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ABSTRACT
We present an algorithm for isolating all roots of an arbitrary com-
plex polynomial p which also works in the presence of multiple
roots provided that arbitrary good approximations of the coeffi-
cients of p and the number of distinct roots are given. Its out-
put consists of pairwise disjoint disks each containing one of the
distinct roots of p, and its multiplicity. The algorithm uses ap-
proximate factorization as a subroutine. For the case, where Pan’s
algorithm [16] is used for the factorization, we derive complexity
bounds for the problems of isolating and refining all roots which are
stated in terms of the geometric locations of the roots only. Special-
izing the latter bounds to a polynomial of degree d and with integer
coefficients of bitsize less than τ , we show that Õ(d3 +d2τ +dκ)
bit operations are sufficient to compute isolating disks of size less
than 2−κ for all roots of p, where κ is an arbitrary positive integer.

Our new algorithm has an interesting consequence on the com-
plexity of computing the topology of a real algebraic curve speci-
fied as the zero set of a bivariate integer polynomial and for isolat-
ing the real solutions of a bivariate system. For input polynomials
of degree n and bitsize τ , the currently best running time improves
from Õ(n9τ + n8τ2) (deterministic) to Õ(n6 + n5τ) (randomized)
for topology computation and from Õ(n8 +n7τ) (deterministic) to
Õ(n6 +n5τ) (randomized) for solving bivariate systems.

Categories and Subject Descriptors
G.1.5 [Roots of Nonlinear Equations]: Polynomials, methods for
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1. INTRODUCTION
Root isolation is a fundamental problem of computational alge-

bra. Given a univariate polynomial p with complex coefficients and
possibly multiple roots, the goal is to compute disjoint disks in the
complex plane each containing exactly one root. We assume the ex-
istence of an oracle that can be asked for rational approximations
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of the coefficients of arbitrary precision. In particular, non-rational
coefficients can never be learned exactly in finite time.

In this generality, the problem is unsolvable. Consider p(x) =
(x−
√

2)2(x+ 1) = x3 +(−2
√

2− 1)x2 +(2+ 2
√

2)x+ 2 and as-
sume that an algorithm terminates after having received approxima-
tions 1, α , β , and 2 for the coefficients, where α and β are rational
and the polynomial x3 +αx2 + βx+ 2 has three distinct roots. If
the algorithm outputs two disks, the adversary commits to this α

and β as the two middle coefficients. If the algorithm outputs three
disks, the adversary commits to p.

The example shows that the problem needs to be restricted. In
addition to our assumption that the coefficients of our input poly-
nomial p are provided by coefficient oracles, we further assume
that the number k of distinct roots is also given. Root isolation is a
key ingredient in the computation of a CAD (cylindrical algebraic
decomposition) for a given set of multivariate polynomials and,
in particular, for computing the topology of algebraic curves and
surfaces. In these applications, one has to deal with polynomials
with multiple roots and algebraic coefficients which can be approx-
imated to an arbitrary precision. In addition, the number of distinct
roots is readily available from an algebraic decomposition of the
input. At this point, we refer to some recent symbolic-numeric al-
gorithms [20, 6, 3, 2] which combine structural information derived
from symbolic computation and the use of numerical root finding
methods to isolate the roots of polynomials with algebraic coeffi-
cients for which only approximations are given.

We now give a short overview of our algorithm and our results.
Let p(x)=∑

n
i=0 pixi be a polynomial with k distinct roots z1, . . . ,zk.

For i = 1, . . . ,k, let mi := mult(zi, p) be the multiplicity of zi, and
let σi := σ(zi, p) := min j 6=i

∣∣zi− z j
∣∣ be the separation of zi from

the other roots of p. Then, our algorithm outputs isolating disks
∆i = ∆(z̃i,Ri) for the roots zi and the corresponding multiplicities
mi. The radii satisfy Ri <

σi
64n , thus the center z̃i of ∆i approximates

zi to an error of less than σi
64n . If the number of distinct roots of p

differs from k, we make no claims about termination and output.
The coefficients of p are provided by oracles. That is, on input

L, the oracle essentially returns binary fraction approximations p̃i
of the coefficients pi such that

∥∥p−∑
n
i=0 p̃ixi

∥∥ ≤ 2−L ‖p‖. Here,
‖p‖ := ‖p‖1 = |p0|+ . . .+ |pn| denotes the one-norm of p. The
details are given in Section 2.

Our algorithm has a simple structure. We first use any algorithm
(e.g. [4, 19, 16, 22]) for approximately factorizing the input poly-
nomial. It is required that it can be run with different levels of pre-
cision, and that, for any given integer b, it returns approximations
ẑ1 to ẑn for the roots of p such that∥∥∥p− pn ∏1≤ j≤n(x− ẑ j)

∥∥∥≤ 2−b ‖p‖ . (1)

In a second step, we partition the root approximations ẑ1 to ẑn into
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k clusters C1, . . . ,Ck based on geometric vicinity. We enclose each
cluster Ci in a disk Di = ∆(z̃i,ri) and make sure that the disks are
pairwise disjoint and that the radii ri are not “too small” compared
to the pairwise distances of the centers z̃i.1 In a third step, we ver-
ify that the n-times enlarged disks ∆i = ∆(z̃i,Ri) = ∆(z̃i,n · ri) are
disjoint and that each of them contains exactly the same number of
approximations as roots of p counted with multiplicity. If the clus-
tering and the verification succeed, we return the disks ∆1, . . . ,∆k
and the number of approximations ẑ ∈ {ẑ1, . . . , ẑn} in the disk as
the multiplicity of the root isolated by the disk. If either clustering
or verification does not succeed, we repeat with a higher precision.
Strzebonski [20] has previously described a similar approach. The
main difference is that he used a heuristic for the clustering step
and hence could neither prove completeness of his approach nor
analyze its complexity. He reports that his algorithm does very
well in the context of CAD computation.

In the example above, we would have the additional informa-
tion that p has exactly two distinct roots. We ask the oracle for
an L-approximation of p for sufficiently large L and approximately
factor it. Assume, we obtain approximations−1.01, 1.4, and 1.5 of
the roots, and let p̂ = (x+ 1.01)(x− 1.4)(x− 1.5). The clustering
step may then put the first approximation into a singleton cluster
and the other two approximations into a cluster of size two. It also
computes disjoint enclosing disks. The verification step tries to cer-
tify that p and p̂ contain the same number of roots in both disks. If
L and b are sufficiently large, clustering and verification succeed.

If Pan’s algorithm [16] is used for the approximate factorization
step, then the overall algorithm has bit complexity2

Õ
(

n3 +n2
k

∑
i=1

logM(zi)+n
k

∑
i=1

log
(

M(σ−mi
i ) ·M(P−1

i )
))

(2)

where Pi := ∏ j 6=i(zi − z j)
m j =

p(mi)(zi)
mi!pn

, and M(x) := max(1, |x|).
Observe that our algorithm is adaptive in a very strong sense, namely,
the above bound exclusively depends on the actual multiplicities
and the geometry (i.e. the actual modulus of the roots and their dis-
tances to each other) of the roots.

Our algorithm can also be used to further refine the isolating
disks to a size of 2−κ or less, where κ is a given integer. The
bit complexity for the refinement is given by the bound in (2) plus
an additional term Õ(n ·κ ·maxi mi). In particular for square-free
polynomials, the amortized cost per root and bit of precision is one
showing that the method is optimal up to polylogarithmic factors.

For the benchmark problem of isolating all roots of a polynomial
p with integer coefficients of absolute value bounded by 2τ , the
bound in (2) becomes Õ(n3 + n2τ). The bound for the refinement
becomes Õ(n3 +n2τ +nκ), even if there exist multiple roots.

For a square-free integer polynomial p, we are aware of only
one method [8, Theorem 3.1] that achieves a comparable complex-
ity bound for the benchmark problem. That is, based on the gap
theorem from Mahler, one can compute a theoretical worst case
bound b0 of size Θ(nτ) with the property that if n points ẑ j ∈ C
fulfill the inequality (1) for a b ≥ b0, then they approximate the
corresponding roots z j to an error less than σ j/(2n); cf. Lemma 4
for an adaptive version. Hence, for b ≥ b0, Pan’s factorization al-
gorithm also yields isolating disks for the roots of p using Õ(n2τ)
bit operations. Note that this approach achieves a good worst case
complexity, however, for the price of running the factorization al-
gorithm with b = Θ(nτ), even if the roots are well conditioned. In

1This will turn out to be crucial to control the cost for the final
verification step. For details, we refer to Sections 3.2 and 3.3.
2Õ indicates that we omit logarithmic factors.

contrast, our algorithm turns Pan’s factorization algorithm into a
highly adaptive method for isolating and approximating the roots
of a general polynomial. Also, for general polynomials, there ex-
ist theoretical worst case bounds [19, Section 19] for the distance
between the roots of p and corresponding approximations fulfilling
(1). They are optimal for roots of multiplicity Ω(n) but they con-
stitute strong overestimations if all roots have considerably smaller
multiplicities. For the task of root refinement, the bit complexity
of our method (i.e. Õ(nmaxi mi ·κ) for κ dominating) adapts to the
highest occurring multiplicity, whereas this is not given for the cur-
rently best methods [12, 16, 18] which achieve the bound Õ(n2κ).

We would also like to remark that we are aware of only two pre-
vious root isolation algorithms [20, 14] that can cope with multiple
roots. The latter algorithm can cope with at most one multiple root
and needs to know the number of distinct complex roots as well
as the number of distinct real roots. The former algorithm has the
same applicability as our algorithm, but it has heuristic steps.

Our new root isolation algorithms has an interesting consequence
on the complexity of computing the topology of a real planar alge-
braic curve specified as the zero set of an integer polynomial and
for isolating the real solutions of a bivariate polynomial system.
Both problems are well-studied [1, 10, 11, 20, 6, 5, 2, 7, 13]. More
specifically, in an extended version [15] of this paper, we apply
our root isolation method to a recent randomized algorithm [2] for
computing the topology of a planar algebraic curve. This yields
bounds on the expected number of bit operations which improve the
currently best (which are both deterministic) bounds [7, 13] from
Õ(n9τ +n8τ2) to Õ(n6 +n5τ) for topology computation and from
Õ(n8 +n7τ) to Õ(n6 +n5τ) for solving bivariate systems, where n
and τ are upper bounds on the degree and the bitsize of the input
polynomials, respectively.

2. BASIC PROPERTIES
We consider a polynomial p(x) = pnxn + . . .+ p0 ∈ C[x] of de-

gree n ≥ 2, where pn 6= 0. In addition to our notations from the
introduction, we fix the following definitions:

• τp denotes the minimal non-negative integer with |pi|
|pn| ≤ 2τp

for all i = 0, . . . ,n−1,

• Γp := M(maxi log |zi|) the logarithmic root bound of p,

• Mea(p) := |pn| ·∏k
i=1 M(zi)

mi the Mahler Measure of p.

A straight forward argument shows that the quantities τp, Γp,
|pn| and Mea(p) are closely related; see [15] for details.

LEMMA 1. Γp ≤ 1+ τp and τp−n−1≤ log Mea(p)
|pn| ≤ nΓp.

We assume the existence of an oracle which provides arbitrary
good approximations of the polynomial p. Let L ≥ 1 be an inte-
ger. We call a polynomial p̃ = p̃nxn + . . .+ p̃0, with p̃i = si · 2−`
and si, ` ∈ Z, an approximation of precision L of p if |p̃i− pi| ≤
2−L−log(n+1) ‖p‖, ` ≤ L+ dlog(n+ 1)e−blog‖p‖c, and log |si| ≤
L + dlog(n + 1)e+ 1 for all i. When considering pi as infinite
bitstring pi = sgn(pi) ·∑+∞

k=−∞
bk2k, bk ∈ {0,1}, then we can ob-

tain p̃i from the partial string which starts at index k1 = blog‖p‖c
and ends at index k2 = blog‖p‖c−L−dlog(n+ 1)e, that is, si :=
2l · sgn(pi) ·∑k1

k=k2
bk2k, and l = L+ dlog(n+ 1)e−blog‖p‖c. We

assume that we can ask for an approximation of precision L of p
at cost O(n(L+ logn)) = Õ(nL). This is the cost of reading the
approximation of precision L. The next Lemma summarizes some
elementary properties of approximations of precision L. Again, we
refer to the extended version [15] of this paper for its simple proof.
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LEMMA 2. If p̃ is an approximation of precision L of p, then

• ‖ p̃‖/2≤ ‖p‖ ≤ 2‖ p̃‖.

• If L≥ τp +4, then 2−L−log(n+1) ‖ p̃‖ ≤ |p̃n|/4.

• If 2−L−log(n+1) ‖p̃‖ ≤ |p̃n|/4, then |p̃n|/2≤ |pn| ≤ 2 |p̃n|.

The above lemma suggests an efficient method for estimating pn.
We ask for approximations p̃ of precision L of p for L = 1,2,4, . . .
until 2−L−log(n+1) ‖ p̃‖ ≤ |p̃n|/4. Then, |p̃n|/2 ≤ |pn| ≤ 2 |p̃n| by
part 3 of the Lemma. Also L ≤ 2(τp + 4) by part 2 of the above
Lemma. The cost is Õ(nτp) = Õ(n2Γp) bit operations, where we
used the upper bound for τp from Lemma 1. Observe that this
bound depends only on the geometry of the roots (i.e. the actual
root bound Γp) and the degree but not (directly) on the size of the
coefficients of p. We remark that a “good” integer approximation
Γ of Γp can also be computed with Õ(n2Γp) bit operations. The
proof (see [15, Theorem 1]) of the latter fact is almost identical
to the one given in [17, Section 6.1], however, a small modifica-
tion (essentially, we replaced linear search by exponential binary
search) yields an improvement from Õ(n2Γ2) to Õ(n2Γ).

THEOREM 1. An integer Γ ∈ N with

Γp ≤ Γ < 8logn+Γp (3)

can be computed with Õ(n2Γp) bit operations. The computation
uses an approximation of precision L of p with L = O(nΓp).

3. ALGORITHM
We present an algorithm for isolating the roots of a polynomial

p(x) = ∑
n
i=0 pixi = pn ∏

k
i=1(x− zi)

mi , where the coefficients pi are
given as described in the previous section. The algorithm uses an
arbitrary polynomial factorization algorithm to produce approxi-
mations for the roots z1, . . . ,zk, and then performs a clustering and
certification step to verify that the candidates are of sufficient qual-
ity. For concreteness, we pick Pan’s factorization algorithm [16]
for the factorization step, which also currently offers the best worst
case bit complexity.3 If the candidates do not pass the verification
step, we reapply the factorization algorithm with a higher precision.
For a given positive integer b denoting the desired precision, the
factorization algorithm computes n root approximations ẑ1, . . . , ẑn.
The quality of approximation and the bit complexity are as follows:

THEOREM 2. For an arbitrary integer b≥ n logn, complex num-
bers ẑ1, . . . , ẑn can be computed such that∥∥p− pn ∏

n
i=1(x− ẑi)

∥∥≤ 2−b ‖p‖

using Õ(n2Γ+ bn) bit-operations. We write p̂ := pn ∏
n
i=1(x− ẑi).

The algorithm returns the real and imaginary part of the ẑi’s as
dyadic fractions of the form A · 2−B with A ∈ Z, B ∈ N and B =
O(b+nΓp). All fractions have the same denominator.

PROOF. If all roots of p have absolute value less than 1, then
we can use Pan’s Algorithm to obtain the above result; see [16,
Theorem 2.1.1]. For general polynomials, we first scale p such
that the roots of the scaled polynomial are contained in the unit
disk ∆(0,1). For this purpose, we compute a Γ as in Theorem 1,
and then consider the polynomial f (x) := p(s · x) = ∑

n
i=0 fixi with

s := 2Γ. Then, f (x) has roots ξi = zi/s ∈ ∆(0,1), and thus we
3In practice, one might consider a numerical root finder [4] based
on the Aberth-Ehrlich method instead. There is empirical evidence
that such methods achieve comparable complexity bounds.

can use Pan’s algorithm with b′ := nΓ+ b to compute an approx-
imate factorization f̂ (x) := ∑

n
i=0 f̂ixi := fn ∏

n
i=1(x− ξ̂i) such that∥∥ f − f̂

∥∥< 2−b′ ‖ f‖. According to Theorem 1, the cost for comput-
ing Γ is bounded by Õ(n2Γ) bit operations. The cost for running
Pan’s Algorithm is bounded by Õ(n2Γ)+Õ(nb′) = Õ(n2Γ+nb) bit
operation. Furthermore, we need an approximation of precision b′

of f , and thus an approximation of precision L of p with L=O(ns+
b) = Õ(nΓp +b). Again, the cost is bounded by Õ(n2Γ+nb).

Let ẑi := s · ξ̂i for all i and p̂(x) := pn ·∏n
i=1(x− ẑi) = f̂ (x/s) =

∑
n
i=0 f̂i/sixi. Then, p̂ has the desired property. Namely, ‖p̂− p‖ ≤

∑
n
i=0 | fi− f̂i| ≤ 2−b′

∑
n
i=0 | fi| ≤ 2−b′sn

∑
n
i=0 | fi/si|= 2−b ‖p‖ .

We now examine how far the approximations ẑ1, . . . , ẑn can de-
viate from the actual roots for a given value of b. Let ∆(z,r) be the
disk with center z and radius r and let bd∆(z,r) be its boundary.
We further define Pi := ∏ j 6=i(zi− z j)

m j . Then, p(mi)(zi) = mi!pnPi.

LEMMA 3. If r≤ σi
n , then |p(x)|> rmi · |pnPi|

4 for all x∈∆(zi,r).

PROOF. We have

|p(x)|= |pn| |x− zi|mi ∏
j 6=i
|x− z j|m j

≥ |pn| |x− zi|mi ∏
j 6=i
|zi− z j|m j · (1−|x− zi|/|zi− z j|)m j

≥ rmi(1−1/n)n−mi |pn|∏
j 6=i
|zi− z j|m j > rmi |pnPi|/4.

Based on the above Lemma, we can now use Rouché’s theorem
to show that, for sufficiently large b, the disk ∆(zi,2−b/(2mi)) con-
tains exactly mi root approximations.

LEMMA 4. Let p̂ be such that ‖p− p̂‖ ≤ 2−b ‖p‖. If

b≥max(8n,n log(n)), and b is a power of two (4)

2−b/(2mi) ≤min(1/(2n2),σi/(2n)), and (5)

2−b/2 ≤ |Pi|
16(n+1)2τp M(zi)n (6)

for all i, the disk ∆(zi,2−b/(2mi)) contains exactly mi root approxi-
mations. For i 6= j, let ẑi and ẑ j be arbitrary approximations in the
disks ∆(zi,2−b/(2mi)) and ∆(z j,2−b/(2m j)), respectively. Then,

(1−1/n)
∣∣zi− z j

∣∣≤ ∣∣ẑi− ẑ j
∣∣≤ (1+1/n)

∣∣zi− z j
∣∣ .

PROOF. Let δi :=
(
16 · (n+1) ·2−b2τp |Pi|−1M(zi)

n)1/mi . It is
easy to verify that δi ≤ 2−b/(2mi) ≤ min(1,σi)/(2n) from (6) and
(5). Note that to show that ∆(zi,δi) contains mi approximations, it
suffices to show that |(p− p̂)(x)|< |p(x)| for all x on the boundary
of ∆(zi,δi). Then, Rouché’s theorem guarantees that ∆(zi,δi) con-
tains the same number of roots of p and p̂ counted with multiplicity.
Since zi is of multiplicity mi and δi < σi/n, the disk contains ex-
actly mi roots of p counted with multiplicity. We have (note that
M(x)≤ (1+1/(2n2)) ·M(zi) for x ∈ bd∆(zi,δi))

|(p− p̂)(x)| ≤ ‖p− p̂‖ ·M(x)n < 2−b ‖p‖M(x)n

≤ 2−b ‖p‖ · (1+1/(2n2))n ·M(zi)
n

≤ 4 ·2−b ·2τp |pn| · (n+1) ·M(zi)
n

≤ δ
mi
i |pnPi|/4 < |p(x)|,

where the inequality in line three follows from ‖p‖≤ (n+1)|pn|2τp ,
the first one in line four follows from the definition of δi, and the
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last inequality follows from Lemma 3. It follows that ∆(zi,2−b/(2mi))
contains exactly mi approximations. Furthermore, since δi≤σi/(2n)
for all i, the disks ∆(zi,δi), 1≤ i≤ k, are pairwise disjoint.

For the second claim, we observe that |ẑ`− z`| ≤ 2−b/(2m`) ≤
σ`/(2n)≤

∣∣zi− z j
∣∣/(2n) for `= i, j and hence |ẑi− zi|+

∣∣ẑ j− z j
∣∣≤∣∣zi− z j

∣∣/n. The claim now follows from the triangle inequality.

We have now established that the disks ∆(zi,2−b/(2mi)), 1 ≤ i ≤
k, are pairwise disjoint and that the i-th disk contains exactly mi
root approximations provided that b satisfies (4) to (6). We want
to stress that the radii 2−b/(2mi), 1 ≤ i ≤ k, are vastly different.
Assume b = 40. For a one-fold root (m = 1), the radius is 2−20,
for a double root (m = 2) the radius is 2−10, for a four-fold root
(m = 4) the radius is 2−5, and for a twenty-fold root (m = 20), the
radius is as large as 1/2; see Figure 1 for an illustration.

Unfortunately, the conditions on b are stated in terms of the un-
known quantities mi, σi and |Pi|, as well as the center zi. In the
remainder of the section, we will show how to cluster root approx-
imations and to certify them. We will need the following more
stringent properties for the clustering and certification step.

2−b/(2mi) < min
((

σi

4n

)8
,

σi

1024n2

)
(7)

2−b/8 < min(1/16, |Pi|/((n+1) ·22nΓp+8n)) (8)

Let b0 be the smallest integer satisfying (4) to (8) for all i. Then,

b0 = O(n logn+nΓp +maxi(mi logM(σ−1
i ))+maxi logM(P−1

i )).

3.1 Overview of the Algorithm
On input p and the number k of distinct roots, the algorithm out-

puts isolating disks ∆i = ∆(z̃i,Ri) for the roots of p as well as the
corresponding multiplicities mi. The radii satisfy Ri < σi/(64n).

The algorithm uses the factorization step with an increasing pre-
cision until the result can be certified. If either the clustering step
or the certification step fails, we simply double the precision. There
are a couple of technical safeguards to ensure that we do not waste
time on iterations with an insufficiently large precision (Steps 2, 5,
and 6); also recall that we need to scale our initial polynomial.

1. Compute an integer bound Γ for Γp that fulfills inequality (3).

2. Compute a 2-approximation λ = 2lλ , lλ ∈ Z, of ‖p‖/|pn|.

3. Scale p, that is, f (x) := p(s · x), with s := 2Γ, to ensure that
the roots ξi = zi/S, i = 1, . . . ,k, of f are contained in the unit
disk. Let b be the smallest integer satisfying (4)

4. Run Pan’s algorithm on input f with parameter b′ := b +

nΓ to produce approximations ξ̂1, . . . , ξ̂n for the roots of f .
Then, ẑi := s · ξ̂i are approximations of the roots of p, and
‖ p̂− p‖< 2−b ‖p‖, where p̂(x) := pn ∏

n
i=1(x− ẑi).

5. If there is a ẑi with ẑi ≥ 2Γ+1, return to Step 4 with b := 2b.

6. If ∏
n
i=1 M(ẑi)> 8λ , return to Step 4 with b := 2b.

7. Partition ẑ1, . . . , ẑn into k clusters C1, . . . ,Ck. Compute (well
separated) enclosing disks D1, . . . ,Dk for the clusters. If the
clustering fails to find k clusters and corresponding disks,
return to Step 4 with b := 2b.

8. For each i, let ∆i denote the disk with the same center as Di
but with an n-times larger radius. We now verify the exis-
tence of |Ci| roots (counted with multiplicity) of p in ∆i. If
the verification fails, return to Step 4 with b := 2b.

9. If the verification succeeds, output the disks ∆i and report the
number |Ci| of root approximations ẑ∈{ẑ1, . . . , ẑn} contained
in the disks as the corresponding multiplicities.

Note that Steps 5 and 6 ensure that logM(ẑi) = O(Γp + logn)
for all i, and log∏

n
i=1 M(ẑi) =O(log(‖p‖/|pn|)) =O(logn+τp) =

Õ(nΓp). The following Lemma guarantees that the algorithm passes
these steps if b≥ b0.

LEMMA 5. For any b ≥ b0, it holds that |ẑi| < 2Γ+1 for all i,
and ∏

n
i=1 M(ẑi)< 8λ .

PROOF. In the proof of Lemma 4, we have already shown that
|ẑi| ≤ (1+ 1/(2n2)) ·M(zi) for all i. Hence, it follows that |ẑi| ≤
(1+1/(2n2)) ·2Γp < 2 ·2Γp ≤ 2Γp+1, and (note that (1+ 1

2n2 )
n < 4)

n

∏
i=1

M(ẑi)≤ 4 ·
k

∏
i=1

M(zi)
mi <

4Mea(p)
|pn|

≤ 4‖p‖2
|pn|

≤ 4‖p‖
|pn|

< 8λ .

3.2 Clustering
After candidate approximations ẑ1, . . . , ẑn are computed using a

fixed precision parameter b, we perform a partitioning of these ap-
proximations into k clusters C1, . . . ,Ck. Our clustering algorithm
works in phases. In each phase, it attempts to form a cluster based
on some unclustered approximation as seed. After all approxima-
tions have been clustered, ideally, each of the clusters now corre-
sponds to a distinct root of p. The algorithm satisfies the following
properties: (1) For b < b0, the algorithm may or may not succeed
in finding k clusters. (2) For b ≥ b0, the clustering always suc-
ceeds. Whenever the clustering succeeds, the cluster Ci with seed
z̃i is contained in the disk Di :=∆(z̃i,ri), where ri ≈min( 1

n2 ,
σ̃i

256n2 ),
and σ̃i = min j 6=i

∣∣z̃i− z̃ j
∣∣. Furthermore, for b≥ b0, Di contains the

root zi (under suitable numbering) and exactly mi approximations.
Before we describe our clustering method, we discuss two evi-

dent approaches that do not work for any b of size comparable to b0
or smaller. A clustering with a fixed grid does not work as root ap-
proximations coming from roots with different multiplicities may
move by vastly distinct amounts. As a consequence, we can only
succeed if b > (maxi mi) · log(mini σi)

−1 which can be consider-
ably larger than b0, see Figure 1. A clustering based on Gershgorin
disks does not work as well because very good approximations of
a multiple root lead to large disks which then fail to separate ap-
proximations of distinct roots. In particular, if approximations are
identical, the corresponding Gershgorin disks have infinite radius.

For our clustering, we use the fact that the factorization algo-
rithm provides approximations ẑ of the root zi with distance less
than 2−b/(2mi) (for b ≥ b0). Thus, we aim to determine clusters C
of maximal size such that the pairwise distance between two ele-
ments in the same cluster is less than 2 ·2−b/(2|C|). We give details.

1. Initialize C to the empty set (of clusters).

2. Initialize C to the set of all unclustered approximations and
choose ẑ ∈C arbitrarily. Let a := 2blognc+2 and δ := 2−b/4.

3. Update C to the set of points q∈C satisfying |ẑ−q| ≤ 2 a/2
√

δ .

4. If |C| ≥ a/2, add C to C . Otherwise, set a := a/2 and con-
tinue with step 3.

5. If there are still unclustered approximations, continue with
step 2.

6. If the number of clusters in C is different from k, report fail-
ure, and return to the factorization step with b := 2b.
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×

×
×

r = 2−b/2

r = 2−b/2

r = 2−b/4

r = 2−b/8

Figure 1: Example of a polynomial with four distinct roots with
multiplicities 1, 1, 2, and 4. Crosses are roots of the polynomial,
dots represent the approximations. The disk around a root shows
the potential locations of its approximations. Note that the straight-
forward approach to cluster with a fixed distance threshold fails
for all b with b < (maxi mi) · log(mini σi)

−1: For each such b, one
can not choose any threshold that allows detecting the simple roots
without splitting the four-fold root.

Note that, for b ≥ b0, the disks ∆(zi,2−b/(2mi)) are disjoint. Let
Zi denote the set of root approximations in ∆(zi,2−b/(2mi)). Then,
|Zi| = mi according to Lemma 4. We show that, for b ≥ b0, the
clustering algorithm terminates with C = Zi if called with an ap-
proximation ẑ ∈ Zi.

LEMMA 6. Assume b≥ b0, ẑi ∈ Zi, ẑ j ∈ Z j, and i 6= j. Then,∣∣ẑi− ẑ j
∣∣≥ 2 · (2−b/(16mi)+2−b/(16m j)).

PROOF. Since b≥ b0, we have 2−b/(2m`) ≤ σ` for `= i, j by (5)
and 2−b/(16m`) = (2−b/(2m`))1/8 ≤ σ`/(4n)≤ σ`/8 by (7). Thus,∣∣ẑi− ẑ j

∣∣≥max(σi,σ j)−2−
b

2mi −2
− b

2m j ≥ σi

2
+

σ j

2
− σi

4
−

σ j

4
≥ 2 · (2−b/(16mi)+2−b/(16m j)).

LEMMA 7. If b ≥ b0, the clustering algorithm produces clus-
ters C1 to Ck such that Ci = Zi for all i (under suitable number-
ing). Let z̃i be the seed of Ci and let σ̃i = min j 6=i

∣∣z̃i− z̃ j
∣∣. Then,

(1− 1/n)σi ≤ σ̃i ≤ (1 + 1/n)σi and Ci as well as the root zi is
contained in ∆(z̃i,min( 1

n2 ,
σ̃i

256n2 )).

PROOF. Assume that the algorithm has already produced Z1 to
Zi−1 and is now run with a seed ẑ ∈ Zi. We prove that it terminates
with C = Zi. Let ` be a power of two such that ` ≤ mi < 2`. The
proof consists of two parts. We first assume that steps 2 and 3 are
executed for a = 2`. For this case, we show that the algorithm will
terminate with C = Zi. In the second part of the proof, we show
that the algorithm does not terminate as long as a > 2`.

Assume the algorithm reaches steps 2 and 3 with a/2 = `, i.e.
a/2 ≤ mi < a. For any approximation q ∈ Zi, we have |ẑ− q| ≤
2 · 2−b/(2mi) = 2 mi/2

√
δ ≤ 2 a/2

√
δ . Thus, Zi ⊆ C. Conversely, con-

sider any approximation q /∈ Zi. Then, |ẑ−q| ≥ 2 · 2−b/(16mi) >

2 4mi
√

δ ≥ 2 2a
√

δ , and thus no such approximation is contained in C.
This shows that C = Zi. Since |C| ≥ a/2, the algorithm terminates
and returns Zi.

It is left to argue that the algorithm does not terminate before
a/2 = `. Since ` and a are powers of two, assume we terminate

with a/2≥ 2`, and let C be the cluster returned. Then, mi < a/2≤
|C| < a and Zi is a proper subset of C. Consider any approxima-
tion q ∈ C \ Zi, say q ∈ Z j with j 6= i. Since q /∈ Zi, we have
|q− ẑ| ≥ 2 ·(2−b/(16mi)+2−b/(16m j))> 2 ·2−b/(16mi) > 2 4mi

√
δ . And

since q ∈C, we have |q− ẑ| ≤ 2 a/2
√

δ . Thus, 4mi ≤ a/2 and, hence,
there are at least 3a/8 many approximations in C \ Zi. Further-
more,

∣∣zi− z j
∣∣≤ |zi− ẑ|+ |ẑ−q|+

∣∣q− z j
∣∣≤ 2−b/(2mi)+2 a/2

√
δ +

2−b/(2m j)≤ 2−b/(16mi)+2 a/2
√

δ +2−b/(16m j)≤ 3 a/2
√

δ . Consequently,
there are at least 3a/8 roots z j 6= zi counted with multiplicity within
distance 3 a/2

√
δ to zi. This observation allows us to upper bound the

value of |Pi|, namely

|Pi|= ∏
j 6=i
|zi− z j|m j ≤ (3 a/2

√
δ )3a/82(n−mi−3a/8)Γp

< 3n
δ

3/42nΓp ≤ 3n2−3b/162nΓp < 3n2−b/8 ·2nΓp ,

a contradiction to (8).
We now come to the claims about σ̃i and the disks defined in

terms of it. The relation between σi and σ̃i follows from the second
part of Lemma 4. All points in Ci = Zi have distance at most 2 ·
2−b/(2mi) from z̃i. Also, by (5) and (7),

2 ·2−b/(2mi) < min(1/n2,σi/(512n2))≤min(1/n2, σ̃i/(256n2))

Hence, Ci as well as zi is contained in ∆(z̃i,min(1/n2, σ̃i/(256n2))).

LEMMA 8. For a fixed precision b, computing a complete clus-
tering needs Õ(nb+n2Γp) bit operations.

PROOF. For each approximation, we examine the number of
distance computations we need to perform. Recall that b (property
(4)) and a are powers of two, a≤ 4n by definition, and b≥ 8n≥ 2a
by property (4). Then, a/2

√
δ = 2−b/(2a) ∈ 2−N. Thus, the number

a/2
√

δ has a very simple format in binary notation. There is a sin-
gle one, and this one is b/(2a) positions after the binary point. In
addition, all approximations ẑ have absolute value less than 2 · 2Γ

due to Step 5 in the overall algorithm. Thus, each evaluation of the
form |ẑ−q| ≤ 2 a/2

√
δ can be done with

O(Γ+ logδ
−2/a) = O((b/a)+Γ) = O((b/a)+Γp + logn)

bit operations.
For a fixed seed ẑ, in the i-th iteration of step 2, we have at most

a ≤ n/2i−2 many unclustered approximations left in C, since oth-
erwise we would have terminated in an earlier iteration. Hence, we
perform at most a evaluations of the form |ẑ− q| ≤ 2 a/2

√
δ , result-

ing in an overall number of bit operations of a ·O((b/a) +Γ) =
O(b+ aΓ) for a fixed iteration. As we halve a in each iteration,
we have at most logn+ 2 iterations for a fixed ẑ, leading to a bit
complexity of O(b logn+nΓ) = Õ(b+nΓ) = Õ(b+nΓp).

In total, performing a complete clustering has a bit complexity
of at most Õ(nb+n2Γp).

When the clustering succeeds, we have k clusters C1 to Ck and
corresponding seeds z̃1, . . . , z̃k ⊆ {ẑ1, . . . , ẑn}. For i = 1, . . . ,k, we
define Di := ∆(z̃i,ri), where z̃i is the seed for the cluster Ci and

ri := min(2−d2logne,2dlog σ̃i/(256n2)e)≥min(
1

2n2 ,
σ̃i

256n2 ). (9)

In particular, ri is a 2-approximation of min(1/n2, σ̃i/(256n2)).
Notice that the cost for computing the separations σ̃i is bounded
by Õ(nb+ n2Γp) bit operations since we can compute the nearest
neighbor graph of the points z̃i (and thus the values σ̃i) in O(n logn)
steps [9] with a precision of O(b+nΓ).

Now, suppose that b≥ b0, Then, according to Lemma 7, the clus-
ter Ci is contained in the disk Di. Furthermore, Di contains exactly
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one root zi of p (under suitable numbering of the roots), and it holds
that mi = mult(zi, p) = |Ci| and min(1/(2n2),σi/(512n2)) ≤ ri ≤
min(1/n2,σi/(64n2)). Hence, before we proceed, we verify that
each disk Di actually contains the cluster Ci. If this is not the case,
we report a failure, and return to the factorization with b := 2b.

In the next step, we aim to show that each of the enlarged disks
∆i := ∆(z̃i,Ri) := ∆(z̃i,nri), i = 1, . . . ,k, contains exactly one root
zi of p, and that the number of elements in Ci ⊆ ∆i equals the multi-
plicity of zi. Notice that, from the definition of ri and ∆i, it obvious
that the disks ∆i are pairwise disjoint and that Ci ⊆ Di ⊆ ∆i.

3.3 Certification
In order to show that ∆i contains exactly one root of p with mul-

tiplicity |Ci|, we show that each ∆i contains the same number of
roots of p and p̂ counted with multiplicity. For the latter, we com-
pute a lower bound for |p̂(z)| on the boundary bd∆i of ∆i, and check
whether this bound is larger than |(p̂− p)(z)| for all points z∈ bd∆i.
If this is the case, then we are done according to Rouché’s theorem.
Otherwise, we start over the factorization algorithm with b = 2b.
We now come to the details:

1. Let λ = 2lλ be the 2-approximation of ‖p‖/|pn| as defined
in step 2 of the overall algorithm.

2. For i = 1, . . . ,k, let z∗i := z̃i + n · ri ∈ ∆i. Note that |z∗i | ≤
(1+1/n) ·M(z̃i) since nri ≤ 1/n.

3. We try to establish the inequality

|p̂(z∗i )/pn|> Ei := 32 ·2−b
λM(z̃i)

n (10)

for all i. If this check is satisfied, we know that each disk
∆i contains exactly one root zi of p and that its multiplicity
equals the number |Ci| of approximations in ∆i (Lemma 10).
In order to establish the inequality, we consider ρ = 1,2,4, . . .
and compute

∣∣p̂(z∗i )/pn
∣∣ to an absolute error less than 2−ρ .

If, for all ρ ≤ b, we fail to show that
∣∣p(z∗i )/pn

∣∣ > Ei, we
again return to the factorization step with b := 2b. Other-
wise, let ρi be the smallest ρ for which we are successful.

4. If, at any stage of the algorithm, ∑i ρi > b, we also report a
failure and go back to the factorization step with b := 2b.

5. If we can verify that |p̂(z̃i +nri)/pn|> Ei for all i, we return
the disks ∆i and the multiplicities mi = |Ci|.

LEMMA 9. For any i, we can compute |p̂(z∗i )/pn| to an abso-
lute error less than 2−ρ with a number of bit operations less than

Õ(n(n+ρ +n logM(z̃i)+ τp)).

For a fixed b, the total cost for all evaluations in the above certifi-
cation step is bounded by Õ(nb+n2τp +n3).

PROOF. Consider an arbitrary subset S ⊆ {ẑ1, . . . , ẑn}. We first
derive an upper bound for ∏ẑ∈S |z∗i − ẑ|. For that, consider the poly-
nomial p̂S(x) := ∏ẑ∈S(x− ẑ). The i-th coefficient of p̂S is bounded
by
(|S|

i

)
·∏ẑ∈S M(ẑ)≤ 2n

∏
n
i=1 M(ẑi)≤ 8λ ·2n due to Step 6 in the

overall algorithm. It follows that

∏
ẑ∈S
|z∗i − ẑ|= |p̂S(z∗i )| ≤ (n+1)M(z∗i )

n ·8λ ·2n < 24n+τp+6M(z̃i)
n,

where we used that M(z∗i )< (1+1/n)·M(z̃i) and λ < 2‖p‖/|pn|<
2τp+1(n + 1). In order to evaluate |p̂(z∗i )/pn| = ∏

n
j=1 |z∗i − ẑ j|,

we use approximate interval evaluation with an absolute precision
K = 1,2,4, . . .. More precisely, we compute the distance of z∗i to
each of the points ẑ j, j = 1, . . . ,n, up to an absolute error of 2−K ,

and then take the product over all distances using a fixed point pre-
cision of K bits after the binary point.4 We stop when the resulting
interval has size less than 2−ρ . The above consideration shows
that all intermediate results have at most O(n+ τp + n logM(z̃i))
bits before the binary point. Thus, we eventually succeed for a
K = O(ρ + τp +n+n logM(z̃i)). Since we perform n subtractions
and n multiplications, the cost is bounded by Õ(nK) bit operations
for each K. Hence, the bound for evaluating |p̂(z∗i )/pn| follows.

We come to the second claim. Since we double ρ in each itera-
tion and consider at most logb iterations, the cost for the evaluation
of |p̂(z∗i )/pn| are bounded by Õ(n(n+ρi+n logM(z̃i)+τp)). Since
we ensure that ∑i ρi ≤ b, it follows that the total cost is bounded
by Õ(nb+ n2τp + n3 + n2 log(∏k

i=1 M(z̃i))). The last summand is
smaller than n2 · 8λ according to Step 6 in the overall algorithm,
and λ < 2‖p‖/|pn|< 2(n+1)2τp . This shows the claim.

We now show that inequality (10) implies that the disk ∆i con-
tains the same number of roots of the polynomials p̂ and p.

LEMMA 10. 1. If inequality (10) holds for all i, then ∆i iso-
lates a root of zi of p of multiplicity mi = mult(zi, p) = |Ci|.

2. If b≥ b0, then

|p̂(z∗i )|
|pn|

>

(
min(256,σi)

1024n

)mi

· |Pi|
8
≥ 64 ·2−b

λM(z̃i)
n

PROOF. We first show that |p̂(x)| ≥ 1
4 |p̂(z

∗
i )| for all x ∈ bd∆i.

We fix an approximation ẑ in some disk D j. Suppose that x is the
farthest point on bd∆i from ẑ, and y the nearest. Then, for i 6= j, we
have |x− ẑ| ≤ |x− z̃i|+ |z̃i− z̃ j|+ |z̃ j− ẑ| ≤ (1+1/n)|z̃i− z̃ j|, and
|y− ẑ| ≥ |z̃i− z̃ j|− |y− z̃i|− |z̃ j− ẑ| ≥ (1−1/n)|z̃i− z̃ j|. Similarly,
for i = j, it holds that |x− ẑ| ≤ |x− z̃i|+ |z̃i − ẑ| ≤ (1+ 1/n)nri
and |y− ẑ| ≥ |y− z̃i|− |z̃i− ẑ| ≥ (1−1/n)nri. Hence, for arbitrary
points x,y ∈ bd∆i and an arbitrary approximation ẑ, it follows that

(1−1/n)|y− ẑ| ≤ |x− ẑ| ≤ (1+1/n)|y− ẑ| .

We conclude that (1− 1/n)n|p̂(z∗i )| ≤ |p̂(x)| ≤ (1+ 1/n)n|p̂(z∗i )|
for all x ∈ bd∆i. This shows the above claim.

We can now prove Part 1 of the lemma. We have |x| < (1 +
1/n)M(z̃i) for all x ∈ bd∆i since nri < 1/n,. Now, if |p̂(z∗i )|/|pn|>
32 ·2−bλM(z̃i)

n, then

|p̂(x)|> |p̂(z∗i )|/4 > 8|pn|λ2−b(1−1/n)nM(x)n

> ‖p‖2−bM(x)n ≥ ‖ p̂− p‖M(x)n ≥ |p̂(x)− p(x)|.

Hence, according to Rouché’s theorem. ∆i contains the same num-
ber (namely, |Ci|) of roots of p and p̂. If this holds for all disks ∆i,
then each of the disks must contain exactly one root since p has k
distinct roots. In addition, the multiplicity of each root equals the
number |Ci| of approximations within ∆i.

It remains to show the third claim. Since b ≥ b0, it follows that
min(1/(2n2),σi/(512n2)) ≤ ri ≤ min(1/n2,σi/(64n2)) and |z̃i−
zi|< ri; cf. the remark following the definition of ri in (9). Thus,

|p̂(z∗i )| ≥ |p(z∗i )|−2−b ‖p‖ ·M(z∗i )
n

= |p(zi +(z̃i− zi +nri))|−2−b ‖p‖ ·M(z∗i )
n

≥ ((n−1)ri)
mi |pnPi|/4−4 ·2−b ‖p‖M(zi)

n

≥
(
(n−1)min(256,σi)

512n2

)mi

|pnPi|/4−4 ·2−b ‖p‖M(zi)
n

≥
(

min(256,σi)

1024n

)mi

|pnPi|/4−4 ·2−b ‖p‖M(zi)
n,

4In fact, we compute an interval I j of size less than 2−K such that
|z∗i − ẑ j| ∈ I j, and then consider the product ∏ j I j .
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where the first inequality is due to |(p− p̂)(x)| < 2−b ‖p‖ ·M(x)n,
the second inequality follows from |z̃i− zi +nri| ≤ (n+1)ri≤σi/n,
Lemma 3 and M(z∗i ) < (1+ 1/n) ·M(zi), and the third inequality
follows from ri ≥min( 1

2n2 ,
σi

512n2 ). In addition, we have

2−b ‖p‖M(zi)
n ≤

(
min(256,σi)

1024n

)mi

· |pnPi|
4096

, (11)

since

2−b ‖p‖M(zi)
n

≤ 2−b/8 ·2−b/2 ·2τp |pn| · (n+1) ·M(zi)
n

≤ |Pi|
(n+1)22nΓp+8n

(
min(256,σi)

1024n

)mi

2τp |pn|(n+1)M(zi)
n

≤
(

min(256,σi)

1024n

)mi

· |pnPi|
27n−1 ≤

(
min(256,σi)

1024n

)mi

· |pnPi|
4096

,

where the second inequality follows from (8), (7), and (5) 5, and
the third inequality follows from τp ≤ nΓp +n+1 (Lemma 1) and
M(zi)

n ≤ 2nΓp . Finally,

|p̂(z∗i )|
|pn|

>

(
min(256,σi)

1024n

)mi

· |Pi|
8
≥ 512 ·2−b ‖p‖

|pn|
M(zi)

n

≥ 64 ·2−b
λM(ẑi)

n,

where the first and the second inequality follow from (11) and the
third inequality holds since λ is a 2-approximation of ‖p‖/ |pn|
and |zi|n ≤ (1+1/n)n |z̃i|n ≤ 4 |z̃i|n.

LEMMA 11. There exists a b∗ ≥ b0 bounded by

O
(

n logn+nΓp +∑
k
i=1

(
logM(P−1

i )+mi logM(σ−1
i )
))

such that the certification step succeeds for any b > b∗. The total
cost in the certification algorithm (i.e. for all iterations until we
eventually succeed) is bounded by

Õ
(

n3 +n2
τp +n ·∑

k
i=1

(
logM(P−1

i )+mi logM(σ−1
i )
))

bit operations.

PROOF. Due to Lemma 10, |p̂(z∗i )/pn|>
(

min(256,σi)
1024n

)mi
· |Pi|

8 >

64 · 2−b0 λM(ẑi)
n. Thus, in order to verify inequality (10), it suf-

fices to evaluate |p̂(z∗i )/pn| to an error of less than |p̂(z∗i )/2pn|. It
follows that we succeed for some ρi with

ρi = O(mi logn+mi max(1, logσ
−1
i )+ logmax(1, |Pi|−1)).

In Step 3 of the certification algorithm, we require that the sum over
all ρi does not exceed b. Hence, we eventually succeed in verifying
the inequality (10) for all i if b is larger than some b∗ with

b∗ = O(b0 +∑i mi logn+∑i(logM(P−1
i )+mi logM(σ−1

i )))

= O(n logn+nΓp +∑i(logM(P−1
i )+mi logM(σ−1

i ))).

For the bound for the overall cost, we remark that, for each b, the
certification algorithm needs Õ(n3 +nb+n2τp) bit operations due
to Lemma 9. Thus, the above bound follows from the fact that
that we double b in each step and that the certification algorithm
succeeds under guarantee for all b > b∗.

5Observe 2−b/(2mi) ≤min( 1
2n2 ,

σi
1024n2 )≤

min(256,σi)
1024n .

4. COMPLEXITY ANALYSIS
We now turn to the complexity analysis of the root isolation algo-

rithm. In the first step, we provide a bound for general polynomials
p with complex coefficients. In the second step, we give a simpli-
fied bound for the special case, where p has integer coefficients. We
also give bounds for the number of bit operations that is needed to
refine the isolating disks to a size less than 2−κ , with κ an arbitrary
positive integer.

THEOREM 3. Let p(x) ∈ C[x] be a polynomial as defined in
Section 2. We assume that the number k of distinct roots of p is
given. Then, for all i = 1, . . . ,k, the algorithm from Section 3 re-
turns an isolating disk ∆(z̃i,Ri) for the root zi and the correspond-
ing multiplicity mi, and it holds that Ri <

σi
64n .

For that, it uses a number of bit operations bounded by

Õ
(

n3 +n2
τp +n ·∑

k
i=1

(
logM(P−1

i )+mi logM(σ−1
i )
))

(12)

The algorithm needs an approximation of precision L of p, with

L = O
(

nΓp +∑
k
i=1

(
logM(P−1

i )+mi logM(σ−1
i )
))

. (13)

PROOF. For a fixed b, let us consider the cost for each of the
steps in the algorithm: Steps 1-3, 5 and 6 do not use more than
Õ(n2Γp +nb) bit operations (Theorem 1 and Lemma 2). The Steps
4 and 7 do not use more than Õ(n2Γp +nb) bit operations (Corol-
lary 2 and Lemma 8), and the Steps 8 and 9 use a number of bit
operations bounded by (12) (Lemma 11).

Furthermore, the oracle must provide an approximation of pre-
cision O(nΓp + b) of p in order to compute the bound Γ for Γp,
to compute the 2-approximation λ of ‖p‖/|pn|, and to run Pan’s
algorithm. The algorithm succeeds in computing isolating disks if
b > b∗ with a b∗ as in Lemma 11. Since we double b in each step,
we need at most logb∗ iterations and the total cost for each iteration
is bounded by (12). This shows the complexity result.

It remains to prove the bound for Ri. When the clustering suc-
ceeds, it returns disks Di = ∆(z̃i,ri) with min( 1

2n2 ,
σ̃i

256n2 ) ≤ ri ≤
min( 1

n2 ,
σ̃i

128n2 ) for all i = 1, . . . ,m. It follows that Ri = n · ri ≤ σ̃i
128n ,

and thus |zi− z j| ≥ |z̃i− z̃ j| − |zi− z̃i| − |z j − z̃ j| > |z̃i− z̃ j| · (1−
1/(64n)) > |z̃i − z̃ j|/2 for all i, j with i 6= j. We conclude that
σi > σ̃i/2≥ 64nRi.

We remark that the bound (12) can be reformulated in terms of
values that exclusively depend on the degree n and the geometry of
the roots (i.e. their absolute values and their separations). Namely,
due to Lemma 1, τp ≤ n+1+ log Mea(p)

|pn| , and the latter expression
only involves the degree and the absolute values of the roots of p.
This yields the bound (2) that we stated in the introduction.

Next, we show that combining our algorithm with Pan’s factor-
ization algorithm also yields a very efficient method to further re-
fine the isolating disks.

THEOREM 4. Let p(x) be a polynomial as in Theorem 3, and κ

be a given positive integer. We can compute isolating disks ∆i(z̃i,Ri)
with radius Ri < 2−κ in a number of bit operations bounded by

B+ Õ(nκ · max
1≤i≤k

mi), (14)

where B is bounded by (12). For that, we need an approximation
of precision L of p with L =L + Õ(nκ ·max1≤i≤k mi), where L is
bounded by (13).

PROOF. As a first step, we use the algorithm from Section 3 to
compute isolating disks ∆i = ∆(z̃i,Ri) with Ri ≤ σi/(64n). Each
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disk ∆i contains the root zi, mi = mult(zi, p) approximations ẑ ∈
{ẑ1, . . . , ẑn} of zi, and it holds that σi/2 < σ̃i < 2σi. We further de-
fine P̂i := ∏ j:ẑ j /∈∆i

(z̃i− ẑ j). Since |z̃i− zi| < σi/(64n) for all i, we
have (1− 1

64n )|zi− z j| ≤ |z̃i− ẑ| ≤ (1+ 1
64n )|zi− z j| for all j 6= i

and ẑ∈ ∆ j. Thus, |P̂i| is a 2-approximation of |Pi|, that is, 1/2|Pi|<
|P̂i|< 2|Pi|. Similar as in the certification step, we now use approx-
imate interval arithmetic to compute a 2-approximation µi of |P̂i|,
and thus a 4-approximation of |Pi|. A completely similar argument
as in the proofs of Lemma 9 and Lemma 11 then shows that we can
compute such µi’s with less than Õ(n3 + n2τp + n∑i logM(P−1

i ))
bit operations. Now, from the 2- and 4-approximations of σi and
|Pi|, we can determine a bκ such that (A) the properties (4) to (6)
are fulfilled, and, in addition, (B) the inequality 2−b/(2mi) < 2−κ

holds. Then, from Corollary 2 and Lemma 4, we conclude that
Pan’s factorization algorithm (if run with b≥ bκ ) returns, for all i,
mi approximations ẑ of zi with |ẑ− zi| < 2−b/(2mi) < 2−κ . Thus,
for each i, we can simply choose an arbitrary approximation ẑ ∈ ∆i
and return the disk ∆(ẑ,2−κ ) which isolates zi. The total cost splits
into the cost for the initial root isolation and the cost for running
Pan’s Algorithm with b = bκ . Since the latter cost is bounded by
Õ(nbκ +n2Γp), the bound (14) follows.

Finally, we apply the above results to the important special case,
where p is a polynomial with integer coefficients.

THEOREM 5. Let p(x) ∈ Z[x] be a polynomial of degree n with
integer coefficients of size less than 2τ . Then, we can compute iso-
lating disks ∆(z̃i,Ri), with Ri <

σi
64n , for all roots zi together with

the corresponding multiplicities mi using

Õ(n3 +n2
τ) (15)

bit operations. For a given positive integer κ , we can further refine
all disks ∆i to a size of less than 2−κ with a number of bit operations
bounded by Õ(n3 +n2τ +nκ).

PROOF. In a first step, we compute the square-free part p∗ of
p. According to [21, §11.2], we need Õ(n2τ) bit operations for
this step, and p∗ has integer coefficients of bitsize O(n+ τ). The
degree of p∗ yields the number k of distinct roots of p. Thus, we
can directly apply our algorithm from Section 3 to the polynomial
p. In order to derive the bound in (15), we have to reformulate
the bound from (12) in terms of the degree n and the bitsize τ of
p. From [7, Theorem 2], we conclude that ∑i mi logmax(1,σ−1

i ) =

Õ(n2 + nτ). Furthermore, we have τp ≤ τ . Finally, we can bound
∑

k
i=1 logM(P−1

i ) by Õ(n3 + n2τ). For that, we use a similar ap-
proach as in the proof of [7, Theorem 2]. That is, we consider a
square-free factorization p(x) = ∏

n
l=1(Ql(x))l of p and write each

partial product ∏i:Ql(zi)=0 Pi in terms of the leading coefficients of
Ql and the resultant res(Ql ,Q′l)∈ Z of Ql and its derivative Q′l . For
more details, we refer to [15] and [7].

We turn to the proof of the bound for the cost of refining the iso-
lating disks ∆i(z̃i,Ri) to a size of less than 2−κ . For the refinement,
we consider the square-free part p∗. Note that the disks ∆i ob-
tained in the first step are also isolating for the roots of p∗ (p and p∗

have exactly the same distinct roots) and that Ri <σ(zi, p)/(64n)=
σ(zi, p∗)/(64n)≤σ(zi, p∗)/(64deg p∗). Thus, proceeding in com-
pletely analogous manner as in the proof of Theorem 4 (with the
square-free part p∗ instead of p) shows that we need Õ(n3 +n2τ +
nκ) bit operations for the refinement.
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