viewed as a restricted case
of the insertion strategy.

5.2 Simplifications compared with F5
If s is the signature (not necessary top-irreducible) in
S(P∗), we denote by P≤s(s) the subset of sig-polynomials
in P of which the signatures are smaller than or equal to s
and denote by G≤s(s) the S-Gröbner basis for P≤s(s). That
is, any non-syzygy sig-polynomial in P≤s(s) is top-reducible
by G≤s(s). P≤s(s) and G<s(s) are defined similarly.

We denote by F5-reduction the process of checking the
F5-criteria (i.e. line 7 of the F5GEN algorithm) for the S-
reducer.4 We think that omitting the F5-criteria check for

4The terms F5-reduction and F5-criteria are summarized
from the pseudo code of the F5 algorithm of [8].
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the S-reducers at line 8 as in [7] would not affect the correct
termination of this algorithm. However, Galkin pointed out
that the simplifications above are not as obvious as we im-
aged. Using the idea of [10], we have the following lemma
to confirm this point but our result is slightly different from
Corollary 35 of [10].

Lemma 4. Assume the F5GEN has computed correctly up
to signature s (i.e., G = G<s(s) and the F5GEN has not
considered any sig-polynomial of signature s). Let ζ ∈ NS
be a non-syzygy one of signature s. If ζ can be S-reduced by
G, it would also be F5-reduced by the updated G after finite
runs through the while-loop.

The detailed proof can be seen in the appendix.
Therefore, in the remaining part of this paper the sole

reduction used will be S-reduction and the F5-criteria check
for the second J-pair will be omitted too because the second
J-pair is also an S-reducer.

5.3 Proof of F5GEN
Define an order �p on P∗ in the following way:

α �p β ⇔ HM(α)S(β) ≤s HM(β)S(α)

This order are closely related to the terms defined earlier.
If α is S-reducible by β, then (HM(α)/HM(β))S(β) <s
S(α) and α ≺p β. If β is M-reducible by α, then

(S(β)/S(α))HM(α) <m HM(β)

and idx(α) = idx(β). As <s and <m are compatible, α ≺p
β.

It can be deduced that �p is a well-order on P∗ as ≤s
is the well-order and the �p-minimal elements on P∗ are
{(u, g) ∈ P∗ | g = 0}.

From the idea of [13, Th. 13], we derive a crucial lemma
for the termination.

Lemma 5. Let α ∈ NS be the non-syzygy top-irreducible
one of the maximum signature. After finite while-loops, as-
sume that the F5GEN algorithm has computed correctly up
to signature s, where s >s S(α). Then the F5GEN would
terminate.

Proof. By the assumption the S-Gröbner basis G is a
finite set, we denote by {G(k1), . . . ,G(kw)} all non-syzygy
ones in G. Then we use a permutation ς of {1, . . . , w} to
ensure that

G(kς(1)) �p · · · �p G(kς(w))

since �p is a well-order. All the remainders in CP can be
counted in a vector NCP = (n1, . . . , nw) ∈ Nw as follows.
nj stands for the number of J-pairs �p-equal to G(kς(j)),
j ∈ [1, w].

Consider the relation between NCP and NCP ′ after two
consecutive runs through the while-loop w.r.t the lexico-
graphical order, denoted by <lex. Let

NCP = (n1, . . . , nw) and NCP ′ = (n′1, . . . , n
′
w),

we have NCP >lex NCP ′ whenever the leftmost non-zero
component, say na − n′a, is positive, where a ∈ [1, w]. Dur-
ing an execution of the loop, a J-pair γ is extracted from
CP , which will be either discarded or S-reduced to an S-
irreducible sig-polynomial β. If β 6= 0, new J-pairs η would
be generated at line 11. Whether the first components of

η would be β or not, η �p β ≺p γ always holds. Be-
cause η can be super top-reduced by G, NCP >lex NCP ′
and the algorithm would terminate because <lex on Nw is
well-founded.

The following lemma shows under what condition a top-
irreducible sig-polynomial can be computed by the F5GEN
algorithm.

Lemma 6. Let α be a non-syzygy top-irreducible one in
NS. After finite steps, assume that the F5GEN has com-
puted correctly up to a top-irreducible signature S(α). G
would be G≤s(S(α)) after finite runs of the loop.

Proof. Suppose G does not contain any sig-polynomial
of signature equivalent to α since otherwise G = G≤s(s) . As
e1, . . . , ed are top-irreducible signatures, we first prove that
there is a J-pair in CP can pass F5-criteria by distinguishing
between two cases.

1. If S(α) = ev for some v ∈ [1, d], there is at least one
sig-polynomial of signature ev in G (e.g., (ev, fv)), so
we can choose one of signature ev in the maximum po-
sition of G≤s(si), denoted by γ. Since γ isM-reducible
by α, by Lemma 2 it must be S-reducible by G. Then
γ is a J-pair in CP and can pass the F5-criteria check
at line 7 of the F5GEN algorithm.

2. If S(α) 6= ev for all v ∈ [1, d], as G is a finite set, there
exists a non-syzygy β ∈ G and a monomial m ≥ 1 such
that S(mβ) = S(α) /∈ S(PS) and mβ is not rewritable
by G.5 Since mβ can be M-reduced by α, by Lemma
2 it can also be S-reduced by some non-syzygy top-
irreducible one in G, say δ. If m = 1, then β would be
a J-pair in CP and pass the F5-criteria check.

If m 6= 1, we denote by mββ the J-pair of β and δ,
where mβ |m. Assume for a contradiction that mβ

properly divides m. As the F5GEN has considered
S(mββ) and β rewrites α, either S(mββ) = S(PS) or
mββ is rewritable by G.

If S(mββ) = S(PS), then S(mβ) would be in S(PS),
a contradiction. If mββ is rewritable by G, let η ∈ G
be the sig-polynomial rewriting mββ. As η appears
later in G than β and

S(η) | S(mββ) | S(mβ),

mβ is rewritable by η, a contradiction.

Therefore, mβ = m, i.e., γ = mβ is the J-pair of two
non-syzygy β and δ such that S(α) = S(γ) /∈ S(PS)
and γ is not rewritable by G.

Then we prove that such a J-pair γ can be extracted after
finite runs of the while-loop. If the F5GEN has not consid-
ered the sig-polynomial of index idx(α), since G = G<s(S(α))

and the F5GEN is incremental, the F5GEN would consider
sig-polynomial of index idx(α) after finite runs of the loop by
Lemma 5. If the F5GEN is considering the sig-polynomial
of index idx(α), from the pseudo code of the select F5 func-
tion we know that γ would be extracted after finite steps.
As γ can pass the F5-criteria, G would be G≤s(S(α)).

5We choose the sig-polynomial in the maximum position of
G that its signature divides S(α).

295



Theorem 2. For any finite subset F = {f1, . . . , fd} of
polynomials in R, the F5GEN algorithm terminates cor-
rectly.

Proof. We proceed by induction on top irreducible sig-
polynomials. The base case is vacuously true. As the in-
duction step is guaranteed by Lemma 6 and top-reduced
S-Gröbner basis is finite by Theorem 1, we would get an S-
Gröbner basis after finite while-loops of the F5GEN. Then
we can prove the termination of the F5GEN by Lemma
5.

6. COMPARISON WITH F5

6.1 Orderings for rewritten
In the original F5 algorithm of [8], the admissible mod-

ule order, denoted by ≤s06, is compatible with the admis-
sible monomial order ≤m. Let α and β be two arbitrary

sig-polynomials in NS and mα =
Γαβ

HM(α)
,mβ =

Γαβ
HM(β)

. Be-

cause the input polynomials F = {f1, . . . , fd} of the F5 algo-
rithm are homogeneous, F5-reducing a sig-polynomial does
not lead to a decrease in the degree of its polynomial part
and

deg(HM(α)) = deg(S(α)) + deg(HM(fidx(α)))

always holds. Assume that mαS(α) >s mβS(β). During the
ith run through the F5 function of [8], sorting critical pairs
by the degrees of Γαβ equals sorting them by the degrees
of mαS(α) because these critical pairs share the index i.
Therefore, line 2 and 3 of the select F5 function in this paper
do the same thing as the F5 function did.

The crux of proving the termination of the F5 algorithm
of [8] is the author did not specify that critical pairs of the
smallest degree are chosen in what sequence. This causes the
non-determinacy of the ordering in Rule[i] and the answer
to the question whether a sig-polynomial is rewritable. Any
proof by breaking ties using a concrete ordering would be a
proof for one implementation of the F5. For example, the
TRB-F5 algorithm of [13] selects the ≤s0 -minimal one from
CP iD

7 at the beginning of each run through the while-loop,
if there are more than one J-pairs in CP iD. In addition,
sig-polynomials are added at the head of Rule[i] in [13].
We will give an example to show that, upon input a set
of homogeneous polynomials, the original F5 with different
concrete orderings (on critical pairs of the same degree) may
output different results. In the insert F5GEN function of
this paper, we generalize the insertion strategy in G which
covers all possible orderings in Rule[i] for all i.

6.2 Criteria
Instead of sorting sig-polynomials in G in the F5GEN al-

gorithm, the original F5 algorithm uses an array Rule[i] to
store sig-polynomials of index i, for each i ∈ [1, d]. The sig-
polynomial of F5-reduction from a J-pair γ appears earlier in
Rule[i] than the first component of γ. So the insertion strat-
egy of Rule[i] of [8] satisfies (inversely) the description of
the insert F5GEN function. Besides, if α appears in Rule[i]
later than β ∈ Rule[i], deg(S(α)) ≥ deg(S(β)) always holds,
whereas in G it may not hold. That means the rewritten cri-
terion here is more generalized than the one in [8].
6That is, µei <s0 σej if i > j or i = j and µ <m σ.
7CP iD is not a notation in [13], but is used for summarizing
the operations in the TRB-F5.

In [8], checking whether a sig-polynomial of index i is a
normal form of itself w.r.t. the computed S-Gröbner basis of
index greater than i can be viewed as a relaxation of princi-
pal syzygy check because two sig-polynomials of index i can
also generate a principal syzygy sig-polynomial. Therefore,
the criteria of the F5 is an implementation of the criteria of
the F5GEN algorithm.

6.3 Orderings for reduction
It is important to note that the sig-polynomial selected at

each time for the TopReduction function is determinate:
the S-minimal J-pair8 in the minimal degree J-pairs of the
current index, say i, is always selected by the F5. In our
F5GEN algorithm, any J-pair in CP iD can be selected for S-
reduction, a relaxation of the F5. In addition, by the discus-
sion in Section 5.2, we can add the check for the S-reducers
and the second J-pairs w.r.t. the J-pairs in CP without af-
fecting the correct termination of the F5GEN. Hence the F5
algorithm of [8] is one implementation of the F5GEN.

6.4 Example
For the original F5 algorithm, [12] made a conjecture on

which the termination is based. That is, there will not be a
sig-polynomial added in G such that it is super top-reducible
by a sig-polynomial already in G. We doubt the truth of the
conjecture and prove Lemma 5 without that conjecture. The
example given in [12] can also serve as a counterexample to
show that the sig-polynomials generated by the F5 have one
element super top-reducible by another one.

Example 2. The admissible monomial order ≤m is the de-
gree reverse lexicographical order (x >m y >m z >m t) and
the input polynomials are (x2y− z2t, xz2 − y2t, yz3 − x2t2).
The admissible module order ≤s0 is automatically specified.
The head pairs of the S-Gröbner basis generated in [12] are

ϑ(r3) = (e3, x
2y), ϑ(r2) = (e2, xz

2),

ϑ(r4) = (xye3, xy
3t), ϑ(r5) = (xyz2e2, z

6t),

ϑ(r1) = (e1, yz
3), ϑ(r6) = (xe1, y

3zt),

ϑ(r7) = (x2e1, z
5t), ϑ(r9) = (x2ze1, y

5t2),

ϑ(r8) = (x3e1, x
5t2), ϑ(r10) = (z3te1, y

6t2),

ϑ(r11) = (x3ze1, x
5zt2).

Comparing the S-Gröbner basis in [8], only one more sig-
polynomial r11 of head pair ϑ(r11) = (x3ze1, x

5zt2) is gen-
erated. We can see that r11 can be super top-reduced by
r8.

The reason for two different S-Gröbner bases computed
by the same algorithm lies in that the positions of r9 and
r8 in Rule[1] are different and r11 is the sig-polynomial F5-
reduced from the J-pair x·r9. The original F5 did not specify
that the critical pairs of the same degree should be added
into Rule[i] in what sequence, so the case of r9 appearing
earlier in Rule[1] than r8

9 is possible as the degrees of their
signatures are the same. In that case, r11 is kept in contrast
to the example in [8]. Therefore, if the conjecture is assumed
to be correct, the proof of the correct termination would be
only a partial proof.
8It makes no difference to consider J-pairs instead of the
result of Spoly in [8] when the signature and degree of a
sig-polynomial are taken into consideration.
9We assume that new elements are added at the beginning
of Rule[i].
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7. CONCLUSION
This paper presents a proof of the correct termination of

the F5GEN algorithms under the condition that the admis-
sible monomial order and the admissible module order are
compatible. And the F5GEN is a generalization of the F5
algorithm, so the termination of the F5 is solved.

In fact, our original goal was to prove the F5GEN with
the following generalization.

Conjecture 1. At line 6 of the F5GEN algorithm, as-
sume that any J-pair can be selected from CP . Then the
F5GEN terminates correctly.

We tend to think the above is true because with ≤s-minimal
J-pair in CP instead of the cumbersome select F5 function,
the correct termination of the F5GEN would be proved sim-
ilarly. Unfortunately, we face hurdles in proving the corre-
sponding Lemma 4 (to be specific, Lemma 7) and Lemma 5
for that conjecture. Therefore, we leave that conjecture as
an open problem.
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basis and its applications. Preprint, arXiv: 1012.5425
[cs.SC], December 2010.

[14] M. Kreuzer and L. Robbiano. Computational
Commutative Algebra 1. Computational Commutative
Algebra. Springer, 2000.

[15] T. Stegers. Faugère’s F5 algorithm revisited. Master’s
thesis, Technische Universität Darmstadt, 2005.

[16] Y. Sun and D. Wang. A generalized criterion for
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APPENDIX
During an execution of the while-loop of the F5GEN al-
gorithm, assume that G computed is the set of finite sig-
polynomials. Let G(j) and G(k) be two sig-polynomials in
G. We adopt the order l in [10], which is defined as follows.
mjG(j) lmkG(k) if

1. mjS(G(j)) <s mkS(G(k)),

2. mjS(G(j)) = mkS(G(k)) and j > k (i.e., G(j) appears
later in G than G(k)),

where mj and mk are two monomials in M. Particularly,
mjG(j) is mkG(k) if mjS(G(j)) = mkS(G(k)) and j = k. It
can be seen that l is a well-order on M×G, because ≤s is
a well-order and G is finite.

Below we will introduce representations that are inspired
by the ideas of [6, 10]. Let α be a sig-polynomial, if

poly(α) =
∑̀
k=1

pk · poly(G(ik)),G(ik) ∈ G, (4)

∑`
k=1 pkG(ik) is called an (G-)representation of α. Each

mkvG(ik) is called an element of the representation, where
pk =

∑
v ckvmkv , 0 6= ckv ∈ K and mkv ∈ M. Of course,

we can store all elements of a representation in an array
A ∈ (M× G)v of size v such that A1 m · · · m Av. Let an-

other G-representation of α be
∑`′

k=1 p
′
kG(jk) and its array

of elements be A′ ∈ (M× G)v
′
. The representation A′ is

called l-smaller than A if A′ has l-smaller element at the
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leftmost position for which they differ10. If S(pkG(ik)) ≤s
S(α), ∀k ∈ [1, `], the G-representation is called S-safe (i.e.
the term“signature-safe” in [10]). Let t be a monomial inM.
The S-safe G-representation is called a t-representation if
HM(pkG(ik)) ≤m t, ∀k ∈ [1, `]. We can give few examples
for those representations.

Example 3. Let G(j) = (u, p) ∈ G be a sig-polynomial
and m be a monomial.

• mG(j) itself is an S-safe representation of mG(j), called
a trivial representation.

• Assume that G(j) /∈ {F1, . . . , Fd}. As G is initial-

ized with {F1, . . . , Fd},
∑d
k=1 m · ukFk is an S-safe G-

representation of mG(j), where (u1, . . . , ud) = u ∈ Rd.
It is called a signature representation11. It is im-
portant to note that we have

S(mHM(uk)Fk) <s S(mG(j)),∀k ∈ [1, d],

except one, say w, such that

S(mHM(uw)Fw) = S(mG(j)).

Clearly, G(j) appears later than Fw by the insertion
strategy of the F5GEN, i.e., mG(j) l mHM(uw)Fw.
So the trivial representation mG(j) is l-smaller than

the signature representation
∑d
k=1 m · ukFk.

• Let α = (u, 0) be a principal syzygy sig-polynomial
generated by G(i) and G(j) in G. That is,

α = poly(G(i))G(j)− poly(G(j))G(i),

which is an S-safe G-representation.

Then Lemma 4 is proved as follows.

Proof. Suppose ζ cannot be F5-reduced by the present
G. Let mG(k) be a non-syzygy sig-polynomial S-reducing ζ.
Either S(mG(k)) ∈ S(PS) or mG(k) is rewritable by G.

1. If S(mG(k)) is in S(PS), there is a principal syzygy
sig-polynomial (u′, 0), such that m′S(u′) = mS(G(k)).
Adding (c · mu′, 0) to mG(k), we can obtain a sig-
polynomial (u∗,m · poly(G(k))) such that S(u∗) <s
mS(G(k)). The signature representation

∑
t u
∗
tFt of

(u∗,m · poly(G(k))) is a representation of mG(k) l-
smaller than the trivial representation mG(k). If the
signature of an element mtvFt ∈

∑
t u
∗
tFt is in S(PS),

we can find an S-safe G-representation l-smaller than∑
t u
∗
tFt by the same method discussed above.

2. If mG(k) is rewritable by G, let G(j) be the one rewrit-
ing mG(k). So j > k and S(m′G(j)) = S(mG(k)), i.e.,
m′G(j) lmG(k). As mG(k) and m′G(j) share a com-
mon l-maximum element, say m∗Fw with

w = idx(mG(k)) = idx(m′G(j)),

by cancelingm∗Fw, mG(k) has an S-safe representation
of the form

m′G(j) +
∑
t

ptFt, (5)

10The comparison is proceeded by padding with zeros at the
right of the shorter array if A and A′ are not of equal length.

11Different from the input-representation defined in [10], the
signature representation of a fixed sig-polynomial is unique.

which is l-smaller than the trivial G-representation
m(SG)′(k). Similarly, if mtvFt in representation (5)
can be rewrite by G≤s(si), we would obtain a l-smaller
S-safe G-representation.

Because l is a well-order on M× G, we can ensure that
there is an S-safe G-representation of mG(k) such that each
element is neither in PS nor rewritable by G. Together with
the following lemma, we would have an S-safe HM(mG(k))-
representation such that each element would be neither in
PS nor rewritable by updated G after finite while-loops.
Therefore, there exists a sig-polynomial in updated G F5-
reducing mG(k).

Making use of the proof for Lemma 32 of [10], we can
obtain a short lemma below.

Lemma 7. Assume the F5GEN has computed correctly up
to signature s. Let

∑
t ptG(jt) be an S-safe G-representation

of mG(k), where mS(G(k)) <s s. We assume that each
element mtyG(jt) is neither in PS nor rewritable by G. If
there exists an element mtvG(jt) such that HM(mtvG(jt)) >
HM(mG(k)), where mtv ∈ pt, mG(k) would have an S-safe
G-representation l-smaller than

∑
t ptG(jt) after finite runs

through the while-loop.

Proof. Because poly(mG(k)) =
∑
t pt · poly(G(jt)) and

HM(mtvG(jt)) > HM(mG(k)), there exists another ele-
ment mrwG(jr) such that

HM(mrwG(jr)) = HM(mtvG(jt)).

Let m′ and m′′ be two monomials such that

HM(m′G(jt)) = HM(m′′G(jr)) = lcm(G(jt),G(jr))

and m′S(G(jt)) > m′′S(G(jr)). If m′G(jt) had been con-
sidered by the F5GEN algorithm, there would be a sig-
polynomial in current G rewriting m′G(jt), a contradiction.
From the selection strategy of the F5GEN, we know that
deg(m′S(G(jt)) = deg(s) and m′G(jt) has not been consid-
ered. Obviously, the F5GEN cannot generate infinite J-pairs
such that their signatures are of a fixed degree. So m′G(jt)
would be output at line 6 of the algorithm after finite runs
through the while-loop. By the assumption of the lemma,
the J-pair m′G(jt) can pass the F5-criteria of the F5GEN
algorithm and would be F5-reduced to a new sig-polynomial
G(`) stored into G. Hence

S(G(`)) = m′S(G(jt)) and ` > jt,

i.e., G(`)lm′G(jt) and G(`) can rewrite the element m′G(jt).
By the method of case (2) in the above lemma, we can find
an S-safe G-representation l-smaller than

∑
t ptG(jt).
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