
Quantum Fourier Transform over Symmetric Groups

Yasuhito Kawano
NTT Communication Science Laboratories

3-1, Morinosato Wakamiya, Atsugi-shi
Kanagawa, 243-0198, Japan

kawano.yasuhito@lab.ntt.co.jp

Hiroshi Sekigawa∗

Department of Math, Tokai University
4-1-1, Kitakaname, Hiratsuka-shi

Kanagawa, 259-1292, Japan
sekigawa@tokai-u.jp

ABSTRACT
This paper proposes an O(n4) quantum Fourier transform
(QFT) algorithm over symmetric group Sn, the fastest QFT
algorithm of its kind. We propose a fast Fourier transform
algorithm over symmetric group Sn, which consists of O(n3)
multiplications of unitary matrices, and then transform it
into a quantum circuit form. The QFT algorithm can be
applied to constructing the standard algorithm of the hidden
subgroup problem.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Quantum Fourier Transform; Fast Fourier Transform; Sym-
metric Group; Representation Theory

1. INTRODUCTION
The quantum Fourier transform (QFT) plays an impor-

tant role in many quantum algorithms exponentially faster
than the classical counterparts. Shor’s quantum algorithm
[14] that efficiently solves the factoring problem applies the
QFT over the cyclic groups. Quantum circuits for the QFT
over the cyclic groups have been studied in detail, and many
efficient QFT circuits over the cyclic groups have been pro-
posed [5, 7, 4, 11].

Shor’s algorithm can be naturally generalized to the stan-
dard algorithm for the hidden subgroup problem [12, §5.4.3].
An especially interesting application of the hidden subgroup
problem is the graph isomorphism problem: Given two graphs,
decide whether there exists an isomorphism map from one to

∗The current address of the author is: Department of
Mathematical Information Science, Tokyo University of Sci-
ence, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
sekigawa@rs.tus.ac.jp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

the other. It is an open question whether there exists an effi-
cient quantum algorithm that solves the graph isomorphism
problem. The standard algorithm for the hidden subgroup
problem has been thought to be one of the candidates that
can efficiently solve the graph isomorphism problem or its
subproblems [12, §5.4.4]. A standard algorithm that solves
Simon’s problem over non-abelian groups faster than clas-
sical algorithms has been found [1]. On the other hand, it
is suggested that the graph isomorphism problem would not
be solved using the standard algorithm (cf. [10]).

The standard algorithm for the graph isomorphism prob-
lem uses the QFT over symmetric groups instead of the QFT
over cyclic groups. Efficient quantum circuits that perform
the QFT over symmetric groups have thus been studied [2,
9]. An efficient QFT circuit over symmetric groups was first
proposed by Beals [2]. Later, Moore, Rockmore, and Russell
applied recent progress in the fast Fourier transform (FFT)
algorithm, and proposed efficient QFT circuits over non-
abelian groups, including symmetric groups [9]. However,
their QFT circuits for symmetric groups sum amplitudes
over cosets serially, where the sum-of-amplitudes is the most
complex calculation in the QFT. On the other hand, since
Coppersmith’s well-known circuit [5, 12] for the QFT over
the cyclic groups sums amplitudes in parallel, the time com-
plexity of Coppersmith’s circuit is much lower than the time
complexities of circuits proposed in [2, 9]. It is known that
Coppersmith’s circuit is a quantum counterpart of the FFT
algorithm over the cyclic groups.

The purpose of this paper is to propose an algorithm that
performs QFT over symmetric groups more efficiently by
calculating the sum-of-amplitudes in parallel. For this pur-
pose, we propose an FFT (classical) algorithm over sym-
metric groups, which consists of a multiplication of sparse
unitary matrices, and then transform it to a quantum cir-
cuit form. As a byproduct, we obtain an FFT algorithm over
symmetric groups. A detailed discussion of applications can
be found in [6, page 326].

This paper is constructed as follows. In section 2, we ex-
plain background notions and symbols of representation the-
ory for symmetric groups. In section 3, the FFT algorithm
is proposed. In section 4, the QFT algorithm is described.
Finally, section 5 concludes the paper.

2. REPRESENTATION THEORY
Background notions and symbols of representation theory

for symmetric groups are given in this section. More detailed
explanations can be found in [15, 16, 8, 13].

227

2.1 Basic Notions
Let n be a positive integer. A permutation i1 �→ j1, i2 �→

j2, · · · , in �→ jn over {1, 2, · · · , n} is denoted
(
i1 · · · in
j1 · · · jn

)
.

When ik = jk in the above permutation, the column of ik
and jk is often abbreviated. A multiplication of permuta-
tions is defined by(

j1 · · · jn
k1 · · · kn

)
·
(
i1 · · · in
j1 · · · jn

)
=

(
i1 · · · in
k1 · · · kn

)
.

Define Sn as the group of the set of all permutations over
{1, 2, · · · , n} with the multiplication. The Sn is called the
symmetric group of order n. The number of elements in Sn,
denoted |Sn|, is n!.
A permutation

(
i1 i2 · · · ik
i2 i3 · · · i1

)
is called a cyclic per-

mutation. It is denoted c(i1,i2,··· ,ik) or i1 �→ i2 �→ · · · �→
ik �→ i1 in this paper. When k = 2, a permutation is called
a transposition. An element in Sn can be decomposed into
a multiplication of transpositions.

The quotient ring Z/nZ is denoted Zn. For any element
g in Sn, there is a unique (i1, i2, · · · , in−1) ∈ Z2×Z3 ×· · ·×
Zn−1 such that

g = c
in−1

(1,2,··· ,n) · · · c
i2
(1,2,3)c

i1
(1,2).

The map g �→ (i1, i2, · · · , in−1) is called the canonical coding
in this paper. The canonical coding will be used for coding
an element in Sn on quantum states, i.e., an element g in
Sn will be encoded as |i1, i2, · · · , in−1〉 using qubit, qutrit,
· · · , and qunit.
Let g �→ (i1, i2, · · · , in−1) be the canonical coding. De-

fine gi, where i =
∑n−1

j=1 ij · n!
(j+1)!

, as g. Then, {gi|i =

0, 1, · · · , n! − 1} is an enumeration of elements in Sn, i.e.,
Sn = {g0, g1, · · · , gn!−1}. For example, g0 = id and gn!/2 =
c(1,2). The S3 is enumerated as id, c(1,2,3), c(1,3,2), c(1,2),
c(2,3), and c(1,3). This order will be used for the column
number of the Fourier transform matrix.

2.2 Irreducible Representations
Let V be a finite dimensional vector space over the field

C. Let U(V) be the group defined by the set of unitary
transforms from V to V . Given an orthonormal basis of V ,
each element in U(V) is represented as an n × n unitary
matrix, where n is the dimension of V .

If a function ρ : Sn → U(V) is homomorphic (i.e., ρ(g1g2) =
ρ(g1) · ρ(g2) is satisfied for all g1, g2 ∈ Sn) for a vector space
V , then ρ is called a representation and V is called a repre-
sentation space. If a subspace W of a representation space
V satisfies ρ(g)(W) ⊆ W for all g ∈ Sn, W is called an
invariant subspace. Since V and {0} are always invariant,
they are called trivial invariant subspaces. If there is no
non-trivial invariant space, then ρ is called an irreducible
representation. The set of all irreducible representations of
Sn is denoted Λn.

2.3 Young Diagrams
A Young diagram is a diagram with left-aligned and top-

aligned square boxes. By enumerating the numbers of the
boxes in the first, second, · · · , and k-th rows, a Young
diagram with n boxes is encoded as an ordered set of n
numbers (λ1, λ2, · · · , λk, 0, · · · , 0), where n =

∑k
i=1 λi and

λ1 ≥ λ2 ≥ · · · ≥ λk > 0. (λ1, λ2, · · · , λk, 0, · · · , 0) is often

written as (λ1, λ2, · · · , λk) by omitting zeros. Since a Young
diagram of Sn is a non-increasing sequence of numbers such
that the sum of them is n, it is sometimes called “a partition
of n.”

It is known that any irreducible representation for Sn cor-
responds to a Young diagram with n boxes, which is a par-
tition of n. The set of all Young diagrams with n boxes
(= the set of all partitions of n) can then be seen as the
set of all irreducible representations of Sn. We will identify
irreducible representations of Sn, the Young diagrams with
n boxes, and partitions of n hereafter, and denote the set
of them as Λn. For example, (2, 1) is a partition of 3, a
Young diagram with three boxes, and an irreducible repre-
sentation of S3. Hence, there is a vector space V such that
(2, 1) : S3 → U(V) is an irreducible representation.

2.4 Standard Young Tableaus
To calculate the dimension of the representation space,

the notion of the standard Young tableau is introduced.
A Young tableau with n boxes is a diagram obtained from

a Young diagram with n boxes by writing numbers from 1 to
n into the boxes of the Young diagram. Here, different boxes
must have different numbers. A Young tableau is standard
if the number in each box is greater than both the number
in the box above and number in the box to the left. It is
known that the number of standard Young tableaus is equal
to the dimension of the representation space.

The dimension of the representation space for λ ∈ Λn is
denoted by dλ. Let ρn =

⊕
λ∈Λn

(Idλ ⊗ λ) be the represen-

tation defined by ρn(g) =
⊕

λ∈Λn
(Idλ ⊗ λ(g)). Each ρn(g)

is then written as an n!×n! unitary matrix of dλ ×dλ block
matrices with duplication of dλ for all λ ∈ Λn.

2.5 Bratteli diagram
While the column number of the Fourier transform is

determined by the enumeration {g0, g1, · · · , gn!−1} of the
group elements in Sn, the row number is determined us-
ing the Bratteli diagram. The Bratteli diagram (Figure 1)
is a directed acyclic graph with a root node such that

1. a Young diagram with n boxes is assigned on a node
in the n-th row, and

2. μ, which is a Young diagram with n+1 boxes, is a child
node of λ, which is a Young diagram with n boxes, if
and only if μ is obtained by adding a box to λ.

We introduce a lexicographic order for nodes on each row
of the Bratteli diagram, i.e., define that (λ1, λ2, · · · , λk) >
(λ′

1, λ
′
2, · · · , λ′

k′) if and only if λi > λ′
i for the smallest i such

that λi 	= λ′
i. The Bratteli diagram can then be drawn on

a plane by drawing λ on the left-hand side of λ′ if λ > λ′.
Figure 1 shows the Bratteli diagram for n ≤ 6. As already
explained, an irreducible representation for Sn corresponds
to a Young diagram with n boxes. Thus, all irreducible rep-
resentations for Sn are enumerated in the n-th row of the
Bratteli diagram. We will identify an irreducible representa-
tion of Sn, a partition of n, a Young diagram with n boxes,
and a node in the n-th row of the Bratteli diagram hereafter.
The symbol λ ∈ Λn, which is an irreducible representation
of Sn, is often used to show the node of the Bratteli dia-
gram corresponding to λ. Then, the number of paths from
the root node to a node λ is equal to dλ. Then, the following
relation holds: n! =

∑
λ∈Λn

d2λ.

228

1

1 1

1

1

1

1

1

1

2

3 3 2

4 5
6 5

4

1

9
5

9

5

16

10

10
5

5
1

Figure 1: The Bratteli diagram of S6. Each node of
the nth column represents a Young diagram for Sn,
which corresponds to an irreducible representation
of Sn. The number written at each node shows the
dimension of the representation space of the corre-
sponding representation. Note that n! =

∑
λ∈Λn

d2λ.

For example, 4! = 12 + 32 + 22 + 32 + 12.

Let P(λ) be the set of paths from the root node to node λ.
Then, |P(λ)| = dλ. An element p ∈ P(λ) for λ ∈ Λn can be
encoded by an ordered set of n−1 numbers (p1, p2, · · · , pn−1)
such that a new box is added to the (pk + 1)st row of the
Young diagram λ at the kth stage. For example, P(2, 1, 1) =
{(0, 1, 2), (1, 0, 2), (1, 2, 0)}. It is easily seen that

(p1, p2, · · · , pn−1) ∈ Z2 × Z3 × · · · × Zn.

Define < by (p1, p2, · · · , pn−1) < (p′1, p
′
2, · · · , p′n−1) if and

only if pi < p′i for the smallest i such that pi 	= p′i.
Since n! =

∑
λ∈Λn

d2λ, |{|λ, p, q〉|λ ∈ Λn, p, q ∈ P(λ)}| =

n!. Define the order by |λ, p, q〉 < |λ′, p′, q′〉 ⇔ λ > λ′ or
λ = λ′ ∧ p < p′ or λ = λ′ ∧ p = p′ ∧ q < q′. (Notice that the
direction of the inequality sign for λ is reversed) For each
element in {|λ, p, q〉|λ ∈ Λn, p, q ∈ P(λ)}, a number less than
n! is given according to the above order. It will be used as
the row number of the Fourier transform.

2.6 Adapted Gel’fand-Tsetlin Bases
The λ(g) (g ∈ Sn, λ ∈ Λn) can be represented by a dλ×dλ

matrix, but it depends on the selection of an orthonormal
basis of the representation space. Adapted Gel’fand-Tsetlin
bases are very useful for making an efficient Fourier trans-
form algorithm on Sn (n = 2, 3, 4, · · ·). Here, adapted
Gel’fand-Tsetlin bases are series of orthonormal bases
{vλ,p,q|λ ∈ Λn, p, q ∈ P(λ)}n on the representation spaces
of irreducible representations for Sn (n = 2, 3, 4, · · ·) that
satisfies the following conditions.

Let λ be an irreducible representation of Sn. Then, λ cor-
responds to a Young diagram. (Hence, it is a node in the
n-th row of the Bratteli diagram.) Let {μ|μ ↘ λ} be irre-
ducible representations which are parents of λ in the Brat-
teli diagram. From the properties of the Bratteli diagram,
dλ =

∑
μ↘λ dμ.

For λ ∈ Λn, λ(g) (g ∈ Sn) is represented by a dλ × dλ

matrix when we select an orthonormal basis of the repre-
sentation space of λ. Denote this matrix as λ(g)Bλ , where
Bλ is the basis. On the other hand, since μ’s (μ ↘ λ) are
irreducible representations for Sn−1, any g ∈ Sn−1 is rep-
resented by the direct sum of dμ × dμ matrices when we
select orthonormal bases of the representation spaces of μ’s
(μ ↘ λ). Denote this matrix as ⊕μ↘λμ(g)Bμ , where Bμ

(μ ↘ λ) are the bases. Generally, λ(g)Bλ and ⊕μ↘λμ(g)Bμ

are different because they depend on the selections of the
bases. However, by selecting good bases,

λ(g)Bλ =
⊕
μ↘λ

μ(g)Bμ (1)

holds for all g ∈ Sn−1. If (1) holds for all irreducible repre-
sentations λ, the set of bases is called the adapted Gel’fand-
Tsetlin bases. Elements in Sn−1 are represented by block
diagonal matrices in the dλ × dλ matrix that represents ele-
ments of Sn if we use the adapted Gel’fand-Tsetlin bases.

The adapted Gel’fand-Tsetlin bases are not unique. In
this paper, we select a set of adapted Gel’fand-Tsetlin bases
and use it consistently. Therefore, λ(g)Bλ will be simply
denoted λ(g) if there’s no confusion.

2.7 Specht Polynomial
Vandermonde determinant Δ(x1, . . . , xn) is defined as

Δ(x1, . . . , xn) =

⎛
⎜⎜⎜⎜⎜⎝

xn−1
1 xn−1

2 . . . xn−1
n

xn−2
1 xn−2

2 . . . xn−2
n

...
...

. . .
...

x1 x2 . . . xn

1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ .

Let T be an m-row 1-column Young tableau. Specht poly-
nomial Δ(T) is defined by

Δ(T) = Δ(x1, . . . , xm).

For any Young tableau T with i columns, Specht polynomial
Δ(T) is defined by

Δ(T) = Δ(T1) . . .Δ(Ti),

where Tj is the j-th column of T . For example, T is a Young
tableau such that it has three columns, the numbers of the
first column are 1, 4, 5, the second are 2, 3, and the third are
6, 7. Then,

Δ(T) = Δ(x1, x4, x5)Δ(x2, x3)Δ(x6, x7).

Let g be an element of Sn and T be a Young tableau.
g(Δ(T)) is defined as Δ(g(T)), where g(T) is the Young
tableau obtained by replacing xi by xg(i) for all i = 1, 2, · · · , n.
Let V be the complex-number coefficient vector space on
{g(Δ(T))|g ∈ Sn}. Generally, g(Δ(T))’s (g ∈ Sn) are not
linearly independent. It is known that Specht polynomials
of standard Young tableaus are linearly independent. Since
any g ∈ Sn that maps Δ(T) to g(Δ(T)) defines a linear op-
eration from V to V , a map from Sn to U(V) is defined. This
map is homomorphic, so it is a representation of Sn. In ad-
dition, the map is irreducible, and any irreducible represen-
tations of Sn can be enumerated by this method. However,
the set of Specht polynomials for standard Young tableaus
is not a set of adapted Gel’fand-Tsetlin bases. A method for
making adapted Gel’fand-Tsetlin bases is proposed in what
follows.

229

2.8 Construction of Adapted Gel’fand-Tsetlin
Bases

In this subsection, we will give an algorithm that calcu-
lates unitary matrices that represent {λ(g)|λ ∈ Λn, g ∈ Sn}.
The representation is not unique, but to make efficient QFT
circuits later, those matrices should be chosen under the se-
lection of special bases.

The following order between standard Young tableaus with
n boxes is introduced.

Definition 1. For Young tableaus T1 and T2, T1 < T2 is
defined as follows:

There exists i (1 ≤ i ≤ n) such that (1) for all j
(i < j ≤ n) j belongs to the same columns of T1

and T2 and (2) the column that contains i in T1 is
on the left-hand side of the column that contains
i in T2.

Then, “<” is the total order on the set of standard Young
tableaus with n boxes.

Next, we introduce the Hermitian product on the vector
space V defined from Specht polynomials that correspond
to standard Young tableaus with n boxes. Since V is a
subspace of the spaceW of linear combinations of monomials
of x1, . . . , xn, we can write f , g ∈ W as

f =
∑
α

aαx
α, g =

∑
α

bαx
α,

where α is a multi-index. The Hermitian product on V is
defined as the restriction of the Hermitian product

(f, g) =
∑
α

aαbα

on W .
Adapted Gel’fand-Tsetlin bases on Sn are calculated as

follows.

Algorithm 1 (Adapted Gel’fand-Tsetlin bases).

1. Enumerate all Young diagrams with n boxes. The or-
der is left-to-right of the n-th row of the Bratteli dia-
gram.

2. Perform the following operations for each Young dia-
gram according to the order determined in 1.

(a) Enumerate all standard Young tableaus in the or-
der of < of Definition 1. (Start from the smallest
order and end at the largest).

(b) From the end of the order of standard Young tableaus,
orthonormalize Specht polynomials one by one.
For example, on the scheme of the Gram-Schmidt
orthonomalization, orthogonalize all Specht poly-
nomials first, and then normalize the obtained poly-
nomials at the end. (In this way, orthogonalizing
can be performed by only four arithmetic opera-
tions.)

The polynomials obtained by the above algorithm are
adapted Gel’fand-Tsetlin bases. This comes from the fol-
lowing facts.

• Specht polynomials of standard Young tableaus for dif-
ferent Young diagrams are orthogonal.

• For a Young diagram λ with n boxes, divide the set
of all standard Young tableaus obtained from λ into
A1 ∪ A2 ∪ · · · ∪ Aq (Ai 	= ∅) such that m < m′ if
and only if μ < μ′, where m and m′ are the numbers
of the columns that contain the boxes into which n is
written for T ∈ Aμ and T ′ ∈ Aμ′ , respectively. Let Vi

(1 ≤ i ≤ q) be the subspace generated by the Specht
polynomials Δ(T) (T ∈ Aq ∪ Aq−1 ∪ · · · ∪ Aq−i+1).
Then,

V1 ⊂ V2 ⊂ · · · ⊂ Vq

is a sequence of invariant subspaces of Sn−1.

In addition, inside Vi+1, Vi and V ⊥
i (orthogonal com-

plement of Vi) are invariant subspaces of Sn−1.

• An irreducible representation of Sn that corresponds
to a Young diagram λ with n boxes is the direct sum
of irreducible representations of Young diagrams ob-
tained by subtracting a box from λ.

2.9 Fourier Transform
Let f : Sn → C be a function. The Fourier transform f̂

of f is defined as

f̂(λ) =

√
dλ
|Sn|

∑
g∈Sn

f(g)λ(g)

for each λ ∈ Λn (cf. [12, page 615]). The Fourier transform
can be expressed as a matrix form

Fn =
∑
λ∈Λn

∑
p,q∈P(λ)

∑
g∈Sn

√
dλ
|Sn|

[λ(g)]q,p|λ, p, q〉〈g|. (2)

Here, [λ(g)]q,p is the (q, p) element of matrix representa-
tion of λ(g). Notice that the index is not (p, q) but (q, p).
Thanks to this definition, the algorithm proposed later be-
comes a little easier than that for the Fn with [λ(g)]p,q as
the coefficient.

The following are the concrete matrices of F2 and F3 calcu-
lated from the adapted Gel’fand-Tsetlin bases of the Specht
polynomial defined above.

F2 =
1√
2

(
1 1
1 −1

)

F3 =
1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1√
2 − 1√

2
− 1√

2

√
2 − 1√

2
− 1√

2

0
√
3√
2

−
√
3√
2

0
√
3√
2

−
√
3√
2

0 −
√
3√
2

√
3√
2

0
√
3√
2

−
√
3√
2

√
2 − 1√

2
− 1√

2
−
√
2 1√

2

1√
2

1 1 1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is easily seen that F2 is the Hadamard matrix.

230

q=(1,2,3)

q=(1,0,2)

2

4

0

1

3

6

5

7

9

8

λ=(4)

λ=(3,1)

λ=(2,2)

λ=(2,1,1)

p=(0,0,0)

p=(0,0,1)

p=(0,1,0)

p=(0,1,2)

p=(0,1,1)

p=(1,0,0)

p=(1,0,1)

p=(1,0,2)

λ=(1,1,1,1)

p=(1,2,0)

p=(1,2,3)

q=(0,0,0)
q=(0,0,1)

q=(1,0,0)
q=(0,1,0)

q=(0,0,1)

q=(1,0,0)
q=(0,1,0)

q=(0,0,1)

q=(1,0,0)
q=(0,1,0)

q=(0,1,1)
q=(1,0,1)
q=(0,1,1)
q=(1,0,1)

q=(0,1,2)

q=(1,2,0)
q=(0,1,2)
q=(1,0,2)
q=(1,2,0)
q=(0,1,2)

q=(1,2,0)
q=(1,0,2)

q=(1,2,3)

2

4

0

1

6

3

5

7

9

8

p=(0,0)

p=(0,1)

p=(1,0)

p=(1,2)

q=(0,0,0)
q=(0,0,1)

q=(1,0,0)
q=(0,1,0) λ=(3)

λ=(2,1)

λ=(1,1,1)

q=(0,0,1)
q=(0,1,0)

q=(0,1,1)
q=(1,0,0)

q=(1,0,1)
q=(0,1,2)

q=(1,2,0)
q=(1,0,2)

q=(0,0,1)
q=(0,1,0)

q=(0,1,1)
q=(1,0,0)

q=(1,0,1)
q=(0,1,2)

q=(1,2,0)
q=(1,0,2)

q=(0,1,2)

q=(1,2,0)
q=(1,0,2)

A)

B)

Figure 2: A) The form of ρ4(g), where ρ4 =⊕
λ∈Λ4

(Idλ ⊗ λ) and g ∈ S4. It consists of one 1 × 1,
three 3× 3, two 2× 2, three 3× 3, and one 1× 1 block
diagonal matrices. The numbers 0-9 written in the
submatrices are matrix numbers. Matrices 1, 2, and
3 are the same. Similarly, matrices 4 and 5 are the
same, and matrices 6, 7, and 8 are the same. B) The

form of T †
4 ρ4(g)T4, which consists of a replacement of

submatrices in panel A. The same matrix numbers
in A and B mean the matrices are the same.

3. FFT ALGORITHM

3.1 Basis Transform Tn

A matrix for a basis transform, denoted Tn, is introduced
before decomposing Fn to simpler matrices. The Tn is an
n!× n! matrix for a basis transform from the basis

Bn = {|λ, p, q〉|λ ∈ Λn−1, p ∈ P(λ), ∃μ(λ ↘ μ ∧ q ∈ P(μ))} (3)

to the basis

B′
n = {|λ′, p′, q′〉|λ′ ∈ Λn, p

′, q′ ∈ P(λ′)}.
It is defined as T †

n|λ′, p′, q′〉 = |λ, p, q〉, where q = q′, p =
p′|n−2, and p ∈ P(λ). Here, p′|i is the restriction to the first
i elements, i.e., p′|n−2 = (p1, p2, · · · , pn−2) when p′ = (p1,
p2, · · · , pn−1). It is easy to show that T †

n is a one-to-one
onto map from B′

n to Bn. Hence, Tn is an n! × n! matrix
with elements; zero or one.

Since Λn is the set of all irreducible representations of Sn,
an element g ∈ Sn can be written as

⊕
λ∈Λn

(Idλ ⊗ λ(g)).
By the definition of Tn,

T †
n

(⊕
λ∈Λn

(Idλ ⊗ λ(g))

)
Tn =

⊕
μ∈Λn−1

(
Idμ ⊗ (⊕μ↘λλ(g))

)
. (4)

An example for n = 4 is given in Figure 2.

3.2 Inductive Decomposition of Fn

The Hn is defined by

Hn = T †
nFn(Fn−1 ⊗ In)

†. (5)

Then, since Fn = TnHn(Fn−1 ⊗ In),

Fn = TnHn(Fn−1 ⊗ In)

= TnHn(Tn−1Hn−1(Fn−2 ⊗ In−1)⊗ In)

= · · · .
Hence, Fn can be calculated from Tm, Hm (m ≤ n). This is
the existing FFT algorithm [3, 6].

It is proved that Hn is an n! × n! matrix consisting of
ndλ × ndλ matrices with duplication of dλ for λ ∈ Λn−1 on
the basis Bn. For example, for n = 4, the form of H4 is the
area inside the thick frame of Figure 2, panel B.

The sizes of submatrices of Hn, which are ndλ × ndλ for
λ ∈ Λn, are smaller than the size of Fn, which is n! × n!;
however, ndλ grows exponentially when n gets large. We
will decompose Hn into a multiplication of O(n2) sparse
matrices.

3.3 Inducing H ′
n−1 from Hn−1

We will introduce n! × n! matrices Kn, Pn, and An such
thatHn is calculated by a multiplication of {Kn, Pn, An, Tn,
Hn−1}. However, since Hn is an n!× n! matrix, the matrix
sizes of Hn and Hn−1 are different. To fix the problem, an
n!× n! matrix H ′

n−1 is induced from Hn−1.
By (5), the input and output of Hn−1 are defined on the

bases B′
n−2 × Zn−1 and Bn−1, respectively. Since Bn−1

∼=
B′

n−2 × Zn−1, which is defined by the order of encoding,
we can consider both the input and output of Hn−1 to be
defined on the basis B′

n−2 × Zn−1, i.e., Hn−1 =
⊕

λ∈Λn−2

(Idλ ⊗Hn−1,λ), where Hn−1,λ is an (n − 1)dλ × (n − 1)dλ
matrix defined on the basis {|λ, p, q, i〉|q ∈ P(λ), i < n −
1} for some p ∈ P(λ). Hence, there is a set of numbers
{hλ,q,r,i,j |q, r ∈ P(λ), i, j < n− 1} such that

Hn−1,λ =
∑

q,r∈P(λ)

∑
i,j<n−1

hλ,q,r,i,j |λ, p, q, i〉〈λ, p, r, j|.

Define H ′
n−1,λ as∑

q∈P(λ)

|λ, p, q, 0〉〈λ, p, q, 0|

+
∑

q,r∈P(λ)

∑
i,j<n−1

hλ,q,r,i,j |λ, p, q, i+ 1〉〈λ, p, r, j + 1|.

The H ′
n−1,λ is an ndλ × ndλ matrix, where λ ∈ Λn−2.

The H ′
n−1 is then defined as⊕

μ∈Λn−1

(
Idμ ⊗

(
⊕λ↘μH

′
n−1,λ

))
.

3.4 Basis Transform Pn

The matrix sizes of Hn and H ′
n−1 are the same; however,

the output bases are different. i.e., the output bases of Hn

and H ′
n−1 are defined on Bn and B′

n−1 × Zn, respectively.
To fix the difference, we introduce a basis transform Pn that
changes the basis B′

n−1 × Zn to the basis Bn.
The basis transform Pn is defined as a multiplication of

two matrices Pn,1 and Pn,2, i.e., Pn = Pn,2Pn,1.

Pn,1 is
⊕

λ∈Λn−1
(Idλ ⊗ Pn,1,λ), where Pn,1,λ =

∑ndλ−1
x,y=0

ax,y|x〉〈y| is the ndλ × ndλ matrix defined by

ax,y =

⎧⎪⎨
⎪⎩
1 if x < dλ ∧ y = nx

1 if x ≥ dλ ∧ y = x− �ndλ−x−1
n−1

�
0 o.w.

.

231

Pn,2 is
⊕

λ∈Λn−1
(Idλ ⊗ Pn,2,λ) and Pn,2,λ is determined

as follows. Fix λ ∈ Λn−1 in the following argument. Enu-
merate the elements of {μ ∈ Λn|λ ↘ μ} in the decreasing
lexicographic order, i.e., from left to right in Figure 1. We
denote the sequence as λ↓. For each element μ ∈ λ↓, enu-
merate {λ′ ∈ Λn−1|λ′ ↘ μ} in the decreasing lexicographic
order and denote it μ↑. Then, we define λ↓↑ as the sequence
with repetition by concatenating μ↑ for μ ∈ λ↓. Similarly,
we define λ↑↓ as the sequence with repetition by concatenat-
ing ν↓ for ν ∈ λ↑. When we compare λ↓↑ and λ↑↓ as sets with
duplication, it is easily proved that λ↓↑ is λ↑↓ plus λ. Hence,
there are one-to-one maps from {λ↓↑} to {λ, λ↑↓}. Select one
of them and denote it fλ, i.e., fλ(i) = j means that the ith
element of {λ↓↑} is equal to the jth element of {λ, λ↑↓} for

all i = 0, 1, · · · , |λ↓↑| − 1. Then, define Pn,2,λ = (bi,j)
|λ↓↑|−1

i,j=0

by

bi,j =

{
Idλi

if fλ(i) = j

0 o.w.
,

where bi,j is a dλi×dλj matrix such that λi is the ith element
of λ↓↑ and λj is the jth element of λ↑↓.

Pn depends on the selection of fλ; however, the key lemma
(Lemma 1) holds for any selection of fλ.

3.5 Controlled Cyclic Permutation Kn

The Hn and PnH
′
n−1 then have the same input and out-

put bases. We can prove that for any g ∈ Sn−1, both H†
n·

T †
nρn(g)Tn ·Hn and (PnH

′
n−1)

†· T †
nρn(g)Tn ·(PnH

′
n−1) have

non-zero elements at almost the same positions of the matri-
ces. However, the values are different. To fix the difference,
we introduce the following Kn defined as

Kn =

n−1∑
i=0

(
ρn−1(c(i,i+1,··· ,n−1))⊗ |i〉〈i|

)
. (6)

Here, c(i,i+1,··· ,n−1) is the cyclic permutation i �→ i + 1 �→
· · · �→ n − 1 �→ i when 0 < i < n − 1 and is the identity if
i = 0 or n−1. Then, H†

n· T †
nρn(g)Tn ·Hn and (PnH

′
n−1Kn)

†·
T †
nρn(g)Tn ·(PnH

′
n−1Kn) are the same for any g ∈ Sn−1.

3.6 Residue An

Finally, An is defined as HnK
†
nH

′†
n−1P

†
n. Obviously, Hn =

AnPnH
′
n−1Kn. The following is the key lemma.

Lemma 1. For any g ∈ Sn−1, T †
nρn(g)Tn and An are

commutative.

Roughly speaking, Lemma 1 means that An is close to
the identity matrix. The following theorem shows that the
n!-dimensional Hilbert space can be separated into many
small-dimensional invariant subspaces of An. Let eλ be the
number of children of λ in the Bratteli diagram. Obviously,
eλ ≤ n for n ≥ 2.

Theorem 1. For λ ∈ Λn−1 and p, q ∈ P(λ), let Wλ,p,q

be the eλ-dimensional subspace spanned by {|λ, p, (q, x)〉 ∈
Bn|λp = λq}, where λp is the last node of p and (q, x) is
(q1, · · · , qn−2, x) when q = (q1, · · · , qn−2). Then, AnWλ,p,q ⊆
Wλ,p,q for any λ ∈ Λn−1 and p, q ∈ P(λ). Furthermore, for
each λ ∈ Λn−1, there exists an eλ × eλ matrix A′

n,λ, in-
dependently of p and q, such that A′

n,λ = An on Wλ,p,q.
In addition, An performs as the identity on the subspace⋂
{W⊥

λ,p,q|λ ∈ Λn−1, p, q ∈ P(λ)}.

The An was defined as HnK
†
nH

′†
n−1P

†
n; however, for cal-

culating An, it is not necessary to multiply Hn, K
†
n, H

′†
n−1,

and P †
n. By Theorem 1, An can be written as a direct sum

of I1’s (the identity operator on a one-dimensional Hilbert
space) and eλ × eλ matrices A′

n,λ with duplication of d2λ for
all λ ∈ Λn−1. Theorem 2 shows that A′

n,λ can be calculated

easily from the diagonal elements of T †
nρn(c(n−1,n))Tn and

{dλ}λ. Note that T †
nρn(c(n−1,n))Tn is⊕

λ∈Λn−1

(
Idλ ⊗

(
⊕λ↘μμ(c(n−1,n))

))
and ⊕λ↘μμ(c(n−1,n))

is ∑
λ↘μ

∑
q,r∈P(μ)

[μ(c(n−1,n))]q,r|λ, p, q〉〈λ, p, r|

for some p ∈ P(λ).

Theorem 2. For (μ, ν) such that ν ↘ λ ↘ μ, define
qμ,ν ∈ P(μ) as follows: qμ,ν |n−3 ∈ P(ν) and qμ,ν |n−2 ∈
P(λ). Then, A′

n,λ is equal to

∑
λ↘μ

∑
ν↘λ

√
(n− 1)dμdν

nd2λ
[μ(c(n−1,n))]qμ,ν ,qμ,ν |λ, μ〉〈λ, ν|

+
∑
λ↘μ

√
dμ
ndλ

|λ, μ〉〈λ, λ|.

3.7 Algorithm and Complexity
We have the following relations.

(a) H2 = F2 = H (the Hadamard matrix)

(b) Hn = AnPnH
′
n−1Kn for n ≥ 3

(c) Fn = TnHn(Fn−1 ⊗ In) for n ≥ 3

Fn for n ≥ 2 can then be expressed as a multiplication of in-
duced matrices from {Am, Pm,Km|m ≤ n} andH as follows.
By (b), Hn = AnPnH

′
n−1Kn = AnPn (An−1Pn−1H

′
n−2

Kn−1)
′ Kn = · · · = AnPnA

(1)
n−1P

(1)
n−1 · · ·H(n−2) · · ·K(1)

n−1Kn,

where, e.g., H(i) = H ′′··· (i times ′). Substitute this Hn into
(c), then Hn can be eliminated from (c). Since the obtained
relation calculates Fn from Fn−1, Fn can be calculated in-
ductively.

Suppose we are given f : Sn → C. Let |f〉 be the n!-
dimensional vector corresponding to f . The Fourier trans-
form Fn|f〉 is calculated by applying the matrices in the
above matrix decomposition of Fn to |f〉 one by one.

We evaluate the complexity of the algorithm. The com-
plexity is counted as the number of multiplications and ad-
ditions, which is the same rule as [6]. The total complexity

will be shown as O(n!n3). The key is that all A
(n−m)
m ’s,

P
(n−m)
m ’s, K

(n−m)
m ’s, and H(n−2) are sparse matrices.

It suffices to show that the complexity for calculating
Hn|f〉 from |f〉 is O(n!n2) because Tn is just an order change
of elements of the vector, which can be performed by copying
n! values.

Since c(i,i+1,··· ,n−1) = c(n−2,n−1) · · · c(i+1,i+2)c(i,i+1), Kn

is calculated by a multiplication of n−1 matrices of adjacent
transpositions. Each adjacent transposition is expressed as
a direct sum of 1×1 and 2×2 matrices in Young’s orthogonal
representation. Hence, the complexity for calculating Kn|f〉
from |f〉 is O(n!n). Similarly, the complexity for calculating

K
(n−m)
m |f〉 (m ≤ n) from |f〉 is O((n− 1)!m2). H(n−2) can

232

Z2

 |i1

|i2

|i3

|in− 1

Z3!

Z2

Zn2

Z2

Zn2

Z3!

Z3!

Zn3

Z4!

Z3!

Zn3

Z4

Z3

Z2

Z4!

Z4!

Zn4 Zn(n− 1)

Z(n− 1)!

Z(n− 1)!

Zn(n− 1)

Zn!

Z(n− 1)!

Zn

Znn

Zn!

Zn!

|λ

|p

|q

Figure 3: Circuit for Fn, where H2, Tm, and Hm are
given in Figures 4, 5, and 6, respectively. The input

is |i1, · · · , in−1〉 such that g = c
in−1

(1,2,··· ,n) · · · c
i2
(1,2,3)c

i1
(1,2) for

g ∈ Sn. The output is |λ, p, q〉 such that λ ∈ Znn and
p, q ∈ Zn!, which are codes of λ ∈ Λn and p, q ∈ P(λ),
respectively.

be calculated with O((n − 1)!) operations. P
(n−m)
m is an

order change of elements of the vector, similar to T
(n−m)
m .

Since A
(n−m)
m is a direct sum of 1× 1 and eλ × eλ matrices,

where λ ∈ Λm and eλ ≤ m, the complexity is O(n!m). The
complexity for calculating Hn|f〉 from |f〉 is then O(n!n2).

4. QFT ALGORITHM
The quantum counterpart of Fn is called the quantum

Fourier transform (QFT), which is defined the same as Fn

[See (2)]. We will use the same symbol Fn since there’s no
confusion.

We propose a quantum circuit that performs Fn, shown in
Figure 3. The circuit is O(n4)-depth on O(n log n) qubits,
where gates represented as a direct sum of 1 × 1 and 2 × 2
matrices whose elements are easily calculated in a classical
computer are defined as elementary gates. Basic notions and
symbols of quantum circuits are found in [12]. The words
“qumit” and “qunit” will be used in the meaning of m-state
and n-state quantum resources, respectively.

4.1 Algorithm
By the induction relation (c) in Subsection 3.7, Fn can be

calculated by F2 (= H2), H3, T3, H4, T4, · · · , Hn, and Tn.
This can be depicted as the circuit in Figure 3.

The input of the Fn circuit is (i1, i2, · · · , in−1) ∈ Z2×Z3×
· · ·×Zn such that g = c

in−1

(1,2,··· ,n) · · · c
i2
(1,2,3)c

i1
(1,2). The output

is (λ, p, q) such that λ is a partition of n, where p and q
are paths from the root node to the node λ in the Bratteli
diagram. A partition of n is encoded using n numbers less
than n. Hence, λ is encoded as (λ1, λ2, · · · , λn) ∈ Zn×Zn×
· · · × Zn. In addition, p is encoded as (p1, p2, · · · , pn−1) ∈
Z2 × Z3 × · · · × Zn and q is encoded as (q1, q2, · · · , qn−1) ∈
Z2 × Z3 × · · · × Zn. Therefore, (λ, p, q) ∈ Znn × Zn! × Zn!.
To compensate for the difference between the input and

output, fresh quantum resources are added in the circuits
for H2, T3, T4, · · · , Tn. The circuits for H2, Hm, and Tm

(m ≥ 3) are given below. The ordered set, e.g., (λ, p, q) will
be denoted using the ket symbol |λ, p, q〉 hereafter.

H

H2

|0

|1

|0

|i

+1

+1

|λ 1

|p

|q

|λ 2

Figure 4: A quantum circuit for performing H2. The
input |i〉 is |0〉 or |1〉, which means the group element
c0(1,2) (the identity) or c1(1,2) (the transposition 1 ↔ 2)

in S2, respectively. The output is 1√
2
(|(2, 0), (0), (0)〉+

|(1, 1), (1), (1)〉 or 1√
2
(|(2, 0), (0), (0)〉 − |(1, 1), (1), (1)〉 ac-

cording to the input |i〉 = |0〉 or |1〉, respectively. The
+1 gate performs an operation |x〉 �→ |x+1 mod n〉 on
a qunit.

4.2 Quantum Circuit for H2

The H2 is the unitary transform that performs

|0〉 �→ 1√
2
(|(2, 0), (0), (0)〉+ |(1, 1), (1), (1)〉,

|1〉 �→ 1√
2
(|(2, 0), (0), (0)〉 − |(1, 1), (1), (1)〉.

It can be performed by the circuit shown in Figure 4, where
the first and second horizontal lines are qunits and the third
and fourth lines are qubits. Hence, two qunits and one qubit
are added as fresh quantum resources in the circuit.

4.3 Quantum Circuit for Tm

A quantum circuit that performs Tm consists of two parts.
(See Figure 5.)

In the first part, a qumit with the initial state |0〉 is added
as pm−1 and changed to q\p, where q\p means the setminus
{q1, q2, · · · , qm−1} \ {p1, p2, · · · , pm−2}. By this operation,
(p1, p2, · · · , pm−1) is in P(λ). The q \ p is easily calculated
by an addition circuit for

∑m−1
i=1 qi −

∑m−2
i=1 pi mod m.

In the second part, a qunit with the initial state |0〉 is
added as λm and the number of λq\p is incremented by one.
It can be performed using controlled addition circuits; |λi〉
is changed to |λi + 1 mod n〉 when pm−1 = i.

4.4 Quantum Circuit for Hm

The circuit that performs Hm has an input |λ, p, q, i〉,
where λ = (λ1, · · · , λm−1) ∈ Znm−1 , p = (p1, · · · , pm−2) ∈
Z(m−1)!, q = (q1, · · · , qm−2) ∈ Z(m−1)!, |i〉 ∈ Zm, and an
output |λ′, p′, q′〉, where λ′ = (λ′

1, · · · , λ′
m−1) ∈ Znm−1 ,

p′ = (p′1, · · · , p′m−2) ∈ Z(m−1)!, q
′ = (q′1, · · · , q′m−1) ∈ Zm!.

Since Hm = AmPmH ′
m−1Km, the circuit is constructed

as shown in Figure 6. Some notes are listed below.
Km is the set of λ(c(i,··· ,m−1)) gates according to the value

i of the fourth register. Hence, they are put in line in the
first part of Hm.

Before performing Hm−1, the basis must be changed; λ �→
(λ1, · · · , λqm−2 − 1, · · · , λm−1), p �→ p|m−3, q �→ q|m−3, and
i �→ i − 1 mod m. The change of λ is performed by the
reverse operation of the second stage of Tm−1. The change
of i is performed by an addition circuit. After performing
Hm−1, the basis is restored to the previous point of the
change.

233

|λ 1

|0

Tm

|λ 2

|λ m− 2 +1

+1

+1

0 1 m− 2 m− 1

+1

|λ 1

|λ 2

|λ m− 2

|λ m− 1

|p1

|p2

|pm− 2

|0

|q1

|q2

|qm− 2

|qm− 1

|p1

|p2

|pm− 2

|q1

|q2

|qm− 2

|qm− 1

|pm− 1 q p

Tm,2

Figure 5: Quantum circuit for performing Tm.
The q \ p is the setminus {q1, q2, · · · , qm−1} \
{p1, p2, · · · , pm−2}, which can be calculated as∑m−1

i=1 qi−
∑m−2

j=1 pj mod m. The numbers on the pm−1

qumit mean the conditions. The operation in the
dashed line is named Tm,2.

λ(c(m
−2 ,m

− 1))

Hm− 1

|p1 pm− 2

|q1 qm− 2

|i

Pm

Am,λ m− 2

|λ
λ

|p1 pm− 2

|q1 qm− 1

|λ

Hm

−1 +1

λ(c
m

− 1))

1

Tm,2 Tm,2

Figure 6: Quantum circuit for performing Hm, which
contains Hm−1 as a nested part. The gate Tm,2 is the
operation in Figure 5. The −1 and +1 gates are |i〉 �→
|i− 1 mod m〉 and |i〉 �→ |i+ 1 mod m〉, respectively.

Pn is a simple basis change, which can be performed in
O(n2). Am is the A′

m,λ operation according to the value of
λ ∈ Λm. Each A′

m,λ is an eλ×eλ matrix, where eλ ≤ m. It is
known that a 2n×2n unitary matrix can be performed using
4n elementary gates. Thus, an m × m unitary matrix can
be performed using m2 elementary gates, which is O(n2).

4.5 Complexity
The circuit for Hn can be performed in O(n3). By Figure

3, the complexity of Fn is then O(n4).

5. CONCLUSION
This paper proposed a QFT algorithm over symmetric

groups. The time complexity of the algorithm is O(n4) for
Sn. We also proposed an O(n!n3) FFT (classical) algorithm
over symmetric groups. Estimating the time complexity of
a QFT circuit using only elementary gates, such as single-
qubit rotations and controlled-not gates, remains as further

research. Another interesting problem is whether the new
approach can be generalized to other groups.

6. ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant Num-

ber 25330021.

7. REFERENCES
[1] G. Alagic, C. Moore, and A. Russell. Quantum

algorithms for Simon’s problem over nonabelian
groups. ACM Transactions on Algorithms, 6(1):No.
19, December 2009.

[2] R. Beals. Quantum computation of Fourier transforms
over symmetric groups. In Proceedings of the
twenty-ninth annual ACM Symposium on the Theory
of Computing (STOC), pages 48–53. ACM, May 1997.

[3] M. Clausen. Fast generalized Fourier transforms.
Theoret. Comput. Sci., 67:55–63, 1989.

[4] R. Cleve and J. Watrous. Fast parallel circuits for the
quantum Fourier transform. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 526–536. IEEE, 2000.

[5] D. Coppersmith. An approximate Fourier transform
useful in quantum factoring. In Technical Report
RC19642. IBM, 1994.

[6] P. Diaconis and D. Rockmore. Efficient computation
of the Fourier transform on finite groups. J. AMS,
3(2):297–332, 1990.

[7] L. Hales and S. Hallgren. An improved quantum
Fourier transform algorithm and applications. In
Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
515–525. IEEE, 2000.

[8] M. Hall. The Theory of Groups. Macmillan, New
York, 1959.

[9] C. Moore, D. Rockmore, and A. Russell. Generic
quantum Fourier transforms. ACM Transactions on
Algorithms, 2(4):707–723, October 2006.

[10] C. Moore, A. Russell, and P. Sniady. On the
impossibility of a quantum sieve algorithm for graph
isomorphism: unconditional results. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing (STOC), pages 536–545. ACM, 2007.

[11] M. Mosca and C. Zalka. Exact quantum Fourier
transforms and discrete logarithm algorithms. Int. J.
Quant. Inf., 2(1):91–100, 2004.

[12] M. A. Nielsen and I. L. Chuang. Quantum
Computation and Quantum Information. Cambridge
Univ. Press, Cambridge, UK, 2000.

[13] J.-P. Serre. Représentations Linéaires des Groupes
Finis. Hermann, Paris, 1971.

[14] P. W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509,
October 1997.

[15] H. Weyl. The Classical Groups, their invariants and
representations (2nd ed.). Princeton Univ. Press,
Princeton, 1946.

[16] H. Weyl. The Theory of Groups and Quantum
Mechanics. Dover, New York, 1950.

234

