
Cylindrical Algebraic Decompositions
for Boolean Combinations

Russell Bradford
University of Bath

R.J.Bradford@bath.ac.uk

James H. Davenport
University of Bath

J.H.Davenport@bath.ac.uk

Matthew England
University of Bath

M.England@bath.ac.uk
Scott McCallum

Macquarie University
Scott.McCallum@mq.edu.au

David Wilson
University of Bath

D.J.Wilson@bath.ac.uk

ABSTRACT
This article makes the key observation that when using cylin-
drical algebraic decomposition (CAD) to solve a problem
with respect to a set of polynomials, it is not always the
signs of those polynomials that are of paramount importance
but rather the truth values of certain quantifier free formu-
lae involving them. This motivates our definition of a Truth
Table Invariant CAD (TTICAD). We generalise the theory
of equational constraints to design an algorithm which will
efficiently construct a TTICAD for a wide class of problems,
producing stronger results than when using equational con-
straints alone. The algorithm is implemented fully in Maple
and we present promising results from experimentation.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, Analysis of algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
cylindrical algebraic decomposition; equational constraint

1. INTRODUCTION
Cylindrical algebraic decompositions (CADs) are a key

tool in real algebraic geometry, both for their original moti-
vation, solving quantifier elimination problems, but also for
use in many other applications ranging from robot motion
planning [22, etc.] to programming with complex functions
[12, etc.]. Traditionally CADs are produced sign-invariant
to a given set of polynomials, (the signs of the polynomials
do not vary on the cells of the decomposition). However,
this gives far more information than required for most prob-
lems. The idea of a truth invariant CAD (the truth of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$10.00.

formula does not vary on each cell) was defined in [2] for use
in simplifying CADs. The key contribution of this paper
is an approach to construct CADs which are truth invariant
without having to first build a sign-invariant CAD. Actually,
we directly build CADs which are truth table invariant, (the
truth values of various quantifier free formulae do not vary).

We present an algorithm to efficiently produce TTICADs
for a wide class of problems, utilising the theory of equa-
tional constraints [19]. The algorithm goes further than
equational constraints by allowing the creation of smaller
CADs in a wider variety of cases; for example disjunctive
normal form where each individual conjunction has an equa-
tional constraint but no single explicit equational constraint
is present for the formula. The problem of decomposing
complex space according to a set of branch cuts for the pur-
pose of algebraic simplification ([21, etc.]) is of this case.

1.1 Background on CAD
We briefly remind the reader about the theory of CAD,

first proposed by Collins in [9].

Definition 1. A Tarski formula F (x1, . . . , xn) is a Bool-
ean combination (∧,∨,¬) of statements about the signs, (=
0, > 0, < 0, but therefore 6= 0,≥ 0,≤ 0 as well), of certain
integral polynomials fi(x1, . . . , xn). We use QFF to denote
a quantifier free Tarski formula.

CAD was developed as a tool for the problem of quantifier
elimination over the reals: given a quantified Tarski formula

Qk+1xk+1 . . . QnxnF (x1, . . . , xn) (1)

(where Qi ∈ {∀, ∃} and F is a QFF), produce an equiva-
lent QFF ψ(x1, . . . , xk). Collins proposed to decompose Rn

cylindrically such that each cell was sign-invariant for all fi
occurring in F . Then ψ would be the disjunction of the
defining formulae of those cells ci in Rk such that (1) was
true over the whole of ci, which is the same as saying that
(1) is true at any one “sample point” of ci.

Collins’ algorithm has two phases. The first, projection,
applies a projection operator repeatedly to a set of polyno-
mials, each time producing another set in one fewer vari-
ables. Together these sets contain the projection polynomi-
als. These are then used in the second phase, lifting, to
build the CAD incrementally. First R is decomposed into
cells which are points and intervals corresponding to the real
roots of the univariate polynomials. Then R2 is decomposed
by repeating the process over each cell using the bivariate

125

polynomials at a sample point. The output for each cell con-
sists of sections (where a polynomial vanishes) and sectors
(the regions between). Together these form a stack over the
cell, and taking the union of these stacks gives the CAD of
R2. This is repeated until a CAD of Rn is produced.

To conclude that a CAD produced in this way is sign-
invariant we need delineability. A polynomial is delineable
in a cell if the portion of its zero set in the cell consists of
disjoint sections. A set of polynomials are delineable in a cell
if each is delineable and the sections of different polynomials
in the cell are either identical or disjoint. The projection
operator used must be defined so that over each cell of a sign-
invariant CAD for projection polynomials in r variables, the
polynomials in r + 1 variables are delineable.

The output of a CAD algorithm depends on the variable
ordering. We usually work with polynomials in Z[x1, . . . , xn]
with the variables, x, in ascending order (so we first project
with respect to xn and continue to reach univariate polyno-
mials in x1). The main variable of a polynomial (mvar) is
the greatest variable present with respect to the ordering.

Major directions of work since 1975 includes the following:
1. Improvements in Collins’ main algorithms by [17, and

many others]. These have focussed on reducing the
projection sets required as discussed further later.

2. Complexity theory of CAD [5, 13].
3. Partial CAD, introduced in [11], where the structure

of F is used to lift only when required to deduce ψ.
4. The theory of equational constraints, [19, 20, 6] dis-

cussed in Section 2.1. This is related to the previous
direction but differs by using more efficient projections.

5. CAD via Triangular Decomposition [8]: a radically dif-
ferent approach for computing a sign-invariant CAD
which is used for Maple’s inbuilt CAD command.

1.2 TTICAD
We define a new type of CAD, the topic of this paper.

Definition 2. Let Φ = {φi}ti=1 be a list of QFFs. We
say a cylindrical algebraic decomposition D is a Truth Table
Invariant CAD for Φ (TTICAD) if the Boolean value of each
φi is constant (either true or false) on each cell of D.

A full sign-invariant CAD for the set of polynomials oc-
curring in the formulae of Φ would clearly be a TTICAD.
However, we aim to produce an algorithm that will construct
smaller TTICADs for certain Φ. We will achieve this using
the theory of equational constraints (first suggested in [10]
with the key theory developed in [19]).

Definition 3. Suppose some quantified formula is given:

φ∗ = (Qk+1xk+1) · · · (Qnxn)φ(x).

where the Qi are quantifiers and φ is quantifier free. An
equation f = 0 is called an equational constraint of φ∗

if f = 0 is logically implied by φ (the quantifier-free part of
φ∗). Such a constraint may be either explicit or implicit.

We suppose that we are given a formula list Φ in which every
QFF φi has a designated explicit equational constraint fi =
0. We will construct TTICADs by generalising McCallum’s
reduced projection operator for equational constraints (as in
[19]) so that we may make use of the equational constraints.

1.3 Worked Example
We will provide details for the following worked example.

Figure 1: The polynomials from Section 1.3.

Consider the polynomials:

f1 := x2 + y2 − 1 g1 := xy − 1
4

f2 := (x− 4)2 + (y − 1)2 − 1 g2 := (x− 4)(y − 1)− 1
4

which are plotted in Figure 1. We wish to solve the following
problem: find the regions of R2 where the formula

Φ := (f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0)

is true. Assume that we are using the variable ordering
y � x (so the 1-dimensional CAD is with respect to x).

Both Qepcad [3] and Maple 16 [8] produce a full sign-
invariant CAD for the polynomials with 317 cells. At first
glance it seems that the theory of equational constraints [19,
20, 6] is not applicable here as neither f1 = 0 nor f2 = 0 is
logically implied by Φ. However, while there is no explicit
equational constraint we can observe that f1f2 = 0 is an
implicit constraint of Φ. Using Qepcad with this declared
gives a CAD with 249 cells. Later, in Section 2.3 we demon-
strate how a TTICAD with 105 cells can be produced.

2. PROJECTION OPERATORS

2.1 Equational Constraints
We use two key theorems from McCallum’s work on pro-

jection and equational constraints. Both theorems use CADs
which are not just sign-invariant but have the stronger prop-
erty of order-invariance. A CAD is order-invariant with re-
spect to a set of polynomials if each polynomial has constant
order of vanishing within each cell.

Let P be the McCallum projection operator [17], which
produces coefficients, discriminant and cross resultants from
a set of polynomials. We assume the usual trivial simplifica-
tions such as removal of constants, exclusion of entries iden-
tical to a previous entry (up to constant multiple), and using
only the necessary coefficients. Recall that a set A ⊂ Z[x] is
an irreducible basis if the elements of A are of positive de-
gree in the main variable, irreducible and pairwise relatively
prime. The main theorem underlying P follows.

Theorem 1 ([18]). Let A be an irreducible basis in Z[x]
and let S be a connected submanifold of Rn−1. Suppose each
element of P (A) is order-invariant in S. Then each ele-
ment of A either vanishes identically on S or is analytic
delineable on S, (a slight variant on traditional delineabil-
ity, see [18]). The sections of A not identically vanishing
are pairwise disjoint, and each element of A not identically
vanishing is order-invariant in such sections.

The main mathematical result underlying the reduction of
P in the presence of an equational constraint f is as follows.

Theorem 2 ([19]). Let f(x), g(x) be integral polyno-
mials with positive degree in xn, let r(x1, . . . , xn−1) be their

126

Figure 2: Graphical representation of Theorem 2

S

x

y

z

f=0

f=0

f=0

g

g

?

r=0

resultant, and suppose r 6= 0. Let S be a connected subset of
Rn−1 such that f is delineable on S and r is order-invariant
in S. Then g is sign-invariant in every section of f over S.

Figure 2 gives a graphical representation of the question
answered by Theorem 2. Here we consider polynomials
f(x, y, z) and g(x, y, z) of positive degree in z whose resul-
tant r is non-zero, and a connected subset S ⊂ R2 in which
r is order-invariant. We further suppose that f is deline-
able on S (noting that Theorem 1 with n = 3 and A = {f}
provides sufficient conditions for this). We ask whether g is
sign-invariant in the sections of f over S. Theorem 2 answers
this question affirmatively: the real variety of g either aligns
with a given section of f exactly (as for the bottom section
of f in Figure 2), or has no intersection with such a section
(as for the top). The situation at the middle section of f
cannot happen. Theorem 2 thus suggests a reduction of the
projection operator P relative to an equational constraint
f = 0 for the first projection step, as in [19].

2.2 A Projection Operator for TTICAD
In [19] the central concept is that of the reduced projection

of a set A of integral polynomials relative to a nonempty
subset E of A and it is an extension of this which is central
here. For simplicity in [19], the concept is first defined for
the case when A is an irreducible basis and by analogy we
start with a similar special case. Let A = {Ai}ti=1 be a
list of irreducible bases Ai and let E = {Ei}ti=1 be a list
of nonempty subsets Ei ⊆ Ai. Put A =

⋃t
i=1Ai and E =⋃t

i=1Ei (we will use the convention of uppercase Roman
letters for sets and calligraphic letters for sequences).

Definition 4. We define the reduced projection of A
with respect to E, denoted by PE(A), as follows:

PE(A) :=
⋃t

i=1PEi(Ai) ∪ Res×(E) (2)

where

PEi(Ai) = P (Ei) ∪ {resxn(f, g) | f ∈ Ei, g ∈ Ai, g /∈ Ei}

Res×(E) = {resxn(f, f̂) | ∃i, j : f ∈ Ei, f̂ ∈ Ej , i < j, f 6= f̂}
In Section 3.1 we build Algorithm 1 to apply the reduced
projection operator for less special input sets by considering
contents and irreducible factors of positive degree.

Definition 5. The excluded projection polynomials of
(Ai, Ei) are those in P (A) but excluded from PE(A):

ExclPEi(Ai) := P (Ai) \ PEi(Ai) (3)

= {coeffs(g), discxn(g), resxn(g, ĝ) | g, ĝ ∈ Ai \ Ei, g 6= ĝ}.

The total set of excluded polynomials, denoted ExclPE(A),
consists of all the ExclPEi(Ai), along with the cross resul-
tants of gi with all of Aj for i 6= j.

The following theorem is an analogue of Theorem 2.3 of [19],
and provides the foundation for our algorithm in Section 3.1.

Theorem 3. Let S be a connected submanifold of Rn−1.
Suppose each element of PE(A) is order invariant in S.
Then each f ∈ E either vanishes identically on S or is an-
alytically delineable on S, the sections over S of the f ∈ E
which do not vanish identically are pairwise disjoint, and
each element f ∈ E which does not vanish identically is
order-invariant in such sections.

Moreover, for each i, with 1 ≤ i ≤ t, every g ∈ Ai \ Ei is
sign-invariant in each section over S of every f ∈ Ei which
does not vanish identically.

Proof. The crucial observation is that P (E) ⊆ PE(A).
To see this, recall equation (2) and note that we can write

P (E) =
⋃

iP (Ei) ∪ Res×(E).

We can therefore apply Theorem 1 to the set E and obtain
the first three conclusions immediately.

There remains the final conclusion to prove. Let i be in the
range 1 ≤ i ≤ t, let g ∈ Ai\Ei and let f ∈ Ei; suppose f does
not vanish identically on S. Now resxn(f, g) ∈ PE(A), and
so is order-invariant in S by hypothesis. Further, we already
concluded that f is delineable. Therefore by Theorem 2, g
is sign-invariant in each section of f over S.

In the following section we can use Theorem 3 as the key
tool for our implementation of TTICAD, so long as the equa-
tional constraint f does not vanish identically on the lower
dimensional manifold, S. When working with a polynomial
f considered in r variables that vanishes identically at a
point α ∈ Rr−1 we say that f is nullified at α.

Remark 4. It is clear that the reduced projection PE(A)
will lead to fewer (or the same) projection polynomials than
the full projection P . One may consider instead using the
reduced projection PE(A) of [19], (with E = ∪iEi and A =
∪iAi as above). In the context of Section 1.2 this corre-
sponds to using

∏
i fi as an implicit equational constraint

for a single formula. Note that PE(A) also contains fewer
polynomials than PE(A) in general since PE(A) contains all
resultants res(f, g) where f ∈ Ei, g ∈ Aj (and g /∈ E), while
PE(A) contains only those with i = j (and g /∈ Ei).

2.3 Worked Example
In Section 3 we will discuss how to use these results to

define an algorithm for TTICAD. First we illustrate the po-
tential savings with our worked example from Section 1.3.

In the notation introduced above we have:

A1 := {f1, g1}, E1 := {f1}; A2 := {f2, g2}, E2 := {f2}.

We construct the reduced projection sets for each φi,

PE1(A1) =
{
x2 − 1, x4 − x2 + 1

16

}
,

PE2(A2) =
{
x2 − 8x+ 15, x4 − 16x3 + 95x2 − 248x+ 3841

16

}
and the cross-resultant set

Res×(E) = {resy(f1, f2)} = {68x2 − 272x+ 285}.

127

Figure 3: The polynomials from the worked example
along with the solutions to the projection sets.

Figure 4: Magnified region of Figure 3

PE(A) is then the union of these three sets. In Figure 3
we plot the polynomials (solid curves) and identify the 12
real solutions of PE(A) (solid vertical lines). We can see
the solutions align with the asymptotes of the fs and the
important intersections (those of f1 with g1 and f2 with g2).

If we were to instead use a projection operator based on an
implicit equational constraint f1f2 = 0 then in the notation
above we would construct PE(A) from A = {f1, f2, g1, g2}
and E = {f1, f2}. This set provides an extra 4 solutions
(the dashed vertical lines) which align with the intersections
of f1 with g2 and f2 with g1. Finally, if we were to consider
P (A) then we gain another 4 solutions (the dotted vertical
lines) which align with the intersections of g1 and g2 and the
asymptotes of the gs. In Figure 4 we magnify a region to
show explicitly that the point of intersection between f1 and
g1 is identified in PE(A), whereas the intersection points of
g2 with both f1 and g1 are ignored.

Hence the 1-dimensional CAD produced using PE(A) has
25 cells compared to 33 when using PE(A) and 41 when using
P (A). However, it is important to note that this reduction is
amplified after lifting (using Theorem 3 and and Algorithm
1). The full dimensional TTICAD has 105 cells, the CAD
invariant with respect to the implicit equational constraint
has 249 cells and the full sign-invariant CAD has 317.

3. IMPLEMENTATION

3.1 Algorithm Description and Proof
We describe carefully Algorithm 1. This will create a TTI-

CAD of Rn for a list of QFFs, Φ = {φi}ti=1, in variables
x = x1 ≺ x2 ≺ · · · ≺ xn where each φi has a designated
equational constraint fi = 0 of positive degree. We use
a subalgorithm CADW, fully specified and validated in [18].
The input of CADW is: r, a positive integer and A, a set of
r-variate integral polynomials. The output is a Boolean w
which if true is accompanied by an order-invariant CAD for
A (a list of indices I and sample points S).

Let Ai be the set of all polynomials occurring in φi, put

Ei = {fi}, and let A and E be the lists of the Ai and Ei,
respectively. Our algorithm effectively defines the reduced
projection of A with respect to E using the special case of
this definition from the previous section. The definition
amounts to using P := C ∪ PF (B) for PE(A), where C is
the set of contents of all the elements of all the Ai, B is the
list {Bi}ti=1, such that Bi is the finest squarefree basis for
the set prim(Ai) of primitive parts of elements of Ai which
have positive degree, and F is the list {Fi}ti=1, such that
Fi is the finest squarefree basis for prim(Ei). (The reader
will notice that this notation and the definition of PE(A) is
analogous to the work in Section 5 of [19].)

Algorithm 1: TTICAD Algorithm

Input : A list of quantifier-free formulae Φ = {φi}ti=1

in variables x1, . . . , xn. Each φi has a
designated equational constraint fi = 0.

Output: Either • D : A TTICAD of Rn for Φ
(described by lists I and S of cell indices and
sample points, respectively); or
• FAIL: If Φ is not well oriented (Def. 6).

1 for i = 1 . . . t do
2 Set Ei ← {fi}. Compute the finest squarefree basis

Fi for prim(Ei);

3 Set F ← ∪t
i=1Fi;

4 if n = 1 then
5 Isolate in (I, S) the real roots of the product of the

polynomials in F ;
6 return I and S for D;

7 else
8 for i = 1 . . . t do
9 Extract the set Ai of polynomials in φi ;

10 Compute the set Ci of contents of the elements
of Ai; Compute the set Bi, the finest squarefree
basis for prim(Ai);

11 Set C ← ∪t
i=1Ci, B ← (Bi)

t
i=1 and F ← (Fi)

t
i=1 ;

12 Construct the projection set: P← C ∪ PF (B) ;
13 Attempt to construct a lower-dimensional CAD:

w′, I ′, S′ ← CADW(n− 1,P);
14 if w′ = false then
15 return FAIL (P not well oriented);

16 I ← ∅; S ← ∅;
17 for each cell c ∈ D′ do
18 Lc ← {};
19 for i = 1, . . . t do
20 if fi is nullified on c then
21 if dim(c) > 0 then
22 return FAIL (Φ not well oriented);
23 else
24 Lc ← Lc ∪Bi;

25 else
26 Lc ← Lc ∪ Fi;

27 Lift over c using Lc: construct cell indices and
sample points for the stack over c of the
polynomials in Lc, adding them to I and S;

28 return I and S for D;

We shall prove that, provided A and E satisfy the con-
dition of well-orientedness given in Definition 6, the output

128

of Algorithm 1 is indeed a TTICAD for Φ. Note that this
condition is specialised and new, introduced for this paper.
Its requirement is due to both the use of CADW from [18] and
the introduction of our new reduced projection operator.

We first recall the more general notion of well-orientedness
from [18]. A set A of n-variate polynomials is said to be well
oriented if whenever n > 1, every f ∈ prim(A) is nullified by
at most a finite number of points in Rn−1, and (recursively)
P (A) is well-oriented. The Boolean output of CADW is false
if the input set was not well-oriented in this sense. Now we
define our new notion of well-orientedness for the set lists A
and E defined above, and hence Φ.

Definition 6. We say A is well oriented with respect to
E (and that Φ is well oriented) if whenever n > 1, every con-
straint polynomial fi is nullified by at most a finite number
of points in Rn−1, and PE(A) (hence P in the algorithm) is
well-oriented in the sense of [18].

Theorem 5. The output of Algorithm 1 is as specified.

Proof. We must show that when Φ is well-oriented the
output is a Truth Table Invariant CAD, (each φi has con-
stant truth value in each cell of D), and FAIL otherwise.

If the input was univariate then it is trivially well-oriented.
The algorithm will construct a CAD D of R1 using the roots
of the irreducible factors of the constraint polynomials (steps
5 to 6). At each 0-cell all the polynomials in each φi trivially
have constant signs, and hence every φi has constant truth
value. In each 1-cell no constraint polynomial has a root, so
every φi has constant truth value false.

Now suppose n > 1. If P is not well-oriented in the sense
of [18] then CADW returns w′ as false. In this case the input Φ
is not well oriented in the sense of Definition 6 and Algorithm
1 correctly returns FAIL. Otherwise, P is well-oriented and
at step 13 we have w′ = true. Further, I ′ and S′ specify
a CAD, D′, order-invariant with respect to P. Let c, a
submanifold of Rn−1, be a cell of D′.

Suppose first that the dimension of c is positive. If any
constraint polynomial fi vanishes identically on c then Φ
is not well oriented in the sense of Definition 6 and the al-
gorithm correctly returns FAIL at step 22. Otherwise, we
know that Φ is certainly well-oriented. Since no constraint
polynomial fi vanishes then no element of the basis F van-
ishes identically on c either. Hence, by Theorem 3, applied
with A = B and E = F , each element of F is delineable
on c, and the sections over c of the elements of F are pair-
wise disjoint. Thus the sections and sectors over c of the
elements of F comprise a stack Σ over c. Furthermore, The-
orem 3 assures us that, for each i, every element of Bi \Fi is
sign-invariant in each section over c of every element of Fi.

Let 1 ≤ i ≤ t. Consider first a section σ of the stack
Σ. We shall show that φi has constant truth value in σ.
Now the constraint polynomial fi is a product of its content
cont(fi) and some elements of the basis Fi. But cont(fi), an
element of P, is sign-invariant in the whole cylinder c × R
which includes σ. Moreover all of the elements of Fi are
sign-invariant in σ, as noted previously. Therefore fi is sign-
invariant in σ. If fi is positive or negative in σ then φi has
constant truth value false in σ.

Suppose that fi = 0 throughout σ. It follows that σ must
be a section of some element of the basis Fi. Let g ∈ Ai \Ei

be a non-constraint polynomial in Ai. Now, by the definition
of Bi, we see g can be written as g = cont(g)hp1

1 · · ·h
pk
k

where hj ∈ Bi, pj ∈ N. But cont(g), in P, is sign-invariant

in the whole cylinder c × R including σ. Moreover each hj

is sign-invariant in σ, as noted previously. Hence g is sign-
invariant in σ. (Note that in the case where g does not have
main variable xn then g = cont(g) and the conclusion still
holds). Since g was an arbitrary element of Ai\Ei, it follows
that all polynomials in Ai are sign-invariant in σ, and hence
that φi has constant truth value in σ.

Next consider a sector σ of the stack Σ, and notice that
at least one such sector exists. As observed above, cont(fi)
is sign-invariant in c, and fi does not vanish identically on
c. Hence cont(fi) is non-zero throughout c. Moreover each
element of the basis Fi is delineable on c. Hence the con-
straint polynomial fi is nullified by no point of c. It follows
from this that the algorithm does not return FAIL during
the lifting phase. It follows also that fi 6= 0 throughout σ.
Therefore φi has constant truth value false in σ.

It remains to consider the case in which the dimension of
c is 0. In this case the roots of the polynomials in the lifting
set Lc constructed by the algorithm determine a stack Σ
over c. Each φi trivially has constant truth value in each
section (0-cell) of this stack, and the same can routinely be
shown for each sector (1-cell) of this stack.

Remark 6. When the input to Algorithm 1 is a single
QFF then it produces a CAD which is invariant with respect
to the sole equational constraint. This may be shown using
the results of [19] alone. However, we note that Algorithm 1
is actually more efficient in the lifting stage than the modified
QEPCAD algorithm discussed in [19] since the lifting set
excludes some non-equational constraint input polynomials.

Algorithm 1 and Definition 6 have been kept conceptu-
ally simple to aid readability. However in practice the al-
gorithm may sometimes be unnecessarily cautious. In [4],
several cases where non-well oriented input can still lead to
an order-invariant CAD are discussed. Similarly here, we
can sometimes allow the nullification of an equational con-
straint on a positive dimensional cell.

Lemma 7. Let fi be an equational constraint which van-
ishes identically on a cell c ∈ D′ constructed during Algo-
rithm 1. If all polynomials in ExclPEi(Ai) are constant on
c then any g ∈ Ai \ Ei will be delineable over c.

Proof. Suppose first that Ai and Ei satisfy the simpli-
fying conditions from Section 2.2. Rearranging (3) we see

P (Ai) = PEi(Ai) ∪ ExclPEi(Ai).

However, given the conditions of the lemma, this is equiva-
lent (after the removal of constants which do not affect CAD
construction) to PEi(Ai) on c. So here P (Ai) is a subset of
PE(A) and we can conclude by Theorem 1 that all elements
of Ai vanish identically on c or are delineable over c.

In the more general case we can still draw the same conclu-
sion because P (Ai) = Ci ∪ PFi(Bi) ∪ ExclPFi(Bi) ⊆ P.

Hence we can use Lemma 7 to safely extend step 24 to
also apply in such cases. In particular, we can allow equa-
tional constraints fi which do not have main variable xn
in such cases. We have included this in our implementa-
tion discussed in Section 3.3. In theory, we may be able to
go further and allow step 24 to apply in cases where the
polynomials in ExclPEi(Ai) are not necessarily all constant,
but have no real roots within the cell c. However, identify-
ing such cases would require answering a separate quantifier
elimination question, which may not be trivial.

129

3.2 TTICAD via the ResCAD Set
In Algorithm 1 the lifting stage (steps 16 to 27) varies

according to whether an equational constraint is nullified.
When this does not occur there is an alternative implemen-
tation of TTICAD which would be simpler to introduce into
existing CAD algorithms. Define the ResCAD Set of Φ as

R(Φ) = E ∪
⋃t

i=1 {resxn(f, g) | f ∈ Ei, g ∈ Ai, g /∈ Ei} .

Theorem 8. Let A = (Ai)
t
i=1 be a list of irreducible bases

Ai and let E = (Ei)
t
i=1 be a list of non-empty subsets Ei ⊆

Ai. For the McCallum projection operator P , [17] we have:

P (R(Φ)) = PE(A).

The proof is straightforward and so omitted here.

Corollary 9. If no fi is nullified by a point in Rn−1

then inputting R(Φ) into any algorithm which produces a
sign-invariant CAD using McCallum’s projection operator,
will result in the TTICAD for Φ produced by Algorithm 1.

Hence Corollary 9 gives us a simple way to compute TTI-
CADs using existing CAD implementations, such as Qep-
cad, but this cannot be applied as widely as Algorithm 1.

3.3 Implementation in Maple
There are various implementations of CAD available but

none guarantee order-invariance, required for proving the va-
lidity of our TTICAD algorithm. Hence we needed to con-
struct our own implementation to obtain experimental re-
sults. We built an implementation of McCallum projection,
so that we could reproduce CADW and modified the existing
stack generation commands in Maple from [8] so they could
be used more widely. Together these allowed us to fully im-
plement Algorithm 1. The CAD implementation grew to a
Maple package ProjectionCAD which gathers together al-
gorithms for producing CADs via projection and lifting to
complement the existing CAD commands in Maple which
use triangular decomposition, giving the same representa-
tion of sample points using regular chains. For further de-
tails (along with free access to the code) see [15].

3.4 Formulating a Problem for TTICAD
When formulating a problem for TTICAD there may be

choices for the input, such as choosing which equational con-
straint to designate in a QFF when more than one is present.
Other possibilities include choosing whether conjunctions of
formulae should be split into separate QFFs. Usually it will
be preferable to minimise the number of QFFs, but if for
example a designated equational constraint has many inter-
sections with another polynomial which could be ignored by
using separate QFFs, then the cost of the extra polynomials
in the projection set may be outweighed by the complexity
of those removed. Hence it is worth taking care in how we
formulate the TTICAD. A simple problem of the form

f1 = 0 ∧ f2 = 0 ∧ g1 < 0 ∧ g2 < 0

has six acceptable choices for the composition of Φ.
We have started exploring heuristics for choosing the best

composition. The metric sotd (sum of total degrees) as de-
fined in [14] may be used to approximate the complexity of
polynomials. We first considered using sotd(P) and found
that while it was fairly well correlated with the number of

cells produced by Algorithm 1 it was not always fine enough
to separate compositions leading to TTICADs with signifi-
cantly different numbers of cells. Hence we prefer a stronger
heuristic, sotd(P ∪ P (P))) where P is the complete set of
projection polynomials obtained by repeatedly applying P .

For the problems in Section 4 we used the QFFs imposed
by the disjunctions of formulae using this heuristic to choose
which equational constraints are designated when there was
a choice. For these problems the heuristic computation time
was negligible compared to the overall time, but for larger
problems this would not be the case. Work on heuristics is
ongoing with a more detailed report available in [1].

4. EXPERIMENTAL RESULTS

4.1 Description of experiments
Our timings were obtained on a Linux desktop (3.1GHz

Intel processor, 8.0Gb total memory) with Maple 16 (com-
mand line interface), Mathematica 9 (graphical interface)
and Qepcad-B 1.69. For each experiment we produce a
CAD and give the time taken and number of cells (cell
count). The first is an obvious metric while the second is
crucial for applications performing operations on each cell.

For Qepcad the options +N500000000 and +L200000 were
provided, the initialization included in the timings and ex-
plicit equational constraints declared when present with the
product of those from the individual QFFs declared oth-
erwise. In Mathematica the output is not a CAD but a
formula constructed from one [24], with the actual CAD not
available to the user. Cell counts for the algorithms were
provided by the author of the Mathematica code.

TTICADs are calculated using our implementation de-
scribed in Section 3.3, which is simple and not optimized.
The results in this section are not presented to claim that
our implementation is state of the art, but to demonstrate
the power of the TTICAD theory over the the conventional
theory, and how it can allow even a simple implementation
to compete. Hence the cell counts are of most interest.

The time is measured to the nearest tenth of a second,
with a time out (T/O) set at 5000 seconds. When F occurs
it indicates failure due to a theoretical reason such as not
well-oriented (in either sense). The occurrence of Err indi-
cates an error in an internal subroutine of Maple’s Regu-

larChains package, used by ProjectionCAD. This error is
not theoretical but a bug, beyond our control.

We considered examples originating from [7]. However
these problems (and most others in the literature) involve
conjunctions of conditions, chosen as such to make them
amenable to existing technologies. These problems can be
tackled using TTICAD, but they do not demonstrate its full
strength. Hence we introduced new examples, denoted with
a †, which are adapted from [7] to have disjuncted QFFs.

Two examples came from the application of branch cut
analysis for simplification. These problems require a decom-
position according to branch cuts of the form f = 0∧ g < 0,
and then go on to test the validity of a simplification on each
cell, [21, etc.]. We need to consider the disjunction of the
branch cuts making such problems suitable for Algorithm 1.
We included a key example from Kahan [16], along with the
problem induced by considering the validity of the double
angle formulae for arcsin. Finally we considered the worked
example from Section 1.3 and its generalisation to three di-
mensions. Note that A and B following the problem name

130

indicate different variable orderings. Full details for all ex-
amples can all be found in the CAD repository [25] available
freely online at http://opus.bath.ac.uk/29503.

4.2 Results
We present our results in Table 1. For each problem we

give the name used in the repository, n the number of vari-
ables, d the maximum degree of polynomials involved and t
the number of QFFs used for TTICAD. We then give the
time taken and number of cells produced by each algorithm.

We first compare our TTICAD implementation with the
sign-invariant CAD generated using ProjectionCAD with
McCallum’s projection operator [15]. Since these use the
same architecture the comparison makes clear the benefits of
the TTICAD theory. The experiments confirm the fact that
the cell count for TTICAD will always be less than or equal
to that of a sign-invariant CAD produced using the same
implementation. Ellipse† A is not well-oriented in the sense
of [18], and so both methods return FAIL. Solotareff† A and
B are well-oriented in this sense but not in the stronger sense
of Definition 6 and hence TTICAD fails while the full sign-
invariant CADs can be produced. The only example with
equal cell counts is Collision† A in which the non-equational
constraints were so simple that the projection polynomials
were unchanged. Examining the results for the worked ex-
ample and its generalisation we start to see the true power
of TTICAD. In 3D Example A we see a 759-fold reduction
in time and a 50-fold reduction in cell count.

We next compare our implementation of TTICAD with
the state of the art in CAD: Qepcad [3], Maple [8] and
Mathematica [23, 24]. Mathematica is the quickest, how-
ever TTICAD often produces fewer cells. We note that
Mathematica’s algorithm uses powerful heuristics and so
actually used Gröbner bases on the first two problems, caus-
ing the cell counts to be so low. When all implementa-
tions succeed TTICAD usually produces far fewer cells than
Qepcad or Maple, especially impressive given Qepcad is
producing partial CADs for the quantified problems, while
TTICAD is only working with the polynomials involved. For
Collision† A the TTICAD theory offers no benefit allowing
the better optimized alternatives to have a lower cell count.

Reasons for the TTICAD implementation struggling to
compete on speed in general are that the Mathematica and
Qepcad algorithms are largely implemented directly in C,
have had far more optimization, and in the case of Mathe-
matica use validated numerics for lifting [23]. However, the
strong performance in cell counts is very encouraging, both
due its importance for applications where CAD is part of a
wider algorithm (such as branch cut analysis) and for the
potential if TTICAD theory were implemented elsewhere.

5. CONCLUSIONS
We have defined Truth Table Invariant CADs, which can

be more closely aligned to the needs of problems than tradi-
tional sign-invariant CADs. Theorem 3 extended the theory
of equational constraints allowing us to develop Algorithm 1
to construct TTICADs efficiently for a large range of prob-
lems. The algorithm has been implemented in Maple giving
promising experimental results. TTICADs in general have
less cells than full sign-invariant CADs using the same im-
plementation and we showed that this allows even a simple
implementation of TTICAD to compete with the state of
the art CAD implementations. It is anticipated that future

implementations of TTICAD could be far better optimized
leading to lower times for the same cell counts. We also
note that the benefits of TTICAD increase with the num-
ber of QFFs in a problem and so larger problems may be
susceptible to TTICAD when other approaches fail.

We hope that these results inspire other implementations
of TTICAD, with Corollary 9 showing a particularly easy
way to adapt existing CAD implementations.

5.1 Future Work
There is scope for optimizing the algorithm and extending

it to allow less restrictive input. Lemma 7 gives one exten-
sion that is included in our implementation while other pos-
sibilities include removing some of the caution implied by
well-orientedness, analogous to [4]. Also, work developing
heuristics for composing the input is underway in [1].

Of course, the implementation of TTICAD used here could
be improved in many ways, but perhaps more desirable
would be for TTICAD to be incorporated into existing state
of the art CAD implementations. In particular, we would
like to use the existing Maple CAD commands [8] but this
requires first understanding when they give order-invariance,
a key question currently under consideration. We see several
possibilities for the theoretical development of TTICAD:
• Can we apply the theory recursively instead of only at

the top level? For example by widening the projection
operator to conclude order-invariance, as in [20].
• Can we apply TTICAD to forms of QFF other than

“one equality and other items”? For example, can we
generalise the theory of bi-equational constraints?
• Can we make use of the ideas behind partial CAD to

avoid unnecessary lifting once the truth value of a QFF
on a cell is determined?
• Can anything be done when Φ is not well oriented?
• Can we implement the lifting algorithm in parallel?

Acknowledgements
We are grateful to A. Strzeboński for assistance in perform-
ing the Mathematica tests and to the anonymous referees
for useful comments. We also thank the rest of the Trian-
gular Sets seminar at Bath (A. Locatelli, G. Sankaran and
N. Vorobjov) for their input, and the team at Western Uni-
versity (C. Chen, M. Moreno Maza, R. Xiao and Y. Xie) for
access to their Maple code and helpful discussions. This
work was supported by the EPSRC grant: EP/J003247/1.

6. REFERENCES
[1] R. Bradford, J.H. Davenport, M. England, and

D. Wilson. Optimising Problem Formulation for
Cylindrical Algebraic Decomposition. In Press: Proc.
CICM ’13. Preprint: http://opus.bath.ac.uk/34373.

[2] C.W. Brown. Simplification of truth-invariant
cylindrical algebraic decompositions. Proc. ISSAC ’98,
pages 295–301, 1998.

[3] C.W. Brown. QEPCAD B: A program for computing
with semi-algebraic sets using CADs. ACM SIGSAM
Bulletin, 37:4, pages 97–108, 2003.

[4] C.W. Brown. The McCallum projection, lifting, and
order-invariance. Technical report, U.S. Naval
Academy, Computer Science Department, 2005.

[5] C.W. Brown and J.H. Davenport. The Complexity of
Quantifier Elimination and Cylindrical Algebraic
Decomposition. Proc. ISSAC ’07, pages 54–60, 2007.

131

Table 1: Comparing TTICAD to the full CAD built with the same architecture and other CAD algorithms.
Problem Full-CAD TTICAD Qepcad Maple Mathematica

Name n d t Time Cells Time Cells Time Cells Time Cells Time Cells
Intersection A 3 2 1 360.1 3707 1.7 269 4.5 825 — Err 0.0 3
Intersection B 3 2 1 332.2 2985 1.5 303 4.5 803 50.2 2795 0.0 3
Random A 3 3 1 268.5 2093 4.5 435 4.6 1667 23.0 1267 0.1 657
Random B 3 3 1 442.7 4097 8.1 711 5.4 2857 48.1 1517 0.0 191
Intersection† A 3 2 2 360.1 3707 68.7 575 4.8 3723 — Err 0.1 601
Intersection† B 3 2 2 332.2 2985 70.0 601 4.7 3001 50.2 2795 0.1 549
Random† A 3 3 2 268.5 2093 223.4 663 4.6 2101 23.0 1267 0.2 808
Random† B 3 3 2 442.7 4097 268.4 1075 142.4 4105 48.1 1517 0.2 1156
Ellipse† A 5 4 2 — F — F 291.6 500609 1940.1 81193 11.2 80111
Ellipse† B 5 4 2 T/O — T/O — T/O — T/O — 2911.2 16603131
Solotareff† A 4 3 2 677.6 54037 46.1 F 4.9 20307 1014.2 54037 0.1 260
Solotareff† B 4 3 2 2009.2 154527 123.8 F 6.3 87469 2951.6 154527 0.1 762
Collision† A 4 4 2 264.6 8387 267.7 8387 5.0 7813 376.4 7895 3.6 7171
Collision† B 4 4 2 — Err — Err T/O — T/O — 591.5 1234601
Kahan A 2 4 7 10.7 409 0.3 55 4.8 261 15.2 409 0.0 72
Kahan B 2 4 7 87.9 1143 0.3 39 4.8 1143 154.9 1143 0.1 278
Arcsin A 2 4 4 2.5 225 0.3 57 4.6 225 3.3 225 0.0 175
Arcsin B 2 4 4 6.5 393 0.2 25 4.5 393 7.8 393 0.0 79
2D Example A 2 2 2 5.7 317 1.2 105 4.7 249 6.3 317 0.0 24
2D Example B 2 2 2 6.1 377 1.5 153 4.5 329 7.2 377 0.0 175
3D Example A 3 3 2 3795.8 5453 5.0 109 5.3 739 — Err 0.1 44
3D Example B 3 3 2 3404.7 6413 5.8 153 5.7 1009 — Err 0.1 135

[6] C.W. Brown and S. McCallum. On using bi-equational
constraints in CAD construction. Proc. ISSAC ’05,
pages 76–83, 2005.

[7] B. Buchberger and H. Hong. Speeding-up Quantifier
Elimination by Gröbner Bases. RISC Technical
Report 91-06, 1991.

[8] C. Chen, M. Moreno Maza, B. Xia, and L. Yang.
Computing Cylindrical Algebraic Decomposition via
Triangular Decomposition. Proc. ISSAC ’09, pages
95–102, 2009.

[9] G.E. Collins. Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition. Proc.
2nd. GI Conference Automata Theory & Formal
Languages, pages 134–183, 1975.

[10] G.E. Collins. Quantifier elimination by cylindrical
algebraic decomposition — twenty years of progess.
Quantifier Elimination and Cylindrical Algebraic
Decomposition, pages 8–23, 1998.

[11] G.E. Collins and H. Hong. Partial Cylindrical
Algebraic Decomposition for Quantifier Elimination.
J. Symbolic Comp., 12:3, pages 299–328, 1991.

[12] J.H. Davenport, R. Bradford, M. England, and
D. Wilson. Program verification in the presence of
complex numbers, functions with branch cuts etc.
Proc. SYNASC ’12, pages 83–88, 2012.

[13] J.H. Davenport and J. Heintz. Real Quantifier
Elimination is Doubly Exponential. J. Symbolic
Comp., 5:1-2, pages 29–35, 1988.

[14] A. Dolzmann, A. Seidl, and Th. Sturm. Efficient
Projection Orders for CAD. Proc. ISSAC ’04, pages
111–118, 2004.

[15] M. England. An implementation of CAD utilising
McCallum projection in Maple. University of Bath,
Dept. Computer Science Technical Report Series,
2013:2. http://opus.bath.ac.uk/33180, 2013.

[16] W. Kahan. Branch Cuts for Complex Elementary
Functions. A. Iserles and M.J.D. Powell, editorss,
Proc. The State of the Art in Numerical Analysis,
pages 165–211, 1987.

[17] S. McCallum. An Improved Projection Operation for
Cylindrical Algebraic Decomposition of
Three-dimensional Space. J. Symbolic Comp., 5:1-2,
pages 141–161, 1988.

[18] S. McCallum. An Improved Projection Operation for
Cylindrical Algebraic Decomposition. Quantifier
Elimination and Cylindrical Algebraic Decomposition,
pages 242–268, 1998.

[19] S. McCallum. On Projection in CAD-Based Quantifier
Elimination with Equational Constraints. Proc.
ISSAC ’99, pages 145–149, 1999.

[20] S. McCallum. On Propagation of Equational
Constraints in CAD-Based Quantifier Elimination.
Proc. ISSAC ’01, pages 223–230, 2001.

[21] N. Phisanbut, R.J. Bradford, and J.H. Davenport.
Geometry of Branch Cuts. Communications in
Computer Algebra, 44:132–135, 2010.

[22] J.T. Schwartz and M. Sharir. On the ”Piano-Movers”
Problem: II. General Techniques for Computing
Topological Properties of Real Algebraic Manifolds.
Adv. Appl. Math., 4:298–351, 1983.

[23] A. Strzeboński. Cylindrical algebraic decomposition
using validated numerics. Journal of Symbolic
Computation, 41:9, pages 1021–1038, 2006.

[24] A. Strzeboński. Computation with semialgebraic sets
represented by cylindrical algebraic formulas. Proc.
ISSAC ’10, pages 61–68. ACM, 2010.

[25] D.J. Wilson, R.J. Bradford, and J.H. Davenport. A
Repository for CAD Examples. ACM Communications
in Computer Algebra, 46:3 pages 67–69, 2012.

132

