
Simultaneous Computation of the Row and Column Rank
Profiles∗

Jean-Guillaume Dumas
Université de Grenoble

Laboratoire LJK
UMR CNRS, INRIA, UJF, UPMF, GINP

51, av. des Mathématiques,
F38041 Grenoble, France

Jean-
Guillaume.Dumas@imag.fr

Clément Pernet
Université de Grenoble
INRIA, Laboratoire LIG

UMR CNRS, INRIA, UJF, UPMF, GINP
Inovallée, 655, av. de l’Europe,

F38334 St Ismier Cedex,
France

Clement.Pernet@imag.fr

Ziad Sultan
Université de Grenoble

Laboratoires LJK and LIG
UMR CNRS, INRIA, UJF, UPMF, GINP
Inovallée, 655, av. de l’Europe,

F38334 St Ismier Cedex,
France

Ziad.Sultan@imag.fr

ABSTRACT
Gaussian elimination with full pivoting generates a PLUQ
matrix decomposition. Depending on the strategy used in
the search for pivots, the permutation matrices can reveal
some information about the row or the column rank pro-
files of the matrix. We propose a new pivoting strategy
that makes it possible to recover at the same time both row
and column rank profiles of the input matrix and of any of
its leading sub-matrices. We propose a rank-sensitive and
quad-recursive algorithm that computes the latter PLUQ
triangular decomposition of an m × n matrix of rank r in
O
(
mnrω−2

)
field operations, with ω the exponent of ma-

trix multiplication. Compared to the LEU decomposition
by Malashonock, sharing a similar recursive structure, its
time complexity is rank sensitive and has a lower leading
constant. Over a word size finite field, this algorithm also
improves the practical efficiency of previously known imple-
mentations.

Categories and Subject Descriptors
G.4 [Mathematics and Computing]: Mathematical Software—
Algorithm Design and Analysis; I.1.2 [Computing Methodolo-
gies]: Symbolic and Algebraic Manipulation

Keywords
FFLAS-FFPACK, Finite field, Gaussian elimination, Rank
profile

1. INTRODUCTION
Triangular matrix decomposition is a fundamental build-

ing block in computational linear algebra. It is used to
solve linear systems, compute the rank, the determinant, the
nullspace or the row and column rank profiles of a matrix.
The LU decomposition, defined for matrices whose leading

∗This work is partly funded by the HPAC project of the French
Agence Nationale de la Recherche (ANR 11 BS02 013).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

principal minors are all nonsingular, can be generalized to
arbitrary dimensions and ranks by introducing pivoting on
sides, leading e.g. to the LQUP decomposition of [6] or the
PLUQ decomposition [5, 8]. Many algorithmic variants exist
allowing fraction free computations [8], in-place computa-
tions [2, 7] or sub-cubic rank-sensitive time complexity [11,
7]. More precisely, the pivoting strategy reflected by the
permutation matrices P and Q is the key difference between
these PLUQ decompositions. In numerical linear algebra [5],
pivoting is used to ensure a good numerical stability, good
data locality, and reduce the fill-in. In the context of ex-
act linear algebra, the role of pivoting differs. Indeed, only
certain pivoting strategies for these decompositions will re-
veal the rank profile of the matrix. The latter is crucial in
many applications using exact Gaussian elimination, such as
Gröbner basis computations [4] and computational number
theory [10].

The row rank profile of an m × n matrix A with rank r
is the lexicographically smallest sequence of r indices of lin-
early independent rows of A. Similarly the column rank
profile is the lexicographically smallest sequence of r indices
of linearly independent columns of A.

The common strategy to compute the row rank profile
is to search for pivots in a row-major fashion: exploring
the current row, then moving to the next row only if the
current row is zero. Such a P̄LUQ̄ decomposition can be
transformed into a CUP decomposition (where P = Q̄ and
C = P̄L is in column echelon form) and the first r values of
the permutation associated to P are exactly the row rank
profile [7]. A block recursive algorithm can be derived from
this scheme by splitting the row dimension [6]. Similarly,
the column rank profile can be obtained in a column major
search: exploring the current column, and moving to the
next column only if the current one is zero. The P̄LUQ̄ de-
composition can be transformed into a PLE decomposition
(where P = P̄ and E = UQ̄ is in row echelon form) and the
first r values of Q are exactly the column rank profile [7].
The corresponding block recursive algorithm uses a splitting
of the column dimension.

Recursive elimination algorithms splitting both row and
column dimensions include the TURBO algorithm [3] and
the LEU decomposition [9]. No connection is made to the
computation of the rank profiles in any of these algorithms.
The TURBO algorithm does not compute the lower triangu-
lar matrix L and performs five recursive calls. It therefore

181

mailto:Jean-Guillaume.Dumas@imag.fr
mailto:Jean-Guillaume.Dumas@imag.fr
mailto:Clement.Pernet@imag.fr
mailto:Ziad.Sultan@imag.fr

implies an arithmetic overhead compared to classic Gaus-
sian elimination. The LEU avoids permutations but at the
expense of many additional matrix products. As a conse-
quence its time complexity is not rank-sensitive.

We propose here a pivoting strategy following a Z-curve
structure and working on an incrementally growing leading
sub-matrix. This strategy is first used in a recursive algo-
rithm splitting both rows and columns which recovers simul-
taneously both row and column rank profiles. Moreover, the
row and column rank profiles of any leading sub-matrix can
be deduced from the P and Q permutations. We show that
the arithmetic cost of this algorithm remains rank sensitive
of the form O(mnrω−2) where ω is the exponent of matrix
multiplication. The best currently known upper bound for
ω is 2.3727 [12]. To the best of our knowledge, this is the
first reduction to matrix multiplication for the problem of
computing the column and row rank profiles of all leading
sub-matrices of an input matrix.

As for the CUP and PLE decompositions, this PLUQ de-
composition can be computed in-place, at the same cost.
Compared to the CUP and PLE decompositions, this new
algorithm has the following new salient features:

• it computes simultaneously both rank profiles at the
cost of one,

• it preserves the squareness of the matrix passed to the
recursive calls, thus allowing more efficient use of the
matrix multiplication building block,

• it uses less modular reductions in a finite field,

• a CUP and a PLE decompositions can be obtained
from it, with row and column permutations only.

Compared to the LEU decomposition,

• it is in-place,

• its time complexity bound is rank sensitive and has a
better leading constant,

• a LEU decomposition can be obtained from it, with
row and column permutations.

In Section 2 we present the new block recursive algorithm.
Section 3 shows the connection with the LEU decomposition
and Section 4 states the main property about rank profiles.
We then analyze the complexity of the new algorithm in
terms of arithmetic operations: first we prove that it is rank
sensitive in Section 5 and second we show in Section 6 that,
over a finite field, it reduces the number of modular reduc-
tions when compared to state of the art techniques. We
then propose an iterative variant in Section 7 to be used
as a base-case to terminate the recursion before the dimen-
sions get too small. Experiments comparing computation
time and cache efficiency are presented in Section 8.

2. A RECURSIVE PLUQ ALGORITHM
We first recall the name of the main sub-routines being

used: MM stands for matrix multiplication, TRSM for triangu-
lar system solving with matrix unknown (left and right vari-
ants are implicitly indicated by the parameter list), PermC
for matrix column permutation, PermR for matrix row per-
mutation, etc. For instance, we will use:
MM(C,A,B) to denote C ← C −AB,

TRSM(U,B) for B ← U−1B with U upper triangular,

TRSM(B,L) for B ← BL−1 with L lower triangular.

We also denote by Tk,l the transposition of indices k and l
and by L\U , the storage of the two triangular matrices L and
U one above the other. Further details on these subroutines
and notations can be found in [7]. In block decompositions,
we allow for zero dimensions. By convention, the product
of any m × 0 matrix by an 0 × n matrix is the m × n zero
matrix. The notation j = i : k being inclusive on the left
only (i.e. j = i : k means j ∈ Z and i ≤ j < k).

We now present the block recursive Algorithm 1, comput-
ing a PLUQ decomposition.

It is based on a splitting of the matrix in four quadrants. A
first recursive call is done on the upper left quadrant followed
by a series of updates. Then two recursive calls can be made
on the anti-diagonal quadrants if the first quadrant exposed
some rank deficiency. After a last series of updates, a fourth
recursive call is done on the bottom right quadrant. Figure 1
illustrates the position of the blocks computed in the course
of Algorithm 1, before and after the final permutation with
matrices S and T .

1 2

3 4

Figure 1: Block recursive Z-curve PLUQ decompo-
sition and final block permutation.

This framework differs from the one in [3] by the order
in which the quadrants are treated, leading to only four re-
cursive calls in this case instead of five in [3]. We will show
in Section 4 that this fact together with the special form of
the block permutations S and T makes it possible to recover
rank profile information. The correctness of Algorithm 1 is
proven in Appendix A.

Remark 1. Algorithm 1 is in-place (as defined in [7, Def-
inition 1]): all operations of the TRSM, MM, PermC, PermR

subroutines work with O(1) extra memory allocations except
possibly in the course of fast matrix multiplications. The
only constraint is for the computation of J ← L−1

3 I which
would overwrite the matrix I that should be kept for the final
output. Hence a copy of I has to be stored for the computa-
tion of J . The matrix I has dimension r3 × r2 and can be
stored transposed in the zero block of the upper left quadrant
(of dimension (m

2
− r1)× (n

2
− r1), as shown on Figure 1).

182

Algorithm 1 PLUQ

Input: A = (aij) a m× n matrix over a field
Output: P,Q: m×m and n× n permutation matrices
Output: r: the rank of A

Output: A←
[
L\U V
M 0

]
where L is r× r unit lower trian-

gular, U is r × r upper triangular, and

A = P

[
L
M

] [
U V

]
Q.

if m=1 then
if A =

[
0 . . . 0

]
then P ←

[
1
]
, Q← In, r ← 0

else
i← the col. index of the first non zero elt. of A
P ←

[
1
]

;Q← T1,i, r ← 1
Swap a1,i and a1,1

end if
Return (P,Q, r,A)

end if
if n=1 then

if A =
[
0 . . . 0

]T
then P ← Im;Q←

[
1
]
, r ← 0

else
i← the row index of the first non zero elt. of A
P ←

[
1
]
, Q← T1,i, r ← 1

Swap ai,1 and a1,1
for j = i+ 1 : m do aj,1 ← aj,1a

−1
1,1

end for
end if
Return (P,Q, r,A)

end if

. Splitting A =

[
A1 A2

A3 A4

]
where A1 is bm

2
c × bn

2
c.

Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1 . PLUQ(A1)[

B1

B2

]
← PT

1 A2 . PermR(A2, P
T
1)[

C1 C2

]
← A3Q

T
1 . PermC(A3, Q

T
1)

Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2 A4

.

D ← L−1
1 B1 . TRSM(L1, B1)

E ← C1U
−1
1 . TRSM(C1, U1)

F ← B2 −M1D . MM(B2,M1, D)
G← C2 − EV1 . MM(C2, E, V1)
H ← A4 − ED . MM(A4, E,D)

Here A =

 L1\U1 V1 D
M1 0 F
E G H

.

Decompose F = P2

[
L2

M2

] [
U2 V2

]
Q2 . PLUQ(F)

Decompose G = P3

[
L3

M3

] [
U3 V3

]
Q3 . PLUQ(G)[

H1 H2

H3 H4

]
← PT

3 HQ
T
2 . PermR(H,PT

3); PermC(H,QT
2)[

E1

E2

]
← PT

3 E . PermR(E,PT
3)[

M11

M12

]
← PT

2 M1 . PermR(M1, P
T
2)[

D1 D2

]
← DQT

2 . PermR(D,QT
2)[

V11 V12

]
← V1Q

T
3 . PermR(V1, Q

T
3)

Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0
E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

I ← H1U
−1
2 . TRSM(H1, U2)

J ← L−1
3 I . TRSM(L3, I)

K ← H3U
−1
2 . TRSM(H3, U2)

N ← L−1
3 H2 . TRSM(L3, H2)

O ← N − JV2 . MM(N, J, V2)
R← H4 −KV2 −M3O . MM(H4,K, V2); MM(H4,M3, O)

Decompose R = P4

[
L4

M4

] [
U4 V4

]
Q4 . PLUQ(R)[

E21 M31 0 K1

E22 M32 0 K2

]
← PT

4

[
E2 M3 0 K

]
. PermR

D21 D22

V21 V22

0 0
O1 O2

←

D2

V2

0
O

QT
4 . PermC

Here A =


L1\U1 V11 V12 D1 D21 D22

M11 0 0 L2\U2 V21 V22

M12 0 0 M2 0 0
E1 L3\U3 V3 I O1 O2

E21 M31 0 K1 L4\U4 V4

E22 M32 0 K2 M4 0

.

S ←


Ir1+r2

Ik−r1−r2

Ir3+r4

Im−k−r3−r4



T ←


Ir1

Ir2
Ir3

Ir4
Ik−r1−r3

In−k−r2−r4


P ← Diag(P1

[
Ir1

P2

]
, P3

[
Ir3

P4

]
)S

Q← TDiag(

[
Ir1

Q3

]
Q1,

[
Ir2

Q4

]
Q2)

A← STATT . PermR(A,ST); PermC(A, TT)

Here A =


L1\U1 D1 V11 D21 V12 D22

M11 L2\U2 0 V21 0 V22

E1 I L3\U3 O1 V3 O2

E21 K1 M31 L4\U4 0 V4

M12 M2 0 0 0 0
E22 K2 M32 M4 0 0


Return (P,Q, r1 + r2 + r3 + r4, A)

3. FROM PLUQ TO LEU
We now show how to compute the LEU decomposition

of [9] from the PLUQ decomposition. The idea is to write

P

[
L
M

]
[U V]Q = P

[
L 0
MIm−r

]
PT

︸ ︷︷ ︸
L

P

[
Ir

0

]
Q︸ ︷︷ ︸

E

QT

[
U V
In−r

]
Q︸ ︷︷ ︸

U

and show that L and U are respectively lower and upper
triangular. This is not true in general, but turns out to be
satisfied by the P,L,M,U, V and Q obtained in Algorithm 1.

183

Theorem 1. Let A = P

[
L
M

]
[U V]Q be the PLUQ de-

composition computed by Algorithm 1. Then for any unit
lower triangular matrix Y and any upper triangular ma-

trix Z, the matrix P

[
L
M Y

]
PT is unit lower triangular and

QT

[
U V
Z

]
Q is upper triangular.

Proof. Proceeding by induction, we assume that the the-
orem is true on all four recursive calls, and show that it
is true for the matrices P [L

M Y]PT and QT [U V
Z]Q. Let

Y =

[
Y1

Y2Y3

]
where Y1 is unit lower triangular of dimension

k − r1 − r2. From the correctness of Algorithm 1 (see e.g.

Equation A), S

[
L
MY

]
ST =


L1

M11 L2

M12M2Y1

E1 I L3

E21K1 M31 L4

E22K2Y2M32M4Y3


Hence P

[
L
MY

]
PT equals

[
P1

P3

]Ir1P2

Ir3
P4



L1

M11 L2

M12M2Y1

E1 I L3

E21K1 M31 L4

E22K2Y2M32M4Y3

×
Ir1PT

2

Ir3
PT
4

[PT
1

PT
3

]

By induction hypothesis, the matrices L2 = P2

[
L2

M2Y1

]
PT
2 ,

L4 = P4

[
L4

M4Y3

]
PT
4 , P1

[
L1

M1L2

]
PT
1 and P3

[
L3

M3L4

]
PT
3

are unit lower triangular. Therefore the matrix P [L
M Y]PT

is also unit lower triangular.

Similarly, let Z =

[
Z1Z2

Z3

]
where Z1 is upper triangular of

dimension k − r1 − r2. The matrix TT

[
UV
Z

]
T equals

TT


U1V11V12D1D21D22

0 0 U2 V21 V22

U3 V3 0 O1 O2

0 U4 V4

Z1 Z2

Z3

=


U1V11V12D1D21D22

U3 V3 O1 O2

Z1 Z2

0 0 U2 V21 V22

0 U4 V4

Z3


Hence QT

[
UV
Z

]
Q equals

[
QT

1

QT
2

]Ir1QT
3

Ir2
QT

4



U1V11V12D1D21D22

U3 V3 O1 O2

Z1 Z2

0 0 U2 V21 V22

0 U4 V4

Z3

×
Ir1Q3

Ir2
Q4

[Q1

Q2

]
.

By induction hypothesis, the matrices U3 = QT
3

[
U3V3

Z1

]
Q3,

U4 = QT
4

[
U4V4

Z3

]
PT
4 , QT

1

[
U1V1

U3

]
Q1 and QT

2

[
U2V2

U4

]
Q2

are upper triangular. Consequently the matrix QT [U V
Z]Q

is upper triangular.
For the base case with m = 1. The matrix L has di-

mension 1 × 1 and is unit lower triangular. If r = 0, then
U = ITn ZIn is upper triangular. If r = 1, then Q = T1,i

where i is the column index of the pivot and is therefore the
column index of the leading coefficient of the row [UV]Q.
Applying QT on the left only swaps rows 1 and i, hence row

[UV]Q is the ith row of QT

[
UV
Z

]
Q. The latter is therefore

upper triangular. The same reasoning can be applied to the
case n = 1.

Corrolary 1. Let L = P

[
L
MIm−r

]
PT , E = P

[
Ir

0

]
Q

and U = QT

[
UV

0

]
Q. Then A = LEU is a LEU decompo-

sition of A.

Remark 2. The converse is not always possible: given
A = L,E,U , there are several ways to choose the last m− r
columns of P and the last n− r rows of Q. The LEU algo-
rithm does not keep track of these parts of the permutations.

4. COMPUTING THE RANK PROFILES
We prove here the main feature of the PLUQ decomposi-

tion computed by Algorithm 1: it reveals the row and col-
umn rank profiles of all leading sub-matrices of the input
matrix. We recall in Lemma 1 basic properties of rank pro-
files.

Lemma 1. For any matrix,

1. the row rank profile is preserved by right multiplication
with an invertible matrix and by left multiplication with
an invertible upper triangular matrix.

2. the column rank profile is preserved by left multiplica-
tion with an invertible matrix and by right multiplica-
tion with an invertible lower triangular matrix.

Lemma 2. Let A = PLUQ be the PLUQ decomposition
computed by Algorithm 1. Then the row (resp. column)
rank profile of any leading (k, t) submatrix of A is the row
(resp. column) rank profile of the leading (k, t) submatrix of

P

[
Ir

0

]
Q.

Proof. With the notations of Corollary 1, we have:

A = P

[
L
MIm−r

] [
Ir

0

] [
U V
In−r

]
Q = LP

[
Ir

0

]
QU

Hence

[Ik0]A

[
It
0

]
= L1 [Ik0]P

[
Ir

0

]
QU1,

where L1 is the k× k leading submatrix of L (hence it is an
invertible lower triangular matrix) and U1 is the t×t leading
submatrix of U (hence it is an invertible upper triangular
matrix). Now, Lemma 1 implies that the rank profile of

[Ik0]A

[
It
0

]
is that of [Ik0]P

[
Ir

0

]
Q

[
It
0

]
.

184

From this lemma we deduce how to compute the row and
column rank profiles of any (k, t) leading submatrix and
more particularly of the matrix A itself.

Corrolary 2. Let A = PLUQ be the PLUQ decomposi-
tion of a m × n matrix computed by Algorithm 1. The row
(resp. column) rank profile of any (k, t)-leading submatrix of
a A is the sorted sequence of the row (resp. column) indices
of the non zero rows (resp. columns) in the matrix

R = [Ik0]P

[
Ir

0

]
Q

[
It
0

]

Corrolary 3. The row (resp. column) rank profile of A
is the sorted sequence of row (resp. column) indices of the
non zero rows (resp. columns) of the first r columns of P
(resp. first r rows of Q).

5. COMPLEXITY ANALYSIS
We study here the time complexity of Algorithm 1 by

counting the number of field operations. For the sake of
simplicity, we will assume here that the dimensions m and
n are powers of two. The analysis can easily be extended to
the general case for arbitrary m and n.

For i = 1, 2, 3, 4 we denote by Ti the cost of the i-th re-
cursive call to PLUQ, on a m

2
× n

2
matrix of rank ri. We also

denote by TTRSM(m,n) the cost of a call TRSM on a rectangular
matrix of dimensions m× n, and by TMM(m, k, n) the cost of
multiplying an m× k by an k × n matrix.

Theorem 2. Algorithm 1, run on an m × n matrix of
rank r, performs O

(
mnrω−2

)
field operations.

Proof. Let T = TPLUQ(m,n, r) be the cost of Algorithm 1
run on a m× n matrix of rank r. From the complexities of
the subroutines given, e.g., in [2] and the recursive calls in
Algorithm 1, we have:

T=T1 + T2 + T3 + T4 + TTRSM(r1,
m

2
) + TTRSM(r1,

n

2
)

+TTRSM(r2,
m

2
) + TTRSM(r3,

n

2
) + TMM(

m

2
− r1, r1,

n

2
)

+TMM(
m

2
, r1,

n

2
− r1) + TMM(

m

2
, r1,

n

2
)

+TMM(r3, r2,
n

2
− r2) + TMM(

m

2
− r3, r2,

n

2
− r2 − r4)

+TMM(
m

2
− r3, r3,

n

2
− r2 − r4)

≤T1 + T2 + T3 + T4 +K
(m

2
(rω−1

1 + rω−1
2) +

n

2
(rω−1

1

+rω−1
3) +

m

2

n

2
rω−2
1 +

m

2

n

2
rω−2
2 +

m

2

n

2
rω−2
3

)
≤T1 + T2 + T3 + T4 +K′mnrω−2

for some constantsK andK′ (we recall that aω−2+bω−2 ≤
23−ω(a+ b)ω−2 for 2 ≤ ω ≤ 3).

Let C = max{ K′

1−24−2ω ; 1}.Then we can prove by a simul-

taneous induction on m and n that T ≤ Cmnrω−2.
Indeed, if (r = 1,m = 1, n ≥ m) or (r = 1, n = 1,m ≥ n)

then T ≤ m − 1 ≤ Cmnrω−2. Now if it is true for m =

2j , n = 2i, then for m = 2j+1, n = 2i+1, we have

T≤C
4
mn(rω−2

1 + rω−2
2 + rω−2

3 + rω−2
4) +K′mnrω−2

≤C(23−ω)2

4
mnrω−2 +K′mnrω−2

≤K′ 24−2ω

1− 24−2ω
mnrω−2 +K′mnrω−2 ≤ Cmnrω−2.

In order to compare this algorithm with usual Gaussian
elimination algorithms, we now refine the analysis to com-
pare the leading constant of the time complexity in the spe-
cial case where the matrix is square and has a generic rank
profile: r1 = m

2
= n

2
, r2 = 0, r3 = 0 and r4 = m

2
= n

2
at each

recursive step.
Hence, with Cω the constant of matrix multiplication, we

have

TPLUQ=2TPLUQ(
n

2
,
n

2
,
n

2
) + 2TTRSM(

n

2
,
n

2
) + TMM(

n

2
,
n

2
,
n

2
)

=2TPLUQ(
n

2
,
n

2
,
n

2
) + 2

Cω

2ω−1 − 2

(n
2

)ω
+ Cω

(n
2

)ω
Writing TPLUQ(n, n, n) = αnω, the constant α satisfies:

α = Cω
1

(2ω − 2)

(
1

2ω−2 − 1
+ 1

)
= Cω

2ω−2

(2ω − 2)(2ω−2 − 1)
.

which is equal to the constant of the CUP and LUP de-
compositions [7, Table 1]. In particular, it equals 2/3 when
ω = 3, Cω = 2, matching the constant of the classical Gaus-
sian elimination.

6. COUNTING MODULAR REDUCTIONS
OVER A PRIME FIELD

In the following we suppose that the operations are done
with full delayed reduction for a single multiplication and
any number of additions: operations of the form

∑
aibi are

reduced only once at the end of the addition, but a · b · c
requires two reductions. In practice, only a limited number
of accumulations can be done on an actual mantissa without
overflowing, but we neglect this in this section for the sake of
simplicity. See e.g. [2] for more details. For instance, with
this model, the number of reductions required by a classic
multiplication of matrices of size m× k by k × n is simply:
m ·n. We denote this by RMM (m, k, n) = mn. This extends
e.g. also for triangular solving:

Theorem 3. Over a prime field modulo p, the number
of reductions modulo p required by TRSM(m,n) with full
delayed reduction is:

RUnitTRSM(m,n)=mn if the triangular matrix is unitary,
RTRSM(m,n) =2mn in general.

Proof. If the matrix is unitary, then a fully delayed re-
duction is required only once after the update of each row
of the result. In the generic case, we invert each diagonal
element first and multiply each element of the right hand
side by this inverse diagonal element, prior to the update of
each row of the result. This gives mn extra reductions.

Next we show that the new pivoting strategy is more effi-
cient in terms of number of integer division.

185

Theorem 4. Over a prime field modulo p and on a full-
rank square m×m matrix with generic rank profile, and m
a power of two, the number of reductions modulo p required
by the elimination algorithms with full delayed reduction is:

RPLUQ(m,m) =2m2 + o
(
m2
)
,

RPLE(m,m) = RCUP(m,m)=
(
1 + 1

4
log2(m)

)
m2 + o

(
m2
)

Proof. If the top left square block is full rank then PLUQ

reduces to one recursive call, two square TRSM (one unitary,
one generic) one square matrix multiplication and a final
recursive call. In terms of modular reductions, this gives:
RPLUQ(m) = 2RPLUQ(

m
2

) + RUnitTRSM(
m
2
, m

2
) + RTRSM(

m
2
, m

2
) +

RMM(
m
2
, m

2
, m

2
). Therefore, using Theorem 3, the number of

reductions within PLUQ satisfies T (m) = 2T (m
2

)+m2 so that

it is RPLUQ(m,m) = 2m2 − 2m if m is a power of two.
For row or column oriented elimination this situation is

more complicated since the recursive calls will always be
rectangular even if the intermediate matrices are full-rank.
We in fact prove, by induction on m, the more generic:

RPLE(m,n) = log2(m)(
mn

2
− m2

4
) +m2 + o

(
mn+m2) (1)

First RPLE(1, n) = 0 since [1] × [a1, . . . , an] is a triangular
decomposition of the 1×n matrix [a1, . . . , an]. Now suppose
that Equation (1) holds for k = m. Then we follow the
row oriented algorithm of [2, Lemma 5.1] which makes two
recursive calls, one TRSM and one MM to get RPLE(2m,n) =
RPLE(m,n) + RPLE(m,m) + RMM(m,m, n −m) + RPLE(m,n −
m) = RPLE(m,n) + RPLE(m,n − m) + m(n + m). We then
apply the induction hypothesis on the recursive calls to get

RPLE(2m,n)=
1

2
log2(m)mn− 1

4
log2(m)m2 +m2 +

1

2
log2(m)m(n−m)− 1

4
log2(m)m2 +m2 +

m(n+m) + o
(
mn+m2)

=log2(m)(mn−m2) + 3m2 +mn+ o
(
mn+m2) .

The latter is also obtained by substitutingm←↩ 2m in Equa-
tion (1) so that the induction is proven.

This shows that the new algorithm requires fewer modu-
lar reductions, as soon as m is larger than 32. Over finite
fields, since reductions can be much more expensive than
multiplications or additions by elements of the field, this is
a non negligible advantage. We show in Section 8 that this
participates to the better practical performance of the PLUQ

algorithm.

7. A BASE CASE ALGORITHM
We propose in Algorithm 2 an iterative algorithm com-

puting the same PLUQ decomposition as Algorithm 1. The
motivation is to offer an alternative to the recursive algo-
rithm improving the computational efficiency on small ma-
trix sizes. Indeed, as long as the matrix fits the cache mem-
ory, the number of page faults of the two variants are similar,
but the iterative variant reduces the number of row and col-
umn permutations. The block recursive algorithm can then
be modified so that it switches to the iterative algorithm
whenever the matrix dimensions are below some threshold.

Unlike the common Gaussian elimination, where pivots
are searched in the whole current row or column, the strat-
egy is here to proceed with an incrementally growing leading

sub-matrix. This implies a Z-curve type search scheme, as
shown on Figure 2. This search strategy is meant to ensure
the properties on the rank profile that have been presented
in Section 4.

Algorithm 2 PLUQ iterative base case

Input: A a m× n matrix over a field
Output: P,Q: m×m and n× n permutation matrices
Output: r: the rank of A

Output: A ←
[
L\UV
M 0

]
where L is r × r unit lower tri-

ang., U is r × r upper triang. and such that A =

P

[
L
M

]
[UV]Q.

1: r ← 0; i← 0; j ← 0
2: while i < m or j < n do
3: . Let v = [Ai,r . . .Ai,j−1] and w = [Ar,j . . .Ai−1,r]

T

4: if j < n and w 6= 0 then
5: p← row index of the first non zero entry in w
6: q ← j; j ← max(j + 1, n)
7: else if i < m and v 6= 0 then
8: q ← column index of the first non zero entry in v
9: p← i; i← max(i+ 1,m)

10: else if i < m and j < n and Ai,j 6= 0 then
11: (p, q)← (i, j)
12: i← max(i+ 1,m); j ← max(j + 1, n)
13: else
14: i← max(i+ 1,m); j ← max(j + 1, n)
15: continue
16: end if . At this stage, Ap,q is a pivot
17: for k = p+ 1 : n do
18: Ak,q ← Ak,pA

−1
p,q

19: Ak,q+1:n ← Ak,q+1:n −Ak,qAp,q+1:n

20: end for
21: . Cyclic shifts of pivot column and row
22: A0:m,r:q ← A0:m,r>>>1q

23: Ar:p,0:n ← Ar>>>1p,0:n

24: P ← Pr>>>1p,∗;
25: Q← Q∗,r>>>1q

26: r ← r + 1
27: end while

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

L v

U

0 w

j

i

r

r

ji
A

Figure 2: Iterative base case PLUQ decomposition

In order to perform the correct updates on the remaining
parts, when a pivot is found its whole row and column have
to be permuted to the current diagonal location, see Fig-
ure 2. But then, in order to preserve the row and column
rank profiles, all the rows and column in between have to be

186

shifted by 1 location. Therefore after the elimination step,
the rows and columns of the matrix, as well as the rows of the
left permutation matrix and the columns of the right per-
mutation matrix have to be cyclically shifted accordingly.
This is presented in the last steps of Algorithm 2, where
the notation A∗,i>>>1j

means that in matrix A, columns i
through j, both inclusive, have to be shifted by 1 location,
cyclically to the right.

Remark 3. Applying the cyclic permutations in steps 22
to 25 may cost in worst case a cubic number of operations.
Instead one can delay these permutations and leave the piv-
ots at the position where they were found. These positions
are then used to form the matrices P and Q, only after the
end of the while loop. Then applying these permutations to
the current matrix gives the final decomposition

[
L\U V
M 0

]
.

Remark 4. In order to further improve the data locality,
this iterative algorithm can be transformed into a left-looking
variant [1]. Over a finite field, this variant performs fewer
modular operations: Step 19 of Algorithm 2 requires a mod-
ular reduction after each multiplication while a left-looking
variant will delay these reductions within block operations.

Updating Algorihtm 2 with Remarks 3 and 4 would be
too technical to be presented here, but this is how we imple-
mented the base case used for the experiments of Section 8.

8. EXPERIMENTS
Algorithm 1 combined with the base case Algorithm 2

has been implemented in the FFLAS-FFPACK library1 and is
available from revision svn@361. We present here experi-
ments comparing its efficiency with the implementation of
the CUP/PLE decomposition, called LUdivine in this same
library. We ran our tests on a single core of an Intel Xeon
E5-4620@2.20GHz using gcc-4.7.2.

In Figure 3, the matrices are dense, with full rank. The
computation times are similar, the PLUQ algorithm with
base case being slightly faster than LUdivine. In Figures 4

 0

 50

 100

 150

 200

 250

 300

 0 4000 8000 12000 16000 20000
-30 %

-20 %

-10 %

0 %

10 %

20 %

30 %

ti
m

e
 (

s)

sp
e
e
d

-u
p

matrix dimension

PLUQ no base case
LUdivine with base case

PLUQ with base case
(1-PLUQ/LUdivine) with base case

Figure 3: Dense full rank matrices modulo 1009

and 5, the matrices are square, dense with a rank equal to
half the dimension. To ensure non trivial row and column
rank profiles, they are generated from a LEU decomposition,
where L and U are uniformly random non-singular lower
and upper triangular matrices, and E is zero except on r =
n/2 positions, chosen uniformly at random, set to one. The
cutoff dimension for the switch to the base case has been set

1http://linalg.org/projects/fflas-ffpack

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

s)

matrix dimension

PLUQ no base case
LUdivine with base case

PLUQ with base case

Figure 4: Computation time with dense rank defi-
cient matrices (rank is half the dimension)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000
-30 %

-20 %

-10 %

0 %

10 %

20 %

30 %

ti
m

e
 (

s)

sp
e
e
d

-u
p

matrix dimension

LUdivine with base case
PLUQ with base case

(1-PLUQ/LUdivine) with base case

Figure 5: Computation time with dense rank defi-
cient matrices of larger dimension (half rank)

to an optimal value of 288 by experiments. Figure 4 shows
how the base case greatly improves the efficiency for PLUQ,
presumably for it reduces the number of row and column
permutations. More precisely, PLUQ becomes faster than
LUdivine for dimensions above 7000. Figure 5 shows that,
on larger matrices, PLUQ can be up to 13% faster.

Table 1 shows the cache misses reported by the callgrind
tool (valgrind emulator version 3.8.1). We also report in the
last column the corresponding computation time (without
emulator). We used the same matrices as in Figure 4, with
rank half the dimension. We first notice the impact of the
base case on the PLUQ algorithm: although it does not
change the number of cache misses, it strongly reduces the
total number of memory accesses (fewer permutations), thus
improving the computation time. Now as the dimension
grows, the amount of memory accesses and of cache misses
plays in favor of PLUQ which becomes faster than LUdivine.

9. CONCLUSION AND PERSPECTIVES
We showed the first reduction to matrix multiplication of

the problem of computing both row and column rank profiles
of all leading sub-matrices of an input matrix.

The decomposition that we propose can first be viewed as
an improvement over the LEU decomposition, introducing a
finer treatment of rank deficiency that reduces the number
of arithmetic operations, makes the time complexity rank
sensitive and allows to perform the computation in-place.

Second, viewed as a variant of the existing CUP/PLE de-
compositions, this new algorithm produces more information
on the rank profile and is more efficient, as it deals with ma-

187

http://linalg.org/projects/fflas-ffpack

Matrix Algorithm Accesses L1 Misses L3 Misses L3/Accesses Timing (s)

A4K
LUdivine 1.529E+10 1.246E+09 2.435E+07 .159 2.31
PLUQ-no-base-case 1.319E+10 7.411E+08 1.523E+07 .115 5.82
PLUQ-base-case 8.105E+09 7.467E+08 1.517E+07 .187 2.48

A8K
LUdivine 7.555E+10 9.693E+09 2.205E+08 .292 15.2
PLUQ-no-base-case 6.150E+10 5.679E+09 1.305E+08 .212 28.4
PLUQ-base-case 4.067E+10 5.686E+09 1.303E+08 .321 15.1

A12K
LUdivine 2.003E+11 3.141E+10 7.943E+08 .396 46.5
PLUQ-no-base-case 1.575E+11 1.911E+10 4.691E+08 .298 73.9
PLUQ-base-case 1.111E+11 1.913E+10 4.687E+08 .422 45.5

A16K
LUdivine 4.117E+11 7.391E+10 1.863E+09 .452 103
PLUQ-no-base-case 3.142E+11 4.459E+10 1.092E+09 .347 150
PLUQ-base-case 2.299+11 4.458E+10 1.088E+09 .473 98.8

Table 1: Cache misses for dense matrices with rank equal half of the dimension

trices of more evenly balanced dimensions. It also performs
fewer modular reductions when computing over a finite field.

Overall the new algorithm is also faster in practice than
previous implementations with large enough matrices.

Lastly, it also exhibits more parallelism than classical Gaus-
sian elimination since the recursive calls in step 2 and 3 are
independent. This is also the case for the TURBO algorithm
of [3], but it has a higher arithmetic complexity. Further ex-
periments and analysis of communication costs should be
done in both shared and distributed memory settings.

10. ACKNOWLEDGEMENT
We are gratefull to Jean-Louis Roch and an anonymous

referee for their helpful remarks and suggestions.

11. REFERENCES
[1] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V.

Vorst. Numerical Linear Algebra for High Performance
Computers. SIAM, 1998.

[2] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear
algebra over prime fields. ACM TOMS, 35(3):1–42, Nov.
2008. URL: http://arxiv.org/abs/cs/0601133.

[3] J.-G. Dumas and J.-L. Roch. On parallel block algorithms
for exact triangularizations. Parallel Computing,
28(11):1531–1548, Nov. 2002.

[4] J.-C. Faugère. A new efficient algorithm for computing
Gröbner bases (F4). Journal of Pure and Applied Algebra,
139(1–3):61–88, June 1999. URL:
http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf.

[5] G. Golub and C. Van Loan. Matrix Computations. The
Johns Hopkins University Press, third edition, 1996.

[6] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the
fast LUP matrix decomposition algorithm and applications.
J. of Algorithms, 3(1):45–56, Mar. 1982.

[7] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank
profile revealing Gaussian elimination and the CUP matrix
decomposition. Journal of Symbolic Computations, 2013.
To appear. report, arXiV cs.SC/1112.5717.

[8] D. J. Jeffrey. LU factoring of non-invertible matrices. ACM
Comm. Comp. Algebra, 44(1/2):1–8, July 2010. URL:
http://www.apmaths.uwo.ca/~djeffrey/Offprints/
David-Jeffrey-LU.pdf.

[9] G. I. Malaschonok. Fast generalized Bruhat decomposition.
In CASC’10, volume 6244 of LNCS, pages 194–202.
Springer-Verlag, Berlin, Heidelberg, 2010.

[10] W. Stein. Modular forms, a computational approach.
Graduate studies in mathematics. AMS, 2007. URL:
http://wstein.org/books/modform/modform.

[11] A. Storjohann. Algorithms for Matrix Canonical Forms.
PhD thesis, ETH-Zentrum, Zürich, Switzerland, Nov. 2000.
doi:10.3929/ethz-a-004141007.

[12] V. V. Williams. Multiplying matrices faster than
Coppersmith-Winograd. In STOC’12, pages 887–898, New

York, NY, USA, 2012. ACM. URL:
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf.

APPENDIX
A. CORRECTNESS OF ALGORITHM 1

First note that S
[
L
M

]
=


L1
M11L2
M12M2 0
E1 I L3
E21 K1M31L4
E22 K2M32M400



Hence P
[
L
M

]
=

[
P1

P3

]
L1

M1P2

[
L2
M2

]
E1 I L3

E2 K M3P4

[
L4
M4

]


Similarly, [UV]T =


U1V11V12D1D21D22

0 0 U2 V21 V22
U3 V3 0 O1 O2

U4 V4
0

 and [UV]Q =

U1 V1 D1 D2
0 U2 V2

[U3V3]Q3 0 O
[U4V4]Q4

[
Q1

Q2

]
.

Now as H1 = IU2, H2 = IV2 + L3O,H3 = KU2 and H4 =

KV2 + M3O + P4

[
L4
M4

]
[U4V4]Q4 we have

P
[
L
M

]
[UV]Q=

[
P1

P3

]
L1

M1P2

[
L2
M2

]
E1 I L3

E2 K M3P4

[
L4
M4

]


U1 V1 D1 D2
0 U2 V2

[U3V3]Q3 0 O
[U4V4]Q4

[
Q1

Q2

]

=
[
P1

P3

]
L1

M1P2

[
L2
M2

]
E1 Ir3
E2 Im−k−r3


U1 V1 D1D2

0 U2 V2
L3 [U3V3]Q3H1H2
M3 [U3V3]Q3H3H4

[
Q1

Q2

]

=
[
P1

Im−k

] [L1
M1
E 0Im−k

][
U1V1D

0 F
GH

]
[
Q1

In−k

]
=
[
P1

Im−k

] [L1U1 L1V1B1
M1U1M1V1B2
C1 C2 A4

] [
Q1

In−k

]
=A

188

http://arxiv.org/abs/cs/0601133
http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf
http://arxiv.org/abs/1112.5717
http://www.apmaths.uwo.ca/~djeffrey/Offprints/David-Jeffrey-LU.pdf
http://www.apmaths.uwo.ca/~djeffrey/Offprints/David-Jeffrey-LU.pdf
http://wstein.org/books/modform/modform
http://dx.doi.org/10.3929/ethz-a-004141007
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf

	Introduction
	A recursive PLUQ algorithm
	From PLUQ to LEU
	Computing the rank profiles
	Complexity analysis
	Counting modular reductions over a prime field
	A base case algorithm
	Experiments
	Conclusion and perspectives
	Acknowledgement
	References
	Correctness of Algorithm 1

