
OuterCount: A First-Level Solution-Counter for
Quantified Boolean Formulas?

Ankit Shukla1[0000−0002−1038−3602], Sibylle Möhle1[0000−0001−7883−7749],
Manuel Kauers2[0000−0001−8641−6661], and Martina Seidl3[0000−0002−3267−4494]

1 Institute for Formal Models and Verification, JKU Linz, Austria
2 Institute for Algebra, JKU Linz, Austria,

3 Institute for Symbolic Artificial Intelligence, JKU Linz, Austria
{ankit.shukla, sibylle.moehle-rotondi, manuel.kauers, martina.seidl}@jku.at

Abstract. Counting the solutions of symbolic encodings is an intriguing
computational problem with many applications. In the field of propo-
sitional satisfiability (SAT) solving, for example, many algorithms and
tools have emerged to tackle the counting problem. For quantified Boolean
formulas (QBFs), an extension of SAT with quantifiers used to compactly
encode and solve problems of formal verification, synthesis, planning,
etc., practical solution counting has not been considered yet.
We present the first practical counting algorithm for top-level solutions.
We prove soundness of our algorithm for true and false formulas and show
how to implement it with recent QBF solving technology. Our evaluation
of benchmarks from the recent QBF competition gives promising results
for this difficult problem.
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1 Introduction

QBF solution counting [21], also known as #QBF, is the problem of computing
the number of (counter-)models of a given quantified Boolean formula (QBF).
Like #SAT [16], the counting problem for propositional satisfiability (SAT),
#QBF is considered to be very hard. It belongs to #PSPACE [21], an intractable
problem class. As #SAT is an essential task in many application domains, in-
cluding probabilistic reasoning [10, 33], the analysis of software vulnerability [8,
38], and the verification of neural networks [3, 29], numerous approaches exist to
practically solve #SAT and variations of this problem [11, 16]. In contrast, the
#QBF problem has only been studied theoretically [17]. Practical counting tools
do not exist so far although similar applications as for #SAT can be expected.
With this work, we start to close this gap by presenting the first QBF counter
for a large class of QBF problems.

The presence of quantifiers over the Boolean variables pose theoretical as well
as engineering challenges to uplifting techniques straightway from propositional
? This work has been supported by the Austrian Science Fund (FWF) under projects
W1255-N23 and P31571-N32, the LIT AI Lab funded by the State of Upper Austria.
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logic. The universal and existential quantifiers render the decision problem of
QBF PSPACE-complete [35], making QBFs a natural choice for encoding vari-
ous problems from verification and artificial intelligence [34, 32]. Because of the
quantification, we observe a duality between true and false problems. This du-
ality does not exist in SAT. If a propositional formula is satisfiable, there exists
at least one model, i.e., a truth assignment to the propositional variables under
which the formula evaluates to true. If a propositional formula is unsatisfiable,
no satisfying assignment exists, i.e., all assignments are counter-models. In con-
trast, models of a true QBF are functions that tell us how to set the existential
variables based on given values of the universal variables. Dually, counter-models
of a false QBF are functions that tell us how to set the universal variables based
on given values of the existential variables. In both cases, these functions reflect
the quantifier dependencies. As existential (resp. universal) variables in the out-
ermost quantifier block do not have any dependencies, their solutions are simply
Boolean values in the case of true (resp. false) formulas. Concrete examples of
interesting QBF encodings are bounded model checking, planning or formal syn-
thesis. For many of these encodings, the solutions to these problems (e.g., error
traces, plans, synthesized programs) are Boolean assignments of the variables in
the outermost quantifier block. We are concerned with the question how many
such solutions exist for a given QBF.

In this work, we present a concise formulation of the solution counting prob-
lem for the variables of the outermost quantifier block and solve it with an
enumeration-based approach. The assignments of these variables are of partic-
ular interest because their values indicate the solutions to many application
problems, e.g., the synthesized implementation in reactive synthesis, the error
traces in bounded model checking, or the plans in planning. We implemented
our method with recent QBF solving technology and further evaluated our im-
plementation on recent QBF competition benchmarks.

The organization of the paper is as follows. After discussing related work and
preliminaries in Section 2 and in Section 3, we formalize our model-counting
approach for true formulas in Section 4. On this basis, we present the dual
approach for false formulas in Section 5. This approach involves some additional
transformation steps not necessary for true formulas. Both are implemented
with recent QBF solving technology. In Section 7, we evaluate our tool on the
benchmarks from the last QBF competition. In Section 8, we discuss possible
future work.

2 Related Work

For many exact counting problems, enumerative approaches are among the first
techniques in order to realize counting tools. This applies, for example, to model
counting for SAT [9, 13], to the counting of minimal inconsistent sets [19, 25], to
the counting of unsatisfiable sets [2, 6, 36] and satisfiable sets [7], to counting in
answer set programming [14], and to the counting of minimal correction sets [27,
28].
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An enumeration-based model counter iteratively adds the negation of already
found models in the form of so-called blocking clauses to the given formula. The
addition of blocking clauses excludes the respective models from the solution
space until no further models can be found. In the case that a problem has a
huge amount of solutions, often such approaches are run only until a certain
time limit is reached. In the context of QBF solving, the idea of adding blocking
clauses is also known as good (or solution) learning [15, 22, 37], but it has not
been used for counting. For SAT, Bayardo and Pehoushek [4] used good learning
and the minimization of goods in the context of model counting.

An enumeration-based approach to #SAT was used to enable the formal proof
of its correctness [26]. In principle, the proof consists in showing that the detected
models are pairwise contradicting and that all models are found. From this, it
follows that the corresponding model count is correct. Modern counting tools
implement alternative techniques like the detection of connected components,
tight integration into the solving process, or hashing solutions (see [11, 16] for
more details on propositional model counting).

The enumeration of all models is a very closely related problem. For propo-
sitional logic, this problem is known as ALLSAT. In the context of QBF, Ehlers
et al. [5] defined the ALLQBF problem as the task to find all assignments of free
variables occurring in a given QBF such that the formula evaluates to true. In
their work, they realize different learning approaches, including one which itera-
tively builds a representation of all satisfying assignments in disjunctive normal
form (DNF). While they are not interested in calculating the model count, they
aim for a DNF representation that is as small as possible while describing all
models. Also, they do not consider false formulas.

3 Preliminaries

We consider QBFs of the form Π.φ that consist of a (quantifier) prefix Π =
Q1X1 . . . QnXn (where Qi ∈ {∀,∃}, Qi 6= Qi+1, and X1, . . . , Xn are pairwise
disjoint and non-empty sets of variables) and the matrix φ, a propositional for-
mula over variables Xi. We call i the (quantifier) level of quantifier block QiXi,
e.g., variables of X1 are at level 1 of prefix Q1X1 . . . QnXn. If x ∈ Xi and y ∈ Xj

and i < j, then xi < xj . For the propositional part of a QBF, we use the stan-
dard Boolean connectives ∧ (conjunction), ∨ (disjunction), → (implication), ↔
(equivalence), and ¬ (negation). A QBF Π.φ is in prenex conjunctive normal
form (PCNF) if φ is a conjunction of clauses. A clause is a disjunction of literals
and a literal is a variable or a negated variable. For a literal l, var(l) = x if
l = x or l = ¬x. A unit clause contains exactly one literal. An assignment σ
is a set of literals such that σ ∩ {¬l | l ∈ σ} = ∅. By var(σ) we denote the set
{var(l) | l ∈ σ}. We sometimes interpret an assignment as a conjunction of its
literals. An X-assignment σ is an assignment with var(σ) ⊆ X. If var(σ) = X,
then σ is a full X-assignment, otherwise it is a partial X-assignment. We say
that X-assignment τ is an expansion of X-assignment σ if σ ⊆ τ .
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If φ is a propositional formula and σ an assignment, then φσ denotes the
formula obtained by setting the variable x to true if x ∈ σ, by setting x to false
if ¬x ∈ σ, and by performing standard simplifications. A QBF ∀xΠ.φ (resp.
∃xΠ.φ) is true if Π.φ{x} and Π.φ{¬x} are true (resp. if Π.φ{x} or Π.φ{¬x} is
true). For example, the QBF ∃x∀y.(x↔ y) is false and the QBF ∀x∃y.(x↔ y)
is true. (Counter)-models of QBFs can be described as sets of Boolean functions.
Given a true QBF ϕ, a model of ϕ is a set of functions F such that for each
existential variable x ∈ var(ϕ), there is a function fx(y1, . . . , yn) ∈ F with yi < x
and yi is universal. Further, the propositional formula ϕF which is obtained by
replacing all its existential variables x by function fx ∈ F is valid iff F is a
model. The functions of a model reflect the dependencies of the variables. If
the first quantifier block is existential, then the functions of these variables are
truth constants, i.e., assignments as introduced above. We are interested in those
assignments.

Definition 1. Let ϕ = ∃XΠ.φ be a true QBF and let σ be a partial X-assignment.
We call σ a satisfying partial X-assignment if the QBF ∀X ′Π.φσ with X ′ =
X \ var(σ) is true (note that variables X \ var(σ) are now universal). Then σ
is also called partial X-model or level-1 solution of ϕ.

Based on this definition every expansion of a partial X-model σ to a full X-
assignment is an X-model. Hence, all variables of X not mentioned in σ may be
set arbitrarily and preserve the satisfiability of the formula.

Example 1. Consider QBF ∃x1, x2∀a∃y.((x1∨¬x2∨y)∧(x1∨¬x2∨a∨¬y)) with
X = {x1, x2}. Then the X-assignment {x1} is a partial X-model, because both
full X-assignments {x1, x2} and {x1,¬x2} are X-models. In contrast, {¬x1} is
not a partial X-model, because {¬x1, x2} is not an X-model.

A counter-model of a false QBF ϕ is defined dually: a counter-model is a
set of functions F such that for each universal variable x there is a function
fx(y1, . . . , yn) ∈ F with yi existential and yi < x. Further, ϕF , which is obtained
by replacing all universal variables x by fx, is unsatisfiable. The functions of the
outermost universal variables are constants.

Definition 2. Let ϕ = ∀XΠ.φ be a false QBF and let σ be a partial X-
assignment. We call σ a falsifying partial X-assignment if QBF ∃X ′Π.φσ with
X ′ = X \ var(σ) is false. Then σ is also called a partial X-counter-model or
level-1 solution of ϕ.

Note that the term solution is used for models and counter-models.

4 Counting Models

Given a true QBF ∃XΠ.φ, we are interested in the number of full X-assignments
σ such that Π.φσ is true. To this end, we enrich the formula with so-called
blocking clauses until the formula becomes false. From the number of blocking
clauses, we can infer the number of satisfying X-assignments, i.e., the number
of X-models.
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Definition 3 (Blocking Clause). Let ∃XΠ.φ be a true QBF and let σ be a
partial X-model of this QBF. Then ¬σ is a blocking clause of ∃XΠ.φ.

By enriching the formula with blocking clauses, we exclude models, i.e., we
avoid the same models to be discovered again when evaluating the enriched
formula. The following lemma shows that the addition of blocking clauses ob-
tained from a set M of partial X-models eliminates all partial X-models that
are expansions of the X-models from M .

Lemma 1. Let ϕ = ∃XΠ.φ be a true QBF and let M be a set of partial X-
models of ϕ. Then there is no partial X-model τ of ϕ′ = ∃XΠ.(φ ∧

∧
σ∈M ¬σ)

with σ ⊆ τ for all σ ∈M .

Proof. Let τ be an X-assignment with σ ⊆ τ for some σ ∈ M . Then τ cannot
be an X-model of ϕ′, because τ falsifies the clause ¬σ. Hence, τ also falsifies ϕ′.

Based on blocking clauses, we can realize an enumerative approach to model
counting. To this end, we need the following criterion to decide when all X-
models have been covered.

Lemma 2. Let ϕ = ∃XΠ.φ be a true QBF and let M be a set of partial X-
models. For each full X-model τ of ϕ, there exists a σ ∈ M with σ ⊆ τ iff the
QBF ϕ′ = ∃XΠ.(φ ∧

∧
σ∈M ¬σ) is false.

Proof. We prove both directions by contradictions.
⇒: Assume there is an X-model τ of ϕ′. Then τ is also an X-model of ϕ. Since
there exists an X-model σ ∈ M with σ ⊆ τ , τ cannot be an X-model of ϕ′ by
Lemma 1.
⇐: Assume there is an X-model τ of Π.φ such that there is no ρ ∈M with τ ⊆ ρ.
Then τ is an X-model of Π.(φ ∧

∧
σ∈M ¬σ) which is false by assumption. ut

Corollary 1. Let ϕ = ∃XΠ.φ be a true QBF, let M be a set of full X-models
with ∃XΠ.(φ ∧

∧
σ∈M ¬σ) be false. Then ϕ has |M | X-models.

Based on this corollary, we could already build an enumeration-based model
counter for QBF. A partial X-model describes a set of full X-models and yields a
potentially exponentially more compact encoding leading to the following propo-
sition.

Proposition 1. Let ϕ = ∃XΠ.φ be a true QBF and let M = {σ1, . . . , σn} be a
set of partial X-models of ϕ such that

1. ∃XΠ.(φ ∧
∧
σ∈M ¬σ) is false and

2. σk ∈M is a partial X-model of ∃XΠ.(φ ∧
∧k−1
i=1 ¬σi)

Then the number of X-models of ϕ is Σσ∈M2|X|−|σ|.
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Proof. Because of the first condition, Lemma 2 applies. Therefore, all full X-
models of ϕ can be obtained by expanding the elements of M . We further need
to argue that no full X-model can be obtained by expanding several elements of
M . Because of the second condition which imposes an order on the elements of
M and the successive application of Lemma 1 it follows that each full X-model
is only considered once. As one partial X-model σ of size |σ| can be expanded to
2|X|−|σ| full X-models, we get a total count of full X-models as stated above. ut

Example 2. Consider QBF ∃x1, x2∀a∃y.((x1 ∨ ¬x2 ∨ y) ∧ (x1 ∨ ¬x2 ∨ a ∨ ¬y))
with X = {x1, x2}. Furthermore, let M = {{x1}, {¬x1,¬x2}}, i.e., a set with
one partial X-model and a full X-model such that {¬x1,¬x2}} is an X-model
of ∃x1, x2∀a∃y.((x1 ∨ ¬x2 ∨ y) ∧ (x1 ∨ ¬x2 ∨ a ∨ ¬y) ∧ ¬x1).

As the QBF ∃x1, x2∀a∃y.((x1∨¬x2∨y)∧(x1∨¬x2∨a∨¬y)∧¬x1∧(x1∨x2))
is false, the formula has three (2 + 1) X-models.

5 Counting Counter-Models

Dually to counting the X-models of a true QBF ∃XΠ.φ, one can also count the
Y -counter-models (falsifying Y -assignments) of a false QBF ∀Y Π.ψ.

Example 3. The QBF ∀y1, y2∃x.(y1 ∨ y2 ∨ x) ∧ (¬y1 ∨ x) ∧ (¬x) has partial
Y -counter-models {¬y1,¬y2} and {y1}. The latter can be expanded to full Y -
counter-models {y1, y2} and {y1,¬y2}.

To count such Y -counter-models we introduce the notion of blocking cube as
the dual of the notion of blocking clause.

Definition 4 (Blocking Cube). Let ∀Y Π.ψ be a false QBF and let σ be a
partial Y -counter-model of this QBF. Then σ is a blocking cube of ∀Y Π.ψ.

Blocking cubes of the example above are (¬y1 ∧ ¬y2) and (y1) as well as
(y1 ∧ y2) and (y1 ∧ ¬y2). A blocking cube is a falsifying Y -assignment that
we will use to extend a formula such that the same (super-)counter-models are
excluded from the set of counter-models of a given formula. Therefore, we have to
disjunctively add blocking cubes that have the following properties (as the proofs
are similar to the proofs in the previous section, we omit them). In the same
way as partial models allowed us to get shorter blocking clauses, partial counter-
models will help us to get shorter blocking cubes, exponentially decreasing the
number of required blocking cubes.

Lemma 3. Let ϕ = ∀Y Π.ψ be a false QBF and let M be a set of partial
Y -counter-models of ϕ. Then there is no partial Y -counter-model ρ of ϕ′ =
∀Y Π.(ψ ∨

∨
σ∈M σ) with σ ⊆ ρ for all σ ∈M .

This lemma ensures that all counter-models of the original formula that can
be obtained by expanding a blocking cube are excluded from the set of counter-
models of the formula enriched with blocking cubes. The next lemma states that
if we disjunctively add all its Y -counter-models to a false QBF, it becomes true.
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Lemma 4. Let ϕ = ∀Y Π.ψ be a false QBF and let M be a set of partial Y -
counter-models. For each full Y -counter-model ρ of ϕ, there exists a σ ∈M with
σ ⊆ ρ iff the QBF ϕ′ = ∀Y Π.(ψ ∨

∨
σ∈M σ) is true.

Now we can find the number of Y -counter-models of a false QBF as follows.

Proposition 2. Let ϕ = ∀Y Π.ψ be a false QBF and let M = {σ1, . . . , σn} be a
set of partial Y -counter-models of ϕ such that

1. ∀Y Π.(ψ ∨
∨
σ∈M σ) is true and

2. σk ∈M is a partial Y-counter-model of XΠ.(ψ ∨
∨k−1
i=1 σi)

Then the number of Y -counter-models of Π.ψ is Σσ∈M2|Y |−|σ|.

Example 4. Given false QBF ϕ = ∀y1, y2∃x.(y1 ∨ y2 ∨ x)∧ (¬y1 ∨ x)∧ (¬x) with
partial Y -counter-models {¬y1,¬y2} and {y1}. As the QBF

ϕ′ = ∀y1, y2∃x.((y1 ∨ y2 ∨ x) ∧ (¬y1 ∨ x) ∧ (¬x)) ∨ (¬y1 ∧ ¬y2) ∨ (y1)

is true, we can conclude that ϕ has 1 + 2 counter-models.

Note that in contrast to counting X-models, we lose the PCNF structure
when counting Y -counter-models. To obtain a PCNF again, we perform the
well-known Plaisted-Greenbaum [31] transformation which introduces additional
variables. The following lemma shows that this transformation does not change
the number of (counter)-models.

Lemma 5. Let ∀Y Π.ψ be a false QBF and σ be a Y -counter-model of Π.ψ.
Then QBF

ϕ1 = Π∃t1, t2.((t1 → ψ) ∧ (t2 → σ) ∧ (t1 ∨ t2))
has the same number of Y -counter-models as the QBF ϕ2 = Π.(ψ ∨ σ).

Proof. We show that ϕ1 and ϕ2 have the same Y -counter-models.
⇒: Let τ be a Y -counter-model of ϕ1. The subformula σ which contains

only literals from Y has to evaluate to false under τ , because otherwise t2 would
become a pure literal in clause (t1∨t2), in consequence ¬t1 would become a pure
literal as well, and then ϕ1 would evaluate to true under τ . Hence, σ has to be
false under τ . Then ¬t2 becomes a unit clause, and by propagation t1 becomes
a unit clause as well, simplifying ϕ1 under τ to Π.(ψτ ) which has to be false
(because τ is an Y -counter-model). It follows that τ is also a Y -counter-model
of ϕ2.
⇐: Let τ be a Y -counter-model of ϕ2. Then σ is false under τ and so is Π.ψτ .

It follows that τ is a Y -counter-model of ϕ1 as well.

It is easy to see that the lemma above directly transfers to extending a QBF
with m Y -counter-models by introducing m+ 1 new variables.

Example 5. Applying the Plaisted-Greenbaum transformation on QBF ϕ of Ex-
ample 4 results in ∀y1, y2∃x, t1, t2, t3.(t1 → (y1∨y2∨x)∧(¬y1∨x)∧(¬x))∧(t2 →
(¬y1 ∧ ¬y2)) ∧ (t3 → (y1)) ∧ (t1 ∨ t2 ∨ t3) which can efficiently be transformed
into PCNF by standard logical rules.
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input : QBF Φ = QZΠ.φ
output: Numbers of Z-Solutions of Φ

c← 0; i← 0;
DepQBF.init (QZΠ∃t0.(t0 → φ));
DepQBF.assume (t0);
(v, σ)← DepQBF.solve() ;

if (v = > & Q = ∀)‖(v = ⊥ & Q = ∃) then
return −1;

end
if v = > then

DepQBF.add ((t0));
end
do

c← c+ 2|Z|−|σ|;
if v = > then

DepQBF.add (¬σ);
end
else

i++;
DepQBF.add (ti → σ);
DepQBF.assume ((t0 ∨ . . . ∨ ti));

end
(v, σ)← DepQBF.solve() ;

while (v = ⊥ & Q = ∀)‖(v = > & Q = ∃);
return c;

Algorithm 1: OuterCount (Φ)

6 Implementation

To implement the previously presented approach we use the incremental solving
interface of the search-based QBF solver DepQBF [24] to enrich the formula
with blocking clauses or blocking cubes. In the case of true formulas, in each
solver call, the formula is enriched with additional clauses. In the case of false
formulas, it is necessary to update a clause. For this purpose, we use the push
and pop functions of DepQBF which allows us to add a clause that is only
available for one solver run: we push a clause to DepQBF, run DepQBF and
evaluate the result. If another run is necessary we pop the clause and push the
updated clause to DepQBF. This is necessary to increase the disjunction of the
definitions introduced by the Plaisted-Greenbaum transformation in the case of
counter-model counting.

Algorithm 1 takes as input a QBF Φ starting with quantifier block QZ for
which the number of Z-solutions must be determined. To this end, we initialize
the solver with the QBF QZΠ∃t0.(t0 → φ) where t0 is a fresh existential variable
that is added to the innermost scope. During the first solver call, t0 is assumed
to be true hence it does not have any effect on the solving result. If Q is ∃
(resp., ∀) and Φ is false (resp., true), then −1 is returned as there is nothing
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Table 1. Formulas for which the exact count could be found without preprocessing.
With preprocessing, more formulas run into timeouts (TO).

without preprocessing with preprocessing
instance Q # bl # v # s t(s) Q # bl # v # s t(s)

tr
ue

fo
rm

ul
as

gttt_1_1...torus_b ∃ 17 355 1 53 ∀ 16 – – –
gttt_2_2...torus_b ∃ 9 810 15 103 ∃ 9 31 15 31
gttt_2_2..._b ∃ 9 754 42 1991 ∃ 9 37 42 192
k_ph_n-11 ∃ 5 3 1 0.2 ∃ 1 110 > 1K TO
k_ph_n-15 ∃ 5 3 1 1.3 ∃ 1 210 > 1K TO
k_ph_n-18 ∃ 5 3 1 40 ∃ 3 454 > 2K TO
k_ph_n-19 ∃ 5 3 1 6.14 ∃ 3 507 > 2K TO
k_ph_n-20 ∃ 5 3 1 9.72 ∃ 3 564 > 700 TO

fa
ls
e
fo
rm

ul
as

arbiter-05-...-depth-8 ∀ 18 10 1 0.1 ∀ 14 10 214 24.5
arbiter-06-...-depth-11 ∀ 24 12 1 6.5 ∀ 20 12 342 679
arbiter-06-...-depth-15 ∀ 32 12 1 187 ∀ 28 12 > 40 TO
arbiter-09-...-depth-15 ∀ 32 18 1 523 ∀ 28 12 > 500 TO
W4...tbm_05..8S...1 ∀ 20 10 10 60 ∀ 18 10 10 1023
W4...tbm_25..7S...3 ∀ 20 10 10 520 ∀ 18 10 > 8 TO
W4...tbm_26..7S...3 ∀ 20 10 9 689 ∀ 18 9 > 4 TO

Q . . . quantifier type at level 1 #bl . . . number of quantifier blocks
#v . . . size of first quantifier block
#s . . . number of solutions t(s) . . . runtime in seconds

to count. If Φ is true, t0 is permanently added as a unit clause, because in this
case it is not required for the normal form transformation. Next, the counting
variable c is updated taking into account the size of the found solution. If Φ is
true, ¬σ is added, otherwise ti → σ in the form of |σ| binary clauses is added.
Further, the clause (t0∨ . . .∨ ti) is assumed for disjunctively excluding the found
solutions. The algorithm iterates until the formula becomes false (resp. true)
and, in that case, returns c, the number of Z-solutions. Our tool (together with
the experimental results of the evaluation described below) is available at

https://github.com/marseidl/outer-count

7 Evaluation

As our tool is the first tool for practical QBF solution counting, there are no
other tools to compare with. Further, no benchmarks are available. Therefore, we
established two sets of benchmarks. First, we evaluated our tool on the formulas
of the PCNF track of QBFEVAL 2020,4 the most recent QBF competition. In
a prerun, we identified 68 true formulas that start with an existential quantifier
block, and 34 false formulas that start with a universal quantifier block solvable
4 http://www.qbfeval.org
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by plain DepQBF. We also applied the preprocessor bloqqer5 to obtain a second
set of formulas. Amongst other techniques, bloqqer performs existential variable
elimination, universal expansion, blocked clause elimination and equality reason-
ing. More details on QBF preprocessing and bloqqer can be found in [18]. The
preprocessor bloqqer directly solved seven true formulas and eight false formulas,
while for 9 true formulas and 1 false formulas of the preprocessed benchmarks
no solution was found at all. These formulas were excluded from the benchmark
set, leading to a set of 52 true formulas and 25 false formulas. All experiments
were carried out on a machine with 128 AMD EPYC 7501 processors. For each
formula, we limited the time to 3600 seconds and the memory to 8GB.

Our tool could determine the exact level-1 solution count for eight true for-
mulas and for seven false formulas. Details on those formulas are shown in the left
part of Table 1. The eight true formulas contain three formulas from encodings
of a generalization of the two-player-game TIC-TAC-TOE (gttt*) to synthesize
a winning strategy for one player [12] and five formulas (k_ph*) of QBF encod-
ings to solve formulas from Modal Logics [30]. While the formulas of the gttt*
family have a very deep quantifier structure (up to 17 quantifier blocks) and
many variables in the first quantifier block (up to more than 800 variables), the
k_ph* formulas have only five quantifier blocks and three variables in the first
quantifier block. For the gttt* formulas one, 15, and 42 level-1 solutions were
found, the k_ph* formulas have exactly one level-1 solution each. Preprocessing
(right part of Table 1) considerably changed the structure of the formulas and
also their solution space to some extent. For formula gttt_1_1* the variables
of the first existential quantifier block were eliminated, resulting in a formula
starting with a universal quantifier block. Hence it does not have any level-1
solutions anymore. For the other two gttt* formulas, the number of variables
decreased by preprocessing, but the number of level-1 solutions did not change.
This might be an indication that there is potential to optimize the encoding. For
the k_ph* formulas the number of quantifier blocks decreased from five to three
or even to one. For these formulas, the exact number of level-1 solutions could
not be determined within one hour. We found more than 700, 1.200 (twice),
2.000, and 2.500 solutions for the formulas of this family.

The seven false formulas, for which we could determine the exact level-1
solution count, stem from verification. Those formulas have a huge number of
quantifier blocks (up to 32) but only few variables in the first quantifier block
(up to 18). Also, the number of level-1 solutions is rather small (up to 10). This
changes drastically, when preprocessing is enabled. For four formulas the exact
level-1 solution count could not be determined, and for formulas with originally
one level-1 the solution, several hundred were found (see right part of Table 1).

Figure 1 shows the number of level-1 solutions of all formulas counted within
a time-frame of one hour, i.e., we get a lower bound for the level-1 solution count.
We observe that in general, preprocessing increases the solution space. This could
explain why solvers that do not rely on the formula structure can often solve
preprocessed formulas more efficiently. Similarly, as reported for solving #SAT

5 http://fmv.jku.at/bloqqer
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Fig. 1. Solution counts found within one hour and with 8GB memory limit.

problems, also in the context of QBF counting the number of solutions can get
very large.

8 Conclusion

In this paper, we presented the first practical QBF model counting approach
for the outermost (level-1) quantified variables. To this end, we have lifted the
idea of enriching the formula with blocking clauses from SAT to counting the
models of true QBFs. We also introduced the dual approach for counting counter-
models of false formulas. We applied the incremental solving interface of the
state-of-the-art QBF solver DepQBF to enrich the formula with blocking clauses
(or blocking cubes), resulting in a very elegant implementation. Our empirical
evaluation demonstrates that counting for QBFs is feasible to a certain extent
(at least for getting lower bounds). This is particularly interesting to analyze the
effects of preprocessing. In the future, we plan to apply solution minimization to
exponentially reduce the search space. Short blocking clauses rule out a larger
portion of the search space, hence model minimization techniques have been
developed for other formalisms [1, 23, 20]. Further, counting could be directly
integrated into a state-of-the-art QBF solver in a similar way it has been done
for SAT model counters. The ultimate next step is to generalize our approach
for counting functions to perform level-2 counting and beyond.
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