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Abstract: Bivariate polynomial copulas of degree 5 (containing the family of Eyraud-Farlie-Gumbel-Morgenstern
copulas) are in a one-to-one correspondence to certain real parameter triplets (a,b,c), i.e., to some set of polynomials
in two variables of degree 1: p(x,y) = ax+by+ c. The set of the parameters yielding a copula is characterized and
visualized in detail. Polynomial copulas of degree 5 satisfying particular (in)equalities (symmetry, Schur concavity,
positive and negative quadrant dependence, ultramodularity) are discussed and characterized. Then it is shown that for
polynomial copulas of degree 5 the values of several dependence parameters (including Spearman’s rho, Kendall’s tau,
Blomqvist’s beta, and Gini’s gamma) lie in exactly the same intervals as for the Eyraud-Farlie-Gumbel-Morgenstern
copulas. Finally we prove that these dependence parameters attain all possible values in ]−1,1[ if polynomial copulas
of arbitrary degree are considered.
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1 Introduction

In this paper we will restrict ourselves to two-dimensional (or bivariate) copulas, and we will simply call them copulas.
Recall that a copula is a bivariate cumulative distribution function (restricted to [0,1]2) with uniform marginals on
[0,1], which captures the whole dependence structure of the random pair [90].

The name “copula” for functions linking an n-dimensional distribution and its one-dimensional marginals
goes back to Sklar [90], in which paper he proved a result which is usually referred to as Sklar’s theorem. The
exact mathematical relationship for n = 2 is recalled in Theorem 2.1 below. However, links between multivariate
distributions and their one-dimensional marginals have been studied before, e.g., by Hoeffding [39, 40], Fréchet [36],
Dall’Aglio [18–20], and Féron [35], and also later on without any reference to the concept of copulas (see, e.g.,
[81, 98]).
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There are infinitely many copulas: in the books [43, 66] and, more recently, [30] one finds plenty of examples of
parametric families (usually with one or two parameters) of copulas and classes of copulas which can be constructed
and characterized by functions in one variable (e.g., by additive and/or multiplicative generators [1, 58, 82, 83] in the
case of Archimedean copulas).

One of the basic copulas is the independence or product copula Π which is a polynomial of degree two in two
variables. As a consequence of, e.g., [92], Π is the only polynomial copula of degree 2, and there exists no polynomial
copula of degree 3. Polynomial copulas are due to their nature absolutely continuous admitting a representation by
their density and discussion of its properties. It is worth noting that quadratic and cubic polynomials have been used
in different ways to construct (not necessarily polynomial) copulas, e.g., in [11, 22, 51–54, 67, 71–73, 96, 97, 99, 100]
(see also [9, 69, 70]).

The Eyraud-Farlie-Gumbel-Morgenstern copulas (EFGM-copulas) [31, 32, 38, 64] (quite often called Farlie-
Gumbel-Morgenstern copulas) form one of the most remarkable families of copulas. It is not difficult to see that these
copulas, which are given by (2.5) below and which are widely used when modeling stochastic dependence, are the
only polynomial copulas of degree 4. Unfortunately, all the values of several dependence parameters, as discussed
in Definition 6.1, of EFGM-copulas are contained in the interval

[
− 1

3 ,
1
3

]
as a consequence of (6.2), so only small

dependencies can be modeled. For this reason, several (not necessarily polynomial) extensions and generalizations of
EFGM copulas have been considered in the literature (see, e.g., [3, 7, 8, 17, 27, 41, 42, 55, 56, 62, 88, 89] and the recent
survey [78]).

In this contribution we present a thorough analysis and characterization of polynomial copulas of degree 5 (which
are a natural extension of EFGM copulas), and prove some results for the dependence parameters of polynomial
copulas of higher degrees.

The paper is organized as follows: after some necessary preliminaries in Section 2 several basic aspects of
polynomial copulas of degree 5 are discussed in Section 3. The main results are contained in Section 4 where
analytical formulas for the level sets of the parameter set of polynomial copulas of degree 5 are determined with
the help of advanced techniques of computer algebra, i.e., by solving a quantifier elimination problem by means of
cylindrical algebraic decomposition based on Collins’ algorithm [16].

The classification of several subclasses of polynomial copulas of degree 5 satisfying additional properties such
as symmetry, Schur concavity [80], ultramodularity [60], and positive and negative quadrant dependence [57, 66]
are given in Section 5. In Section 6 several results concerning dependence parameters as given in Definition 6.1 for
polynomial copulas of degree 5 and higher are presented.

2 Preliminaries

Formally, a (bivariate) copula [90] C : [0,1]2 → [0,1] satisfies, for each x ∈ [0,1], the two boundary conditions (C1)

C(x,0) =C(0,x) = 0 and C(x,1) =C(1,x) = x, (C1)

and it is 2-increasing (C2), i.e., for all (x,y),(x′,y′) ∈ [0,1] with (x,y)≤ (x′,y′)

C(x,y)+C(x′,y′)−C(x,y′)−C(x′,y)≥ 0. (C2)

Sklar’s Theorem [90] (see also [30, 44, 66]) states that the link between a bivariate probability distribution and its
marginals is necessarily a copula. Alternative ways to prove Sklar’s Theorem (also for the case of n-dimensional
probability distributions) can be found in [4, 25, 26, 33, 34, 68, 76].

Theorem 2.1 (Sklar’s Theorem). Let (Ω,A ,P) be a probability space, let X ,Y : Ω → R be two random variables,
and denote the corresponding distribution functions by FX : R→ [0,1] and FY : R→ [0,1], respectively.
(i) There exists a copula C : [0,1]2 → [0,1] such that, for each (u,v)∈R2, the joint distribution function FX ,Y : R2 →

[0,1] of the random vector (X ,Y ) is given by

FX ,Y (u,v) =C(FX (u),FY (v)). (2.1)

The copula C is uniquely determined by (2.1) if and only if both random variables X and Y are continuous.
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(ii) For each copula C : [0,1]2 → [0,1] the function FX ,Y : R2 → [0,1] given by (2.1) is a two-dimensional distribution
function.

A copula C : [0,1]2 → [0,1] is called absolutely continuous if there exists a function ϕC : [0,1]2 → [0,∞[ such that for
each (x,y) ∈ [0,1]2

C(x,y) =

y∫
0

x∫
0

ϕC(u,v)dudv. (2.2)

Note that for each (x,y) ∈ [0,1]2 for which the cross derivative of C below exists we may put

ϕC(x,y) =
∂ 2C(x,y)

∂x∂y
. (2.3)

The three basic copulas are the Fréchet-Hoeffding lower bound W : [0,1]2 → [0,1], the product copula
Π : [0,1]2 → [0,1] and the Fréchet-Hoeffding upper bound M : [0,1]2 → [0,1] given by, respectively,

W (x,y) = max(x+ y−1,0), Π(x,y) = xy, M(x,y) = min(x,y). (2.4)

Stochastically speaking, random variables X and Y whose copula equals Π are called independent, and random
variables whose copula equals M or W are called comonotone or countermonotone, respectively.

A particularly interesting and important family of copulas is (CEFGM
θ

)θ∈[−1,1] as defined below in (2.5), usually
referred to as the family of Farlie-Gumbel-Morgenstern copulas [32, 38, 64, 66]. In [30] (see also [13, 14, 63]) it was
pointed out that the corresponding distributions had already been investigated in the earlier and, for many years,
forgotten work by Eyraud [31]. In recognition of these early achievements of Eyraud, we will consistently use the
name Eyraud-Farlie-Gumbel-Morgenstern copulas (EFGM copulas for short) in this paper. This family of copulas is
used quite often when the weak dependence of exchangeable random variables is modeled.

For each parameter θ ∈ [−1,1] the Eyraud-Farlie-Gumbel-Morgenstern copula CEFGM
θ

: [0,1]2 → [0,1] is defined
by

CEFGM
θ (x,y) = xy+θxy(1− x)(1− y), (2.5)

and since the cross derivative ∂ 2CEFGM
θ

∂x∂y exists and is non-negative for each (x,y) ∈ [0,1]2, the corresponding density
ϕCEFGM

θ

: [0,1]2 → [0,∞[ is given by

ϕCEFGM
θ

(x,y) =
∂ 2CEFGM

θ

∂x∂y
(x,y) = 1+θ(1−2x)(1−2y).

Obviously, we have Π =CEFGM
0 . The copulas W and M, however, do not belong to the family of EFGM copulas.

For more information concerning copulas including examples, constructions and applications, we refer to the
monographs [2, 30, 43, 44, 66, 84].

The Eyraud-Farlie-Gumbel-Morgenstern copulas (CEFGM
θ

)θ∈[−1,1] have some nice properties: being defined
by polynomials (of degree 4), they can be easily computed, and they are absolutely continuous. But the EFGM
copulas also have some limitations: under identically distributed marginals they can only generate an exchangeable
random pair. Also, the possible values of some well-known dependence parameters are contained in some rather small
subintervals of [−1,1] (in

[
− 1

3 ,
1
3

]
for Spearman’s rho, in

[
− 2

9 ,
2
9

]
for Kendall’s tau, in

[
− 1

4 ,
1
4

]
for Blomqvist’s beta,

and in
[
− 4

15 ,
4

15

]
for Gini’s gamma, i.e., only weak dependencies can be modeled), and there are linear links between

these dependence parameters. We shall have a closer look at dependence parameters of the Eyraud-Farlie-Gumbel-
Morgenstern copulas and of polynomial copulas in Section 6.

To keep the advantages and to overcome (some of) the limitations mentioned above, one can consider polynomial
copulas of higher degrees (this idea was mentioned but not further developed in [92]). In this paper we shall study
copulas defined by polynomials in two variables and call them polynomial copulas.

For n ∈ N0 = N∪{0} consider the polynomial p : R2 → R in two variables of degree n given by

p(x,y) =
n

∑
k=0

k

∑
i=0

ak,i xk−i yi,

with coefficients a0,0,a1,0,a0,1, . . . ,an,0,an,1, . . . ,an,n ∈ R.
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If an,0 = an,1 = · · ·= an,n = 0 then p is called an improper polynomial of degree n, and a proper polynomial of
degree n otherwise. For each improper polynomial p of degree n (with the only exception when all coefficients equal
0 — the zero polynomial 0 has no universally accepted degree: sometimes it is said to be undefined, sometimes it is
defined as deg(0) =−1 or as deg(0) =−∞) there is a number m ∈ {0,1, . . . ,n−1} such that p is a proper polynomial
of degree m.

Definition 2.2. A bivariate copula C : [0,1]2 → [0,1] is called a polynomial copula if the function C is a polynomial
in two variables.

Example 2.3. In the literature one can find several examples of polynomial copulas. We only mention a few of them:
(i) Each EFGM copula CEFGM

θ
given by (2.5) is a polynomial copula of degree 4, and only Π = CEFGM

0 is an
improper polynomial copula of degree 4 (in fact, it is a proper polynomial copula of degree 2).

(ii) From [53, Theorem 1] (see also [23, 47, 52]) we know that, for each copula C : [0,1]2 → [0,1], also the function
DC : [0,1]2 → [0,1] given by

DC(x,y) =C(x,y)(x+ y−C(x,y)) (2.6)

is a copula. Starting with an arbitrary polynomial copula C of degree k, we can use (2.6) to construct a sequence
of polynomial copulas (C(n))n∈N0 inductively by

C(n) =

{
C if n = 0,

DC(n−1) if n ≥ 1.
(2.7)

Clearly, for each n ∈ N0 the polynomial copula C(n) is of degree 2n · k. In particular, if C = Π or C = CEFGM
θ

with θ ̸= 0 then, for each n ∈ N0, the polynomial copula Π(n) constructed via (2.7) is of degree 2n+1, and the
polynomial copula CEFGM

θ

(n) with θ ̸= 0 is of degree 2n+2.
(iii) From [59] we know that the function C : [0,1]2 → [0,1] given by

C(x,y) =
1
2

xy(1+(x+ y− xy)2) (2.8)

is a polynomial copula of degree 6 which cannot be obtained using construction (2.7), but it can be (compare (2.9)
below) rewritten as

C(x,y) = xy+
1
2
(xy− x− y−1)x(1− x)y(1− y).

In [92] it was shown that a copula C : [0,1]2 → [0,1] is a polynomial copula only if for all (x,y) ∈ [0,1]2

C(x,y) = xy+ p(x,y)x(1− x)y(1− y), (2.9)

where p : R2 →R is some appropriate polynomial in two variables. It is obvious that not for each polynomial p in two
variables the function C given by (2.9) is a copula: trivial counterexamples are the constant polynomials p(x,y) = θ

with θ /∈ [−1,1] which are not 2-increasing, i.e., violate (C2).

Remark 2.4. Let C : [0,1]2 → [0,1] be a polynomial copula given by (2.9).
(i) If C ̸= Π then deg(C) = deg(p)+ 4 and deg(ϕC) = deg(C)− 2, where ϕC : [0,1]2 → [0,∞[ is the density of C

given by (2.3).
(ii) If p equals the zero polynomial then the corresponding polynomial copula C (of degree 2) equals Π, the product

copula.
(iii) Obviously, there is no proper polynomial copula C with deg(C) = 3.
(iv) If p is a constant polynomial, i.e., p(x,y) = θ for some θ ∈ R then C is a polynomial copula of degree 4 if and

only if θ ∈ [−1,1], i.e., C =CEFGM
θ

.
(v) Generally, if C is a proper polynomial copula of degree n ≥ 4 then the polynomial p has (n−2)(n−3)

2 coefficients.

It is evident that any polynomial function C : [0,1]2 → [0,1] which satisfies the boundary conditions (C1) of copulas
is necessarily of the form (2.9), i.e.,

C(x,y) = xy+ p(x,y)x(1− x)y(1− y).
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For each polynomial p : R2 → R, this function is absolutely continuous, the cross derivative ∂ 2C(x,y)
∂x∂y exists for each

(x,y) ∈ [0,1]2, and the density ϕC : [0,1]2 → R is given by

ϕC(x,y) = 1+
∂ 2 p(x,y)

∂x∂y
(x− x2)(y− y2)+

∂ p(x,y)
∂x

(x− x2)(1−2y)

+
∂ p(x,y)

∂y
(1−2x)(y− y2)+ p(x,y)(1−2x)(1−2y). (2.10)

Then C satisfies (C2), i.e., it is 2-increasing and, therefore, a copula, if and only if ϕC(x,y)≥ 0 for each (x,y) ∈ [0,1]2,
i.e., C has a non-negative density.

Summarizing all the facts which we have mentioned so far, we have obtained the following result:

Proposition 2.5. A function C : [0,1]2 → [0,1] is a polynomial copula if and only if there exists a polynomial
p : R2 → R in two variables such that C is given by (2.9), i.e., C(x,y) = xy+ p(x,y)x(1− x)y(1− y), and the density
ϕC : [0,1]2 → R given by (2.10) is non-negative, i.e., ∂ 2C(x,y)

∂x∂y ≥ 0 for all (x,y) ∈ [0,1]2.

In the monograph [24], where some results from [75] are cited, the following (which has been cited in [65, Subsec-
tion 4.4]) is claimed to be an alternative formula for polynomial copulas C : [0,1]2 → [0,1] of degree n:

C(x,y) = xy

(
1+ ∑

j≥1,k≥1, j+k≤n−2

θ j,k

( j+1)(k+1)
(x j −1)(yk −1))

)
, (2.11)

subject to the condition

0 ≤ min

(
∑

j≥1,k≥1, j+k≤n−2

kθ j,k

( j+1)(k+1)
, ∑

j≥1,k≥1, j+k≤n−2

jθ j,k

( j+1)(k+1)

)
≤ 1. (2.12)

It is easy to see that formulas (2.11) and (2.9) (as given in [92]) are identical. As we shall see in Example 4.1 below,
in general the condition (2.12) is neither sufficient nor necessary for C given by (2.11) being a copula.

The characterization of the set of polynomials p of degree n ∈N such that the function given by (2.9) is a (proper)
polynomial copula of degree 5 or higher is not trivial at all.

The simplest case is to consider polynomials p : R2 → R of degree 1, i.e., p(x,y) = ax+ by+ c for some
a,b,c ∈ R. In this case we have to determine the set of parameters (a,b,c) ∈ R3 such that C(a,b,c) : [0,1]2 → [0,1]
given by

C(a,b,c)(x,y) = xy+(ax+by+ c)x(1− x)y(1− y) (2.13)

is a copula.
In this paper we give a complete characterization and 3D illustrations of the set of parameters (a,b,c) ∈ R3 such

that formula (2.13) yields a copula. In Section 5 possible additional properties of polynomial copulas of degree 5 such
as symmetry, Schur concavity, ultramodularity, and both positive and negative quadrant dependence are discussed.
Section 6 is devoted to dependence parameters (including Spearman’s rho, Kendall’s tau, Blomqvist’s beta, and Gini’s
gamma) for polynomial copulas of degree 5 (where they behave in a similar way as for the EFGM copulas) and for
polynomial copulas with arbitrary degree (where all possible values in the interval ]−1,1[ are attained).

3 Polynomial copulas of degree five

Our focus is the study of polynomial copulas of degree 5. It is evident that any polynomial function C : [0,1]2 → [0,1]
of degree 5 which satisfies the boundary conditions (C1) of copulas is necessarily of the form (2.13), i.e., C =C(a,b,c)

for some triplet (a,b,c) ∈R3. Obviously, each C(a,b,c) with (a,b,c) ∈R3 is absolutely continuous, the cross derivative
∂ 2C(a,b,c)(x,y)

∂x∂y exists for each (x,y) ∈ [0,1]2, and the density ϕC(a,b,c) : [0,1]2 → R is given by

ϕC(a,b,c)(x,y) = 1+a(x− x2)(1−2y)+b(1−2x)(y− y2)+(ax+by+ c)(1−2x)(1−2y). (3.1)
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Then C(a,b,c) satisfies (C2), i.e., it is 2-increasing and, therefore, a copula, if and only if ϕC(a,b,c)(x,y) ≥ 0 for each
(x,y) ∈ [0,1]2, i.e., C(a,b,c) has a non-negative density.

As an immediate consequence of Proposition 2.5 we obtain the following characterization of polynomial copulas
of degree 5.

Corollary 3.1. A function C : [0,1]2 → [0,1] is a polynomial copula of degree 5 if and only if there exists a triplet
(a,b,c) ∈ R3 such that C = C(a,b,c), where C(a,b,c) : [0,1]2 → [0,1] is given by (2.13), i.e., C(x,y) = C(a,b,c)(x,y) =
xy+(ax+ by+ c)x(1− x)y(1− y), and the density ϕC(a,b,c) : [0,1]2 → R given by (3.1) is non-negative, i.e., for all
(x,y) ∈ [0,1]2

1+a(x− x2)(1−2y)+b(1−2x)(y− y2)+(ax+by+ c)(1−2x)(1−2y)≥ 0. (3.2)

From [30, Theorem 1.7.5] we know that the limit of each pointwise convergent sequence of copulas is also a copula. In
particular, a sequence (C(an,bn,cn))n∈N of polynomial copulas of degree 5 converges if and only if the three sequences
(an)n∈N, (bn)n∈N, and (cn)n∈N converge to some numbers a,b and c, respectively. As a consequence, for a converging
sequence (C(an,bn,cn))n∈N of polynomial copulas of degree 5 we have

lim
n→∞

C(an,bn,cn) =C(
lim
n→∞

an, lim
n→∞

bn, lim
n→∞

cn

), (3.3)

showing that the set of polynomial copulas of degree 5 is closed.
The polynomial copulas of degree 5 provide a natural extension of the family of Eyraud-Farlie-Gumbel-

Morgenstern copulas (CEFGM
θ

)θ∈[−1,1] given by (2.5): a triplet (0,0,c) ∈ R3 (i.e., if we put a = b = 0) satisfies (3.2)
for all (x,y) ∈ [0,1]2 if and only if c ∈ [−1,1], and the family of copulas (C(0,0,c))c∈[−1,1] coincides with the family of
EFGM copulas (which are the only improper polynomial copulas of degree 5). Other extensions and generalizations
of the family of EFGM copulas are presented and discussed in [3, 17, 41, 42, 55, 56, 62].

4 Level sets of the parameter set PC5

We shall denote the set of all triplets (a,b,c) ∈ R3 turning the function C(a,b,c) : [0,1]2 → [0,1] given by (2.13) into a
(bivariate) copula by PC5. According to Corollary 3.1 we have

PC5 =
{
(a,b,c) ∈ R3 ∣∣ (3.2) holds for each (x,y) ∈ [0,1]2

}
.

The convexity of both the set of all bivariate copulas and the set of all polynomials of degree 1 implies the convexity
of the parameter set PC5.

It is obvious that for each triplet (a,b,c)∈R3 the assertions “(a,b,c)∈ PC5” and “(b,a,c)∈ PC5” are equivalent.
This means that the parameter set PC5 is symmetric with respect to the plane determined by a−b = 0, i.e., PC5
is invariant under reflections through the plane a−b = 0. We shall denote the intersection of PC5 with the plane
a−b = 0 by PC5sym (see Figure 7), i.e.,

PC5sym = PC5∩{(a,b,c) ∈ R3 | a = b}. (4.1)

Note that (a,b,c) ∈ PC5sym if and only if the corresponding copula C(a,b,c) is symmetric and Schur concave (see
Corollary 5.1 and Proposition 5.2). Another consequence is that several dependence parameters (see Section 6)
coincide for the copulas C(a,b,c) and C(b,a,c).

For each ζ ∈ R the level set PC5[ζ ] of the parameter set PC5 is defined by

PC5[ζ ] =
{
(a,b,c) ∈ PC5

∣∣ c = ζ
}
. (4.2)

From the convexity of PC5 it readily follows that each level set PC5[ζ ] is also a convex subset of R3.
In this section we shall give full analytical descriptions of all level sets PC5[ζ ] of the parameter set PC5 of

the polynomial copulas of degree 5. These formulas were obtained with the help of the computer algebra software
Mathematica®.
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b+ c 1

a+ b+ c 3

a 4

b+ c ≥ -3

a+ b+ c ≥ -1

c 3

a+ c 9

a 12

c ≥ -9

a+ c ≥ -3

b ≥ -4

b ≥ -12

True

b 12

b 4

b+ c ≥ -3

a+ b+ c ≥ -9

a ≥ -12

b+ c 9

a+ b+ c 3

c ≥ -1

a+ c ≥ -3

a ≥ -4

c 3

a+ c 1

0
1

3

1

2

2

3

1

0

1

3

1

2

Fig. 1: Each of the 24 linear inequalities is obtained when inserting the coordinates of the point in
{

0, 1
3 ,

1
2 ,

2
3 ,1
}2 next to it

into (4.3). The special role of ( 1
2 ,

1
2 ) where ϕC(a,b,c) (

1
2 ,

1
2 ) = 1 is indicated by “True”.

Note first that we can rewrite the density ϕC(a,b,c) in a way that the inequality (3.2) looks as follows:

1+ c(−1+2x)(−1+2y)+ax(−2+3x)(−1+2y)+b(−1+2x)y(−2+3y)≥ 0. (4.3)

We see immediately that the summands of the density ϕC(a,b,c) change their sign whenever x,y ∈ { 1
2 ,

2
3}, and that the

monotonicity of the density changes whenever x = 1
3 or y = 1

3 .
If we insert the 25 possible pairs (x,y) ∈

{
0, 1

3 ,
1
2 ,

2
3 ,1
}2 into (4.3), it follows that ϕC(a,b,c)(

1
2 ,

1
2 ) = 1 for each

(a,b,c) ∈ R3, i.e., in the point ( 1
2 ,

1
2 ) the density is non-negative for each triplet (a,b,c) ∈ R3.

For the remaining 24 points in
{

0, 1
3 ,

1
2 ,

2
3 ,1
}2 \

{
( 1

2 ,
1
2 )
}

we obtain 24 necessary conditions for a non-negative
density ϕC(a,b,c) which are given in Figure 1.

Obviously, the 24 inequalities in Figure 1 are highly redundant, and we can reduce them to the following
equivalent system of necessary conditions:

−4 ≤ a ≤ 4, −3 ≤ a+ c ≤ 1, −1 ≤ a+b+ c ≤ 3,

−4 ≤ b ≤ 4, −3 ≤ b+ c ≤ 1, −1 ≤ c ≤ 3. (4.4)

Using, for an arbitrary subset A of Rn, the notation Conv(A) for the convex hull of A, i.e., the set of all convex
combinations of finitely many points in A given by

Conv(A) =
{ k

∑
i=1

λiai

∣∣∣ a1, . . . ,ak ∈ A,λ1, . . . ,λk ∈ [0,1] and
k

∑
i=1

λi = 1
}
,

and solving the system of linear inequalities (4.4) we obtain the polyhedron P(B1,B2,B3,B4) determined by the four
points B1 = (−2,−2,3), B2 = (−2,2,−1), B3 = (2,−2,−1) and B4 = (2,2,−1), i.e.,

P(B1,B2,B3,B4) = Conv({(−2,−2,3),(−2,2,−1),(2,−2,−1),(2,2,−1)}). (4.5)

An equivalent formulation is that a triplet (a,b,c) ∈ PC5 necessarily has to be a solution of the system of linear
inequalities

a+ c ≤ 1, b+ c ≤ 1, a+b+ c ≥−1, c ≥−1. (4.6)

Actually, P(B1,B2,B3,B4) is a pyramid with apex B1 whose base is the triangle determined by the vertices B2–B4, and
PC5 has to be a subset of P(B1,B2,B3,B4), i.e.,

PC5 ⊆ P(B1,B2,B3,B4). (4.7)



8 A. Šeliga et al., Polynomial copulas of degree five

Since P(B1,B2,B3,B4) is a bounded subset of R3, (3.3) and (4.7) imply that PC5 and all level sets PC5[ζ ] of PC5, as
given in (4.2), are compact subsets of R3.

A quick check shows that none of the four vertices B1, B2, B3, B4 of the polyhedron P(B1,B2,B3,B4) is an element
of PC5 because of

ϕC(−2,−2,3)

(
0,

5
6

)
= ϕC(−2,2,−1)

(
1,

5
6

)
= ϕC(2,−2,−1)

(
0,

1
6

)
= ϕC(2,2,−1)

(
1,

1
6

)
=−1

6
< 0.

This means that the conditions (4.6) are only necessary but not sufficient, and that the subset relation in (4.7) must be
strict. As can be seen from Figure 4, P(B1,B2,B3,B4) is the smallest polyhedron containing PC5 as a subset.

Example 4.1. Recall the formula of a polynomial copula of degree n given by (2.11) subject to condition (2.12).
(i) For n = 4 formula (2.11) and condition (2.12) reduce to

C(x,y) = xy
(

1+
θ1,1

4
(x−1)(y−1))

)
, (4.8)

0 ≤ θ1,1

4
≤ 1. (4.9)

If we put θ =
θ1,1

4 then (4.8) coincides with the formula for Eyraud-Farlie-Gumbel-Morgenstern copulas given
in (2.5). However, for θ1,1

4 ∈ [−1,0[ condition (4.9) is violated, but formula (4.8) yields a EFGM copula with
parameter θ ∈ [−1,0[ which is a polynomial copula of degree 4.

(ii) For n = 5 formula (2.11) and condition (2.12) reduce to

C(x,y) = xy
(

1+
θ1,1

4
(x−1)(y−1)+

θ1,2

6
(x−1)(y2 −1)+

θ2,1

6
(x2 −1)(y−1)

)
, (4.10)

0 ≤ min
(

θ1,1

4
+

θ2,1

6
+

2θ1,2

6
,

θ1,1

4
+

2θ2,1

6
+

θ1,2

6

)
≤ 1. (4.11)

If we put θ1,1 =−4(a+b− c), θ1,2 = 6b and θ2,1 = 6a then (4.10) coincides with the formula for C(a,b,c) given
in (2.13).
However, condition (4.11) is neither necessary nor sufficient for C given by (4.10) being a polynomial copula of
degree 5. The triplet (a,b,c)= (0,0,−1) belongs to PC5 but the corresponding triplet (θ1,1,θ1,2,θ2,1)= (−4,0,0)
violates condition (4.11). On the other hand, the coordinates (−2,−2,3) of the vertex B1 of the pyramid
P(B1,B2,B3,B4) do not belong to PC5, but the corresponding triplet (θ1,1,θ1,2,θ2,1) = (28,−12,−12) satisfies
condition (4.11).

4.1 Quantifier Elimination

Recall that the task of identifying all polynomial copulas of degree 5 consists in determining all real numbers a,b,c
such that the inequality (3.2) holds for all (x,y) ∈ [0,1]2, subject to the linear constraints (4.6). In terms of formal
logic, these requirements can be phrased as a quantifier elimination problem: we have a formula Φ consisting of
polynomial equations and inequalities in the variables x,y,a,b,c, and we are interested in a formula Ψ consisting of
polynomial equations and inequalities in the variables a,b,c such that Ψ is equivalent to ∀x,y : Φ as a statement about
the real numbers.

Such quantifier elimination problems can be solved using computer algebra. It was first shown by A. Tarski [95]
that the problem is decidable, but the algorithm he proposed is impractical and only of theoretical interest. G. E.
Collins [16] has later proposed a more efficient (though still computationally very expensive) algorithm, which is
implemented in Mathematica and elsewhere [12, 85, 94]. This technique is extremely powerful and deserves to be
better known.

In principle, our quantifier elimination problem can be solved by the following single Mathematica command:

Resolve[ForAll[{x, y},

Implies[0 <= x <= 1 && 0 <= y <= 1 && a + b <= 1 && b + c <= 1
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&& a + b + c >= -1 && c >= -1,

1 + c + 2 a x - 2 c x - 3 a x^2 + 2 b y - 2 c y - 4 a x y

- 4 b x y + 4 c x y + 6 a x^2 y - 3 b y^2 + 6 b x y^2 >= 0]],

{a,b,c}, Reals]

It would even be possible to leave out the linear constraints (4.6), the solution set will be PC5 in either case.
Unfortunately however, in neither of the two variants does the computation come to an end within a reasonable
amount of time. In order to solve the problem, we need to employ a more low-level command. In order to explain our
computation, we first need to give a bit more detail on Collins’ algorithm. For further details, see [6, 15, 45].

Collins’ algorithm takes as input a system of polynomial equations and/or inequalities in one or more variables
with rational coefficients and returns a logical formula with a very particular structure that describes the solution set
of the input system.

For example, applied to the single input inequality x2 + y2 − 1 ≤ 0, the algorithm as implemented in the
Mathematica command CylindricalDecomposition [93] will produce something like this:

(x =−1∧ y = 0)∨ (−1 < x < 1∧−
√

1− x2 ≤ y ≤
√

1− x2)∨ (x = 1∧ y = 0).

This looks more complicated at first glance, but the structure of the formula has the useful feature that it makes
quantifier elimination simple. For example, if we want to know all real numbers x such that ∃y : x2 + y2 −1 ≤ 0, all
we need to do is to replace all the equations and inequalities in the above formula involving y by True and simplify
the result. This will give x =−1∨ (−1 < x < 1)∨ x = 1.

The structure of the output formula can also be used to deal with formulas involving ∀, but it is slightly
more difficult to explain precisely how it works, and it is not necessary to do so because we can always use
∀y : Φ ⇐⇒ ¬∃y : ¬Φ to reduce the task to an existential quantifier.

Almost the entire computation time of Collins’ algorithm is spent on determining truth values of formulas in
areas of the solution set which are specified by equations that were introduced during the computation. For this reason,
the alternative command GenericCylindricalDecomposition is provided by Mathematica. It performs Collins’
algorithm without paying attention to what happens for the solutions of these equations. For example, applied to
x2 + y2 −1 ≥ 0, this command produces the pair(

x <−1∨−1 < x < 1∧ (y <−
√

1− x2 ∨ y >
√

1− x2)∨ x > 1,x−1 = 0∨ x+1 = 0∨−1+ x2 + y2 = 0
)

as output. This is to be read as follows: “I have not investigated any points (x,y) ∈ R2 with x−1 = 0 or x+1 = 0 or
−1+ x2 + y2 = 0, but for all other points, I guarantee that x2 + y2 −1 ≥ 0 is true if and only if x <−1∨−1 < x <
1∧ (y <−

√
1− x2 ∨ y >

√
1− x2)∨ x > 1 is true.”

The first part of the output again has a format that makes quantifier elimination simple, but the effect of ignoring a
lower-dimensional algebraic set has to be properly taken into account. In the example above, we are entitled to conclude
that for almost all real numbers x, the formula x < −1∨ x > 1 is equivalent to the formula ∀∼y : x2 + y2 − 1 ≥ 0,
where ∀∼ also means “for almost all”.

Let us now return to the polynomial inequality (3.2) and the linear constraints (4.6). While we were not
able to solve the quantifier elimination problem using Resolve or CylindricalDecomposition, it turns out that
GenericCylindricalDecomposition does the job. Note that this is sufficient for our purpose, because PC5 is a
convex and, as a consequence of (3.3) and (4.7), also a compact subset of R3. Therefore, any solution on some
hypersurface passing through the solution set can be seen as the limit of a sequence and/or the convex combination
of parameter tuples fulfilling the conditions of the guaranteed solution part of the algorithm. Moreover, due to the
continuity of copulas there is no harm in using the quantifier ∀∼ instead of ∀ on x and y.

Since we prefer to eliminate existential quantifiers, we bring the problem ∀x,y : Ψ(x,y,a,b,c)⇒ Ξ(x,y,a,b,c)
into the form ¬∃x,y : Ψ(x,y,a,b,c)∧¬Ξ(x,y,a,b,c). Here, Ψ contains the requirement that x,y are restricted to [0,1]
and a,b,c satisfy the inequalities (4.6), and Ψ is (3.2). Applying the command GenericCylindricalDecomposition

to the inequalities

0 ≤ x ≤ 1∧0 ≤ y ≤ 1∧a+b ≤ 1∧b+ c ≤ 1∧a+b+ c ≥−1∧ c ≥−1

∧1+ c+2ax−2cx−3ax2 +2by−2cy−4axy−4bxy+4cxy+6ax2y−3by2 +6bxy2 < 0
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Fig. 2: 3D plots of the parameter set PC5 from two different viewpoints.

terminates within a few minutes. Depending on the order in which the variables a,b,c are specified, the computation
time on a Linux machine with 3GHz CPU and 700Gb RAM ranges between 98 and 251 seconds. The computation
also terminates when the inequalities of (4.6) are not taken into account, but the runtime then ranges between 4343
and 14856 seconds. In both variants, the output is extremely large, so that it was impossible to work out the quantifier
elimination step by hand, but it is easy to let Mathematica replace all inequalities involving x or y by True. The
instructions we used to this end are given in the appendix. After quantifier elimination, the formula is smaller, but still
very large. One reason is that the formula produced by GenericCylindricalDecomposition uses False as truth
value for all points on the disregarded hypersurface. As a consequence, it contains many subformulas of the form
u < a < v∨ v < a < w which, due to the compactness and convexity of the solution set, we can safely simplify to
u < a < w. The code we used for this simplification is also given in the appendix.

At this point, we have a formula Ψ in a,b,c which is equivalent (possibly up to a set of measure zero)
to ∃∼x,y : Ψ(x,y,a,b,c)∧¬Ξ(x,y,a,b,c), where ∃∼ means that the set of points (x,y) ∈ R2 with the required
property has positive measure. It remains to perform the negation. For getting a more readable result, we call
GenericCylindricalDecomposition on the conjunction of (4.6) and ¬Ψ and apply our simplifying routine to the
output.

4.2 Results

We now present the result of the computations described above.
For each c ∈R the level set PC5[c] of the parameter set PC5 (which is necessarily a convex set) is fully described

by giving the following information for the triplets (a,b,c) ∈ PC5[c]:
(i) the range of c in each of the five cases to be considered,
(ii) the corresponding range of a (given c),
(iii) the corresponding lower and the upper bound for b (given c and a).

Table 1 gives a survey of the five cases which have to be distinguished for the values c, and in Table 2 the complete
formulas for the lower and upper bounds of b (given c and a) in each of these five cases are listed. To be precise, we
summarize in each of the cases (I)–(V) the respective ranges of the level c and of the value a (given c). In (4.12)–(4.16)
in Table 2 we give the complete formulas for the lower bounds lb[c]

(N)
(a) and the upper bounds ub[c]

(N)
(a) of the value b

(given (c,a)) such that (a,b,c) ∈ PC5[c].
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Fig. 3: Contour plot of the parameter set PC5.

When looking at the Cases (I)–(V) in Table 1 we immediately see that there is a minimal and a maximal value of
c such that there exists a parameter triplet (a,b,c) ∈ PC5:

ζ∗ = inf{c ∈ R | there exist a,b ∈ R such that (a,b,c) ∈ PC5}=−1,

ζ
∗ = sup{c ∈ R | there exist a,b ∈ R such that (a,b,c) ∈ PC5}= 1+2

√
2
3 .

The level set PC5[ζ∗] = PC5[−1] is visualized in Figure 4 (the darker set on the right-hand side), while the level set
PC5[ζ

∗] turns out to be a singleton:

PC5[ζ
∗] = PC5

[
1+2

√
2/3
]
=
{(

−1−
√

2
3 ,−1−

√
2
3 ,1+2

√
2
3

)}
.

A closer look at Cases (I)–(V), in particular at Case (IV), shows that the level set PC5[ζ ] and the corresponding
level set of the polyhedron P(B1,B2,B3,B4) given by (4.5) coincide if and only if ζ ∈ [0,2]:

Tab. 1: Level sets of the parameter set PC5

Case Range of c Range of a (given c) Range of b (given (c,a))

(I)
[
−1,− 6

7

[ [
1
2

(
−3− c−

√
12−3(c−1)2

)
,1− c

] [
lb[c]

(I)(a),ub[c]
(I)(a)

]

(II)
[
− 6

7 ,−
√

2
3

[ [
1
2

(
−3− c−

√
12−3(c−1)2

)
,1− c

] [
lb[c]

(II)(a),ub[c]
(II)(a)

]

(III)
[
−
√

2
3 ,0
[ [

1
2

(
−1− c−

√
12−3(c+1)2

)
,1− c

] [
lb[c]

(III)(a),ub[c]
(III)(a)

]

(IV)
[
0,2
[ [

−2,1− c
] [

lb[c]
(IV)

(a),ub[c]
(IV)

(a)
]

(V)
[
2,1+2

√
2
3

] [
1
2

(
1− c−

√
12−3(c−1)2)

)
, 1

2

(
−3− c+

√
12−3(c−1)2

)] [
lb[c]

(V)
(a),ub[c]

(V)
(a)
]
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Tab. 2: Analytical description of the level sets PC5[c] of the parameter set PC5

Case (I): The functions lb[c]
(I),ub[c]

(I) :
[

1
2

(
−3−c−

√
12−3(c−1)2

)
,1−c

]
→R specify, for each c ∈

[
−1,− 6

7

[
, the lower and upper

bounds of the parameter b (in dependence on c and a):

lb[c]
(I)(a) =



1
2

(
3−a− c−

√
12−3(a+ c+1)2

)
if a ∈

[
1
2

(
−3− c−

√
12−3(c−1)2

)
,−2− c

[
,

−1−a− c if a ∈ [−2− c,1[ ,

1
2

(
−a−2c−

√
12−3(a−2)2

)
if a ∈

[
1, 1

2

(
3+ c+

√
12−3(c−1)2

)[
,

1
2

(
−3− c−

√
12−3(c−1)2

)
otherwise,

ub[c]
(I)(a) =


1− c if a ∈

[
1
2

(
−3− c−

√
12−3(c−1)2

)
,1
[
,

1
2

(
−a−2c+

√
12−3(a−2)2

)
if a ∈

[
1, 1

6

(
3−3c+

√
36−3(c+3)2

)[
,

1
2

(
3−a− c+

√
12−3(a+ c+1)2

)
otherwise.

(4.12)

Case (II): The functions lb[c]
(II),ub[c]

(II) :
[

1
2

(
−3− c−

√
12−3(c−1)2

)
,1− c

]
→ R specify, for each c ∈

[
− 6

7 ,−
√

2
3

[
, the lower and

upper bounds of the parameter b (in dependence on c and a):

lb[c]
(II)(a) =



1
2

(
3−a− c−

√
12−3(a+ c+1)2

)
if a ∈

[
1
2

(
−3− c−

√
12−3(c−1)2

)
,−2− c

[
,

−1−a− c if a ∈ [−2− c,1[ ,

1
2

(
−a−2c−

√
12−3(a−2)2

)
if a ∈

[
1, 1

2

(
3+ c+

√
12−3(c−1)2

)[
,

1
2

(
−3− c−

√
12−3(c−1)2

)
otherwise,

ub[c]
(II)(a) =


1− c if a ∈

[
1
2

(
−3− c−

√
12−3(c−1)2

)
,1
[
,

1
2

(
−a−2c+

√
12−3(a−2)2

)
if a ∈

[
1, 1

6

(
3−3c+

√
36−3(c+3)2

)[
,

1
2

(
3−a− c+

√
12−3(a+ c+1)2

)
otherwise.

(4.13)

Case (III): The functions lb[c]
(III),ub[c]

(III) :
[

1
2

(
−1− c−

√
12−3(c+1)2

)
,1− c

]
→ R specify, for each c ∈

[
−
√

2
3 ,0
[
, the lower and

upper bounds of the parameter b (in dependence on c and a):

lb[c]
(III)(a) =


1
2

(
3−a− c−

√
12−3(a+ c+1)2

)
if a ∈

[
1
2

(
−1− c−

√
12−3(c+1)2

)
,−2− c

[
,

−1−a− c if a ∈ [−2− c,1[ ,

1
2

(
−a−2c−

√
12−3(a−2)2

)
otherwise,

ub[c]
(III)(a) =


1− c if a ∈

[
1
2

(
−1− c−

√
12−3(c+1)2

)
,1
[
,

1
2

(
−a−2c+

√
12−3(a−2)2

)
if a ∈

[
1, 1

6

(
3−3c+

√
36−3(c+3)2

)[
,

1
2

(
3−a− c+

√
12−3(a+ c+1)2

)
otherwise.

(4.14)

Case (IV): The functions lb[c]
(IV)

,ub[c]
(IV)

: [−2,1− c]→ R specify, for each c ∈ [0,2[, the lower and upper bounds of the parameter b
(in dependence on c and a):

lb[c]
(IV)

(a) =−1−a− c, ub[c]
(IV)

(a) = 1− c. (4.15)

Case (V): The functions lb[c]
(V)

,ub[c]
(V)

:
[

1
2

(
1− c−

√
12−3(c−1)2

)
, 1

2

(
−3− c+

√
12−3(c−1)2

)]
→ R specify, for each c ∈[

2,1+2
√

2
3

]
, the lower and upper bounds of the parameter b (in dependence on c and a):

lb[c]
(V)

(a) =−1−a− c, ub[c]
(V)

(a) = 1
2

(
−3− c+

√
12−3(c−1)2

)
. (4.16)
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Fig. 4: The parameter set PC5 (gray) and the polyhedron P(B1,B2,B3,B4)
(dashed edges, left), and the dark gray area in the

base and the light gray area in the back of P(B1,B2,B3,B4)
indicating which parts of base and back of P(B1,B2,B3,B4)

coincide
with the base and the back side of PC5, respectively (right).

Corollary 4.2. Consider for each ζ ∈ [−1,3] the level set

P[ζ ]
(B1,B2,B3,B4)

= Conv
({(

−2,ζ − 1
2 ,ζ
)
,
(
ζ − 1

2 ,ζ − 1
2 ,ζ
)
,
(
ζ − 1

2 ,2,ζ
)})

of the polyhedron P(B1,B2,B3,B4) given in (4.5). Then we have:

PC5[ζ ] = P[ζ ]
(B1,B2,B3,B4)

if and only if ζ ∈ [0,2] .

Figure 4 (right) illustrates which parts of the back side and the base of the polyhedron P(B1,B2,B3,B4) (i.e., the triangles
determined by the points B1–B3 and B2–B4, respectively) coincide with the back side and the bottom of the parameter
set PC5.

Using again the quantifier elimination of Mathematica we see that the set PC5sym ⊆ PC5 given by (4.1), i.e., the
intersection of the parameter set PC5 and the plane characterized by a−b = 0 (see Figure 7), can be characterized by

PC5sym =
{
(a,a,c) ∈ PC5

∣∣∣ glbdiag(a)≤ c ≤ lubdiag(a) for each a ∈
[
−1−

√
2
3 ,1+

√
2
3

]}
, (4.17)

where the functions glbdiag, lubdiag :
[
−1−

√
2
3 ,1+

√
2
3

]
→ R are defined by, respectively,

glbdiag(a) = max(−2a−1,−1),

lubdiag(a) =


1
2

(
−a+

√
−12a−3a2

)
if a ∈

[
−1−

√
2
3 ,−1

[
,

1−a if a ∈ [−1,1[ ,
1
2

(
−3a+

√
12a−3a2

)
if a ∈

[
1,1+

√
2
3

]
.

Numerical integration tells us that the volume of the parameter set PC5 has the approximate value of 10.5184
cubic units. Since the volume of the pyramid P(B1,B2,B3,B4) (4.5) equals 32

3 cubic units, the volume of PC5 corresponds
to approximately 98.6102 % of the volume of P(B1,B2,B3,B4). The distribution of the areas of the level sets PC5[ζ ] of
PC5 on the interval

[
−1,1+2

√
2/3
]

(in comparison to the areas of the level sets of the polyhedron P(B1,B2,B3,B4)) is
visualized in Figure 6.

Apparently, the projection of the parameter set PC5 to the ab-plane is not only symmetric with respect to the
main diagonal a−b = 0 (which follows from (2.13) by construction). It seems (see Figure 5) that this projection of
PC5 is also symmetric with respect to the opposite diagonal a+b = 0 and to the lines determined by a = 0 and b = 0.
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ζ=-
1

ζ=-6/7

ζ=-
2 /
3

ζ=0

ζ=2

-2 -1 0 1 2
a

-2

-1

0

1

2

b

Fig. 5: 3D plot of several level sets of PC5: ζ =−1 (light gray), ζ =−6/7 (dark gray), ζ =−
√

2/3 (light gray), ζ = 0 (dark
gray), and ζ = 2 (light gray, left), and the projection of PC5 to the ab-plane (light gray) including the bottom of PC5 (i.e.,
the level set at ζ = 0) marked in gray, and the contours of the level sets at ζ ∈ {−6/7,−

√
2/3,0,2}, representing the bounds

of the cases (I)–(V) in Tables 1–2 (right).

5 Polynomial copulas of degree five satisfying some particular
(in)equalities

5.1 Symmetric polynomial copulas of degree five

A copula C : [0,1]2 → [0,1] is called symmetric if C(x,y) =C(y,x) for each (x,y) ∈ [0,1]2. Symmetric copulas are
closely related to exchangeable random variables X and Y , i.e., where the random vectors (X ,Y ) and (Y,X) are
identically distributed.

To be precise (see [66, Theorem 2.7.4]), if (Ω,A ,P) is a probability space then two continuous random variables
X ,Y : Ω → R are exchangeable if and only if they have the same marginal distributions and if the corresponding
copula C : [0,1]2 → [0,1] according to Theorem 2.1 is symmetric.

Taking into account the result of [92] and the structure of the formula for C(a,b,c) in (2.13), we obtain the following
obvious result:

Corollary 5.1. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The copula
C(a,b,c) is symmetric if and only if a = b, i.e., if (a,b,c) ∈ PC5sym.

The set PC5sym as given in (4.17) is visualized in Figure 7. Note that each (a,a,c)∈ PC5sym can also be characterized
as follows:

a ∈



[
−1−c

2 ,
3−3c+

√
36−3(c+3)2

6

]
if c ∈ [−1,0[ ,[−1−c

2 ,1− c
]

if c ∈ [0,2[ ,[
−1−c

2 ,
−3−c+

√
12−3(1−c)2

2

]
if c ∈

[
2,1+2

√
2
3

]
.

5.2 Schur concave polynomial copulas of degree five

Schur convexity and Schur concavity (as its dual) were introduced in [80] as variants of the convexity of real functions
(see also [74]). Schur convex functions preserve a particular preorder called majorization [61] and play a role in some
related inequalities [87].
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-1

-6/7

- 2 / 3 0 2 1+2 2 / 3 3

2

4

6

Fig. 6: The areas of the level sets of the parameter set PC5 on the interval
[
−1,1+2

√
2/3
]

(light gray) compared with the
areas of the level sets (dark gray) of the polyhedron P(B1,B2,B3,B4)

.

A function f : [0,1]2 → [0,1] is called Schur concave if for all (x,y),(u,v) ∈ [0,1]2 we have

x+ y = u+ v and min(x,y)≤ min(u,v) =⇒ f (x,y)≤ f (u,v).

In particular, a copula C : [0,1]2 → [0,1] is Schur concave (see [47–49, 77]) if and only if, for all (x,y) ∈ [0,1]2 and
all λ ∈ [0,1],

C(x,y)≤C
(
λx+(1−λ )y,(1−λ )x+λy

)
. (5.1)

Clearly, the three basic copulas W , Π and M are Schur concave, as well as each associative copula (see [29, 47]).
It turns out that the set of Schur concave polynomial copulas of degree 5 coincides with the set of symmetric

polynomial copulas of degree 5:

Proposition 5.2. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The following
are equivalent:
(i) C(a,b,c) is Schur concave;
(ii) C(a,b,c) is symmetric, i.e., a = b.

Proof. Since each Schur concave copula is symmetric [29], each Schur concave polynomial copula C(a,b,c) satisfies
(a,b,c) ∈ PC5sym, i.e., a = b, which means that (i) implies (ii).

In order to show that also (ii) implies (i) we have to consider points (x,y) ∈ [0,1]2 with a fixed sum u = x+ y,
i.e., u ∈ [0,2]. Observe that u = 0 and u = 2 are equivalent to (x,y) = (0,0) and (x,y) = (1,1), respectively, so
we may restrict ourselves to u ∈ ]0,2[ because the Schur concavity on a single point is trivial. Since in this part
of the proof our copulas are assumed to be symmetric we may also restrict ourselves to the upper left triangle
∆ = {(x,y) ∈ [0,1]2 | x ≤ y} of the unit square [0,1]2. Then, for a fixed u ∈ ]0,2[ we have(

(x,y) ∈ ∆ and x+ y = u
)

⇐⇒
(

x ∈
[
max(u−1,0),

u
2

]
and y = u− x

)
.

Then a symmetric copula C : [0,1]2 → [0,1] is Schur concave if and only if for each u ∈ ]0,2[ the one-dimensional
section C(·,u−·) :

[
max(u−1,0), u

2

]
→ R given by

(
C(·,u−·)

)
(x) =C(x,u− x) is strictly increasing. For a sym-

metric polynomial copula C(a,a,c) of degree 5, i.e., with (a,a,c) ∈ PC5sym, and for each u ∈ ]0,2[ this means that the
derivative of this section of C(a,a,c) with respect to x is non-negative or, equivalently and in a formal way, for each
(u,x) ∈ ]0,2[×

[
max(u−1,0), u

2

]
we have

∂C(a,a,c)(x,u− x)
∂x

= u−2x+(au+ c)(4x3 −6ux2 +2x(u2 +u−1)+u−u2)≥ 0. (5.2)

Rewriting this in Mathematica code,
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B1

B4

Fig. 7: The intersection of the plane a− b = 0 with P(B1,B2,B3,B4)
(dashed triangle) and with PC5 (gray area) showing the

parameters of symmetric (and Schur concave) polynomial copulas of degree 5 together with the thick line segment marking
the position of the Eyraud-Farlie-Gumbel-Morgenstern copulas.

Resolve[ForAll[{u, x}, 0 < u < 2 && Max[0, u - 1] <= x <= u/2,

u - 2x + (a u + c) (4x^3 - 6u x^2 + 2x (u^2 + u - 1) + u - u^2) >= 0],

{c, a}, Reals]

we obtain that for each pair (a,c) ∈ R2 satisfying c ≥ max(−1−2a,−1) the inequality (5.2) holds for all (u,x) ∈
]0,2[×

[
max(u−1,0), u

2

]
. As a consequence of

PC5sym ⊆ {(a,a,c) ∈ R3 | c ≥ max(−1−2a,−1)},

this means that also (ii) implies (i).

5.3 Ultramodular polynomial copulas of degree five

If A is a non-empty subset of Rn then a function f : A → Rn is called ultramodular [60] if its increments are non-
decreasing. This means that for all u,v ∈ A with u ≤ v and for all h ∈ Rn such that u+h ∈ A and v+h ∈ A we
have

f (u+h)− f (u)≤ f (v+h)− f (v).

In the special case n = 2, a copula C : [0,1]2 → [0,1] is ultramodular (see [47–49, 77]) if and only if for all
(u1,u2),(v1,v2),(w1,w2) ∈ [0,1]2 satisfying (u1,u2)+(v1,v2)+(w1,w2) ∈ [0,1]2 the following inequality holds:

C(u1 +w1,u2 +w2)−C(u1,u2)≤C(u1 + v1 +w1,u2 + v2 +w2)−C(u1 + v1,u2 + v2).

In a geometrical formulation, an ultramodular copula C is characterized by the fact that all one-dimensional
vertical and horizontal sections are convex (see [60, Corollary 4.1] and [48, Proposition 2.3]) or, equivalently, that for
all (x,y) ∈ [0,1]2 where the second partial derivatives exist we have

∂ 2C(x,y)
∂x2 ≥ 0 and

∂ 2C(x,y)
∂y2 ≥ 0. (5.3)

The concepts of ultramodular copulas and of stochastically decreasing copulas [5, 57, 66, 86] are equivalent (see
Subsection 5.6 for some details).

Proposition 5.3. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The following
are equivalent:
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Fig. 8: Parameter sets PUM = PSD of ultramodular (or, equivalently, stochastically decreasing) polynomial copulas of degree 5
(bottom) and PSI (see Corollary 5.9) of stochastically increasing polynomial copulas of degree 5 (top) from two different
viewpoints (the set PC5 is indicated by the gray skeleton).

(i) The copula C(a,b,c) is ultramodular.
(ii) The triplet (a,b,c) is an element of the subset PUM of PC5 given by

PUM = Conv
({

(0,0,0),(− 1
3 ,−

1
3 ,−

1
3 ),(−

1
2 ,0,−

1
2 ),(0,−

1
2 ,−

1
2 ),

( 1
2 ,−

1
2 ,−1),(− 1

2 ,
1
2 ,−1),( 1

2 ,0,−1),(0, 1
2 ,−1),( 1

3 ,
1
3 ,−1)

})
. (5.4)

Proof. If C(a,b,c) as given by (2.13) is an ultramodular polynomial copula of degree 5 then C(a,b,c) must satisfy (5.3)
for each (x,y) ∈ [0,1]2. Compute the second partial derivatives of C(a,b,c)

∂ 2C(a,b,c)(x,y)
∂x2 = 2y(y−1)(3ax+by−a+ c),

∂ 2C(a,b,c)(x,y)
∂y2 = 2x(x−1)(ax+3by−b+ c),

and take into account the continuity of the polynomials occurring in these second partial derivatives and the fact that
x(1− x) and y(1− y) are strictly negative on ]0,1[ and vanish for x ∈ {0,1} and y ∈ {0,1}, respectively. Then we see
that the validity of (5.3) means that for each (x,y) ∈ [0,1]2 we have

3ax+by−a+ c ≤ 0 and ax+3by−b+ c ≤ 0. (5.5)

If we insert into (5.5) the four points in (x,y) ∈ {0,1}2 we obtain the following system of linear inequalities which
has to be satisfied by any triplet (a,b,c) ∈ PC5 corresponding to an ultramodular polynomial copula of degree 5:

−a+ c ≤ 0, −a+b+ c ≤ 0, 2a+ c ≤ 0, 2a+b+ c ≤ 0, (5.6)

−b+ c ≤ 0, a−b+ c ≤ 0, 2b+ c ≤ 0, a+2b+ c ≤ 0. (5.7)

Since (a,b,c) ∈ P(B1,B2,B3,B4) because of (4.7), (a,b,c) must also solve the system of linear inequalities (4.6). Using
the Mathematica command Reduce, we see that the set of solutions of the joint systems (5.6), (5.7) and (4.6) of linear
inequalities coincides with the polyhedron PUM (5.4), i.e., (a,b,c) ∈ PUM.

Since for each vertex (a∗,b∗,c∗) of PUM the density ϕC(a∗ ,b∗ ,c∗) is easily seen to be non-negative (i.e., satisfies (3.2)
for each (x,y) ∈ [0,1]2), we have (a∗,b∗,c∗) ∈ PC5 and, because of the convexity of PC5, also PUM ⊆ PC5.

Conversely, if for the polynomial copula C(a,b,c) we have (a,b,c)∈PUM, then (a,b,c) solves the joint systems (5.6)
and (5.7) of linear inequalities and, as a consequence, all horizontal and vertical one-dimensional sections of C(a,b,c)

are convex, i.e., C(a,b,c) is ultramodular.

Obviously, the vertex (0,0,0) of the convex set PUM corresponds to the product copula Π which is the greatest
ultramodular copula.
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5.4 Positive quadrant dependence

If (Ω,A ,P) is a probability space, X ,Y : Ω → R are continuous random variables and C : [0,1]2 → [0,1] is the
corresponding copula according to Theorem 2.1, then X and Y (and C) are said to be positively quadrant dependent
(PQD) [57, 66] if, for all (u,v) ∈ R2

P[X ≤ u,Y ≤ v]≥ P[X ≤ u] ·P[Y ≤ v] (5.8)

or (recalling the product copula Π =C(0,0,0)) if C ≥ Π.

Proposition 5.4. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The following
are equivalent:
(i) The copula C(a,b,c) is positively quadrant dependent.
(ii) The triplet (a,b,c) is an element of the subset PPQD of PC5 given by

PPQD = Conv({(−1,−1,2),(−1,0,1),(0,−1,1),(0,0,0),(0,1,0),(1,1,0),(1,0,0)}). (5.9)

Proof. Let us first determine which polynomial functions C(a,b,c) as given in (2.13) satisfy the two conditions
C(a,b,c) ≥ Π and (a,b,c) ∈ P(B1,B2,B3,B4).

To verify C(a,b,c) ≥ Π it suffices, because of the convexity of [0,1]2 and the convexity of the function (x,y) 7−→
ax+by+c, to check the non-negativity of ax+by+c for each vertex (x,y) ∈ {0,1}2 of the unit square, which exactly
means that the triplet (a,b,c) satisfies the following system of linear inequalities:

a+ c ≥ 0, b+ c ≥ 0, a+b+ c ≥ 0, c ≥ 0. (5.10)

We already know that (a,b,c) ∈ P(B1,B2,B3,B4) if and only if (a,b,c) solves the system (4.6) of linear inequalities.
Subtracting the fourth inequality from the sum of the first two inequalities in (4.6), the joint system of the

inequalities (5.10) and (4.6) can be rewritten as

0 ≤ a+ c ≤ 1, 0 ≤ b+ c ≤ 1, 0 ≤ a+b+ c ≤ 2, 0 ≤ c ≤ 3. (5.11)

It is readily seen (e.g., using again a Mathematica command like Reduce) that (a,b,c) solves (5.11) if and only if
(a,b,c) ∈ PPQD as given by (5.9).

This means that (a,b,c) ∈ PPQD if and only if a polynomial function C(a,b,c) satisfies C(a,b,c) ≥ Π and (a,b,c) ∈
P(B1,B2,B3,B4).

Since the third component of each vertex of the polyhedron PPQD lies in the interval [0,2] (where the sets PC5
and P(B1,B2,B3,B4) coincide) we also have PPQD ⊆ PC5, i.e., the polynomial function C(a,b,c) is indeed a positively
quadrant dependent copula.

Then for c ∈ R the level set PPQD
[c] of the parameter set PPQD of positively quadrant dependent polynomial copulas

of degree 5 is given by

PPQD
[c] =


Conv({(0,−c,c),(−c,0,c),(1− c,−c,c),(1− c,1− c,c),(−c,1− c,c)}) if c ∈ [0,1[ ,

Conv({(1− c,−1,c),(1− c,1− c,c),(−1,1− c,c)}) if c ∈ [1,2] ,

/0 otherwise.

5.5 Negative quadrant dependence

Negative quadrant dependence of continuous random variables X ,Y : Ω → R and their corresponding copula
C : [0,1]2 → [0,1] is defined in analogy to positive quadrant dependence by reversing the inequality signs in (5.8) or,
equivalently, by C ≤ Π.

Taking into account the duality between positive and negative quadrant dependence, the proof of the following
result is analogous to the proof of Proposition 5.4.
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Fig. 9: Parameter set of negatively (dark gray, bottom) and positively quadrant dependent polynomial copulas of degree 5
(light gray, top) from two different viewpoints (the set PC5 is indicated by the gray skeleton).

Proposition 5.5. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The following
are equivalent:
(i) The copula C(a,b,c) is negatively quadrant dependent.
(ii) The triplet (a,b,c) is an element of the subset PNQD of PC5 given by

PNQD = Conv({(0,0,0),(0,−1,0),(−1,0,0),(1,−1,−1),(1,0,−1),(0,1,−1),(−1,1,−1)}).

For each c ∈ R the level set PNQD
[c] of the set of parameters PNQD of the set of all negatively quadrant dependent

polynomial copulas of degree 5 is characterized as follows:

PNQD
[c] =

{
Conv({(−c,−1,c),(−c,0,c),(0,−c,c),(−1,−c,c)}) if c ∈ [−1,0] ,

/0 otherwise.

The parameter sets PPQD and PNQD of positively and negatively quadrant dependent polynomial copulas of
degree 5, respectively, are visualized in Figure 9. Obviously, we have PPQD ∩PNQD = {(0,0,0)}, i.e., the product
copula Π =C(0,0,0) is the only (polynomial) copula (of degree 5) which is both negatively and positively quadrant
dependent, as expected. Since each ultramodular copula is necessarily negatively quadrant dependent, we also have
PUM ⊆ PNQD.

5.6 Some automorphisms of polynomial copulas of degree five

Given a copula C : [0,1]2 → [0,1], several other copulas are closely related to it, among them the x-flipping
Cxflip : [0,1]2 → [0,1] of C and the y-flipping Cyflip : [0,1]2 → [0,1] of C (see [21]), and the survival copula
Ĉ : [0,1]2 → [0,1] given by, respectively

Cxflip(x,y) = y−C(1− x,y), (5.12)

Cyflip(x,y) = x−C(x,1− y), (5.13)

Ĉ(x,y) =x+ y−1+C(1− x,1− y). (5.14)

If C denotes the set of (bivariate) copulas, the mappings

C 7−→Cxflip, C 7−→Cyflip, C 7−→ Ĉ (5.15)

induce involutive bijections from C onto C .
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Obviously, each of the involutive bijections induced by (5.15) transforms a polynomial copula C (of arbitrary
degree n) into a polynomial copula C of the same degree, i.e., the mappings in (5.15) induce also involutive bijections
from PC5 onto PC5.

Since each polynomial copula C of degree 5 can be identified with a parameter triplet (a,b,c) ∈ PC5, i.e.,
C =C(a,b,c) as defined in (2.13), we obtain the following formulas for the x-flipping, the y-flipping and the survival
copula of a polynomial copula of degree 5:

(C(a,b,c))
xflip =C(a,−b,−a−c), (C(a,b,c))

yflip =C(−a,b,−b−c), Ĉ(a,b,c) =C(−a,−b,a+b+c), (5.16)

showing that the three mappings C 7−→Cxflip, C 7−→Cyflip and C 7−→ Ĉ given in (5.15) induce involutive bijections
from PC5 onto PC5.

From (5.16) it follows immediately which polynomial copulas of degree 5 are invariant under these automor-
phisms.

Corollary 5.6. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5.
(i) The copula C(a,b,c) is invariant under x-flipping, i.e., (C(a,b,c))

xflip =C(a,b,c), if and only if there is a parameter
θ ∈ [−1,1] such that (a,b,c) = (−2θ ,0,θ).

(ii) The copula C(a,b,c) is invariant under y-flipping, i.e., (C(a,b,c))
yflip =C(a,b,c), if and only if there is a parameter

θ ∈ [−1,1] such that (a,b,c) = (0,−2θ ,θ).
(iii) The copula C(a,b,c) coincides with its survival copula, i.e., Ĉ(a,b,c) =C(a,b,c), if and only if there is a parameter

θ ∈ [−1,1] such that (a,b,c) = (0,0,θ), i.e., C(a,b,c) =CEFGM
θ

.

Since the Eyraud-Farlie-Gumbel-Morgenstern copulas are polynomial copulas of degree 4, Corollary 5.6 (iii) tells us
that no proper polynomial copula of degree 5 coincides with its survival copula. Therefore, polynomial copulas of
degree 5 are more flexible than EFGM copulas since they do not induce radial symmetry.

Note also that, for bivariate copulas, the reflections considered in [28] (see also [50]) are exactly the x-
flippings (5.12) and y-flippings (5.13) (which is no longer the case if one also considers n-dimensional copulas
with n > 2).

It is easy to see that the x-flipping and the y-flipping of a copula C change its relationship to the product copula Π.
Therefore, for each (a,b,c) ∈ PC5 we have (recall that Πxflip = Πyflip = Π)

C(a,b,c) ≤ Π ⇐⇒ (C(a,b,c))
xflip ≥ Π and (C(a,b,c))

yflip ≥ Π,

C(a,b,c) ≥ Π ⇐⇒ (C(a,b,c))
xflip ≤ Π and (C(a,b,c))

yflip ≤ Π.

As a consequence, the functions C 7−→Cxflip and C 7−→Cyflip in (5.15) can be seen as bijections between the sets
of positively quadrant dependent, on the one hand, and negatively quadrant dependent, on the other hand, polynomial
copulas of degree 5, while the construction of the survival copula C 7−→ Ĉ in (5.15) acts as an involution on both
positively and negatively quadrant dependent polynomial copulas of degree 5:

Corollary 5.7. Let C(a,b,c) : [0,1]2 → [0,1] be a polynomial copula of degree 5, i.e., (a,b,c) ∈ PC5. The following
are equivalent:
(i) The copula C(a,b,c) is positively quadrant dependent.
(ii) The x-flipping (C(a,b,c))

xflip of the copula C(a,b,c) is negatively quadrant dependent.
(iii) The y-flipping (C(a,b,c))

yflip of the copula C(a,b,c) is negatively quadrant dependent.

(iv) The survival copula ̂(C(a,b,c)) of the copula C(a,b,c) is positively quadrant dependent.

By duality, we obtain another set of four equivalent assertions if we replace in Corollary 5.7 consistently the property
“positively quadrant dependent” by “negatively quadrant dependent” and vice versa.

We only mention that the x-flipping, the y-flipping and the construction of the survival copula of a polynomial
copula C(a,b,c) of degree 5 map each extremal point of any of the convex parameter sets PPQD and PNQD to an extremal
point of the respective range.

As already mentioned in Section 5.3, there is a special relationship between ultramodular copulas and stochasti-
cally decreasing copulas (see [66]).
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If (Ω,A ,P) is a probability space, if X ,Y : Ω → R are continuous random variables and if C : [0,1]2 → [0,1] is
the uniquely determined corresponding copula according to Theorem 2.1 then the copula C is said to be stochastically
increasing (SI for short) if for all x,y ∈ R the two functions h(X>x,Y ) : R→ [0,1] and h(Y>y,X) : R→ [0,1] given by,
respectively,

h(X>x,Y )(y) = P[X > x | Y = y] and h(Y>y,X)(x) : R→ [0,1] = P[Y > y | X = x] (5.17)

are monotone non-decreasing. Similarly, the copula C is called stochastically decreasing (SD for short) if for all
x,y ∈R the two functions h(X>x,Y ) : R→ [0,1] and h(Y>y,X) : R→ [0,1] given by (5.17) are monotone non-increasing.

Proposition 5.8. Let C : [0,1]2 → [0,1] be a copula. Then the following are equivalent:
(i) C is stochastically decreasing.
(ii) Each horizontal and each vertical section of C is convex.
(iii) Cxflip is stochastically increasing.
(iv) Each horizontal and each vertical section of Cxflip is concave.
(v) Cyflip is stochastically increasing.
(vi) Each horizontal and each vertical section of Cyflip is concave.
(vii)C is ultramodular.

Proof. As a consequence of Theorem 5.2.9 and Corollary 5.2 in [66] we have (i) ⇐⇒ (ii), (iii) ⇐⇒ (iv) and
(v) ⇐⇒ (vi).

If for each (x∗,y∗) ∈ [0,1]2 the horizontal section C(·,y∗) and the vertical section C(x∗, ·) of a copula are convex
then the horizontal section Cxflip(·,y∗) given by Cxflip(x,y∗) = x−C(x,1− y∗) and the vertical section Cxflip(x∗, ·)
given by Cxflip(x∗,y) = x∗−C(x∗,1− y) are concave, showing that (ii) implies (iv). In a similar way the implication
(iv) =⇒ (ii) and the equivalence (ii) ⇐⇒ (vi) can be verified.

Finally, the equivalence (ii) ⇐⇒ (vii) follows from [60, Corollary 4.1] and [49, Proposition 2.3].

Turning our attention to polynomial copulas of degree 5, we are able to identify the parameter sets of stochastically
decreasing and increasing polynomial copulas of degree 5.

Corollary 5.9. Denote by PSD ⊆ PC5 and PSI ⊆ PC5 the parameter sets of all stochastically decreasing and
increasing, respectively, polynomial copulas of degree 5. Then we have:

PSD = PUM,

PSI = Conv
({

(0,0,0),(− 1
3 ,

1
3 ,

2
3 ),(−

1
2 ,0,1),(0,

1
2 ,

1
2 ),(

1
2 ,

1
2 ,

1
2 ),(−

1
2 ,−

1
2 ,

3
2 ),(

1
2 ,0,

1
2 ),(0,−

1
2 ,1),(

1
3 ,−

1
3 ,

2
3 )
})

.

Proof. The first equality is an immediate consequence of Propositions 5.3 and 5.8, and for the second equality it
suffices to take into account Proposition 5.8 and (5.16).

6 Dependence parameters of polynomial copulas of degree five
and higher

Given two random variables X and Y , the full information about their dependence is contained in the corresponding
copula (see Theorem 2.1). A number of dependence parameters (also called concordance measures) measure the
degree of dependence of X and Y (or, equivalently, of C). In this paper we shall deal with Spearman’s rho [91],
Kendall’s tau [46], Blomqvist’s beta [10], and Gini’s gamma [37].
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Definition 6.1. Let (Ω,A ,P) be a probability space and let X ,Y : Ω → R be continuous random variables with
copula C : [0,1]2 → [0,1]. The following dependence parameters are defined by

ρX ,Y = ρC = 12
∫∫

[0,1]2

C(x,y)dxdy−3, (Spearman’s rho)

τX ,Y = τC = 4
∫∫

[0,1]2

C(x,y)dC(x,y)−1, (Kendall’s tau)

βX ,Y = βC = 4C( 1
2 ,

1
2 )−1, (Blomqvist’s beta)

γX ,Y = γC = 4
1∫

0

(C(x,x)+C(x,1− x))dx−2. (Gini’s gamma)

The Fréchet-Hoeffding lower bound W , the product copula Π and the Fréchet-Hoeffding upper bound M given by (2.4)
are characterized by the following properties of the dependence parameters considered in Definition 6.1:

ρW = τW = βW = γW =−1, ρΠ = τΠ = βΠ = γΠ = 0, ρM = τM = βM = γM = 1. (6.1)

For the family of Eyraud-Farlie-Gumbel-Morgenstern copulas (CEFGM
θ

)θ∈[−1,1] the corresponding dependence
parameters (for more details see [30, 44, 66]) are given as follows:

ρCEFGM
θ

=
θ

3
, τCEFGM

θ

=
2θ

9
, βCEFGM

θ

=
θ

4
, γCEFGM

θ

=
4θ

15
.

As a consequence, for each θ ∈ [−1,1] we have

ρCEFGM
θ

∈
[
− 1

3 ,
1
3

]
, τCEFGM

θ

∈
[
− 2

9 ,
2
9

]
, βCEFGM

θ

∈
[
− 1

4 ,
1
4

]
, γCEFGM

θ

∈
[
− 4

15 ,
4

15

]
. (6.2)

If we switch to polynomial copulas of degree 5, it is easy to show that the dependence parameters of C(a,b,c) can
be computed in a simple way as functions of the parameters a, b and c:

Corollary 6.2. For each polynomial copula of degree 5, i.e., for each triplet (a,b,c) ∈ PC5, we have
(i) ρC(a,b,c) =

1
6 (a+b+2c);

(ii) τC(a,b,c) =
1
9 (a+b+2c)− 1

450 ab;
(iii) βC(a,b,c) =

1
8 (a+b+2c);

(iv) γC(a,b,c) =
2

15 (a+b+2c).

It is quite interesting that the values of the four dependence parameters considered here cover the same intervals for
polynomial copulas of degree 5 as for polynomial copulas of degree 4, i.e., for EFGM copulas. Moreover, because of
the symmetry of the parameter set PC5 we obtain the same intervals if we only consider the symmetric polynomial
copulas of degree 5 C(a,a,c), i.e., with (a,a,c) ∈ PC5sym.

Proposition 6.3. For polynomial copulas of degree 5 the following equalities hold:
(i) {ρC(a,b,c) | (a,b,c) ∈ PC5}= {ρC(a,a,c) | (a,a,c) ∈ PC5sym}=

[
− 1

3 ,
1
3

]
;

(ii) {τC(a,b,c) | (a,b,c) ∈ PC5}= {τC(a,a,c) | (a,a,c) ∈ PC5sym}=
[
− 2

9 ,
2
9

]
;

(iii) {βC(a,b,c) | (a,b,c) ∈ PC5}= {βC(a,a,c) | (a,a,c) ∈ PC5sym}=
[
− 1

4 ,
1
4

]
;

(iv) {γC(a,b,c) | (a,b,c) ∈ PC5}= {γC(a,a,c) | (a,a,c) ∈ PC5sym}=
[
− 4

15 ,
4

15

]
.

Proof. Note first that

{a+b+2c | (a,b,c) ∈ PC5}= {2a+2c | (a,a,c) ∈ PC5}= [−2,2]

as a consequence of (4.6) and the fact that each EFGM copula CEFGM
θ

=C(0,0,θ) with θ ∈ [−1,1] is a(n improper)
polynomial copula of degree 5. Therefore, the validity of (i), (iii) and (iv) follows immediately from Corollary
6.2 (i),(iii),(iv).
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In order to show that also (ii) holds, observe that because of (4.7), i.e., PC5 ⊂ P(B1,B2,B3,B4), each parameter
triplet (a,b,c) ∈ PC5 can be written as a convex combination of the coordinates of the points B1–B4. If we put
Dconv = {(α1,α2,α3,α4) ∈ [0,1]4 | α1 + α2 + α3 + α4 = 1}, then for each (a,b,c) ∈ PC5 there is a quadruple
(α1,α2,α3,α4) ∈ Dconv such that

(a,b,c) = α1(−2,−2,3)+α2(−2,2,−1)+α3(2,−2,−1)+α4(2,2,−1)

or, equivalently,

a = 2(−α1 −α2 +α3 +α4), b = 2(−α1 +α2 −α3 +α4), c = 4α1 −1.

This implies

a+b+2c = 4(α1 +α4)−2,

ab = 4
(
(α4 −α1)

2 − (α3 −α2)
2),

1
9
(a+b+2c)− 1

450
ab =

4
9
(α1 +α4)−

2
9
− 2

225
(
(α4 −α1)

2 − (α3 −α2)
2).

Now it is easy to see that the function F : Dconv → R given by

F(α1,α2,α3,α4) =
4
9
(α1 +α4)−

2
9
− 2

225
(
(α4 −α1)

2 − (α3 −α2)
2)

has no stationary point in Dconv and, therefore, no relative maximum or minimum in the interior of Dconv. On the
boundaries of Dconv, however, we find two extremal values of F: the local minimum − 2

9 for α1 = α4 = 0 and
α2 = α3 =

1
2 , and the local maximum 2

9 for α1 = α4 =
1
2 and α2 = α3 = 0.

In other words, this means that the minimum of F is attained for (a,b,c) = (0,0,−1), and the maximum of F
for (a,b,c) = (0,0,1). Therefore, we have τC(0,0,−1) = τCEFGM

−1
=− 2

9 , τC(0,0,1) = τCEFGM
1

= 2
9 , and τC(a,b,c) ∈

]
− 2

9 ,
2
9

[
for all

(a,b,c) ∈ PC5\{(0,0,−1),(0,0,1)}.

Because of Corollary 6.2 there is a small difference between Kendall’s tau and the other three dependence parameters.
As pointed out in the proof of Proposition 6.3 (ii), the extremal values of Kendall’s tau are only attained for a single
polynomial copula of degree 5: τC(0,0,−1) = − 2

9 and τC(0,0,1) =
2
9 . This is contrary to the situation of the other three

dependence parameters considered here, where the extremal values of Spearman’s rho
(
± 1

3

)
, Blomqvist’s beta

(
± 1

4

)
,

and Gini’s gamma
(
± 4

15

)
are attained by all polynomial copulas of degree 5 of the form C(a,−a,−1) with a ∈ [−1,1]

and C(1−c,1−c,c) with c ∈ [0,2], respectively.
The results in this section allow us to formulate some preliminary observations concerning the so-called τ-ρ-region

of the set of polynomial copulas of degree 5 which describes the relationship between the dependence parameters τ

and ρ . Recall that for a set S ⊆ C of copulas the τ-ρ-region R[τ,ρ]
S is defined by R[τ,ρ]

S = {(τC,ρC) |C ∈ S } (see
Theorems 5.1.10, 5.1.11 and Corollary 5.1.12 in [66], and compare also [79]). Clearly, for the set of EFGM copulas
we obtain a line segment: R[τ,ρ]

EFGM =
{(

t, 3
2 t
) ∣∣ t ∈

[
− 2

9 ,
2
9

]}
.

From Corollary 6.2 (i)–(ii) and Proposition 6.3 (i)–(ii) it follows that the τ-ρ-region R[τ,ρ]
PC5 of all polynomial

copulas of degree 5 is a proper subset of the rectangle
[
− 2

9 ,
2
9

]
×
[
− 1

3 ,
1
3

]
(taking into account [66, Figure 5.4]) and

a proper superset of R[τ,ρ]
EFGM. To verify the latter, observe that for each c ∈ [0,2] we have (1− c,1− c,c) ∈ PC5 and

ρC(1−c,1−c,c) =
1
3 . Because of {ab | a = b = 1− c and c ∈ [0,2]} = [0,1] we obtain τC(1−c,1−c,c) ∈

[ 2
9 −

1
450 ,

2
9

]
for each

c ∈ [0,2], and therefore
[ 99

450 ,
2
9

]
×
{ 1

3

}
⊆ R[τ,ρ]

PC5 . The full characterization of the τ-ρ-region R[τ,ρ]
PC5 of polynomial

copulas of degree 5, however, will be the topic of future research.
Proposition 6.3 gives raise to the following question: what can be said about the values attained by the dependence

parameters considered in this paper if all polynomial copulas (of any degree) as characterized by (2.9) are taken into
account?

Proposition 6.4. Denote by C [poly] the set of all polynomial copulas as characterized by (2.9). Then we have:{
ρC
∣∣C ∈ C [poly]}= {τC

∣∣C ∈ C [poly]}= {βC
∣∣C ∈ C [poly]}= {γC

∣∣C ∈ C [poly]}= ]−1,1[ .
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Proof. For each copula C : [0,1]2 → [0,1] also the function DC : [0,1]2 → [0,1] given by (2.6) is a copula (see [53,
Theorem 1] and Example 2.3 (ii)). Evidently, if C is a polynomial copula of degree k then DC is a polynomial copula
of degree 2k. Define the sequence of copulas (E−n)n∈N0 in C [poly] inductively by

E−n =

{
Π if n = 0,

DE−(n−1) if n ≥ 1.

Then, following [47, 52], the sequence (E−n)n∈N0 converges to the Fréchet-Hoeffding lower bound W , i.e.,

lim
n→∞

E−n =W. (6.3)

Fix an arbitrary r ∈ R\Z with r < 0, note that there is a unique nr ∈ N such that −nr −1 < r <−nr, and put

Er =−(r+nr)E−(nr+1)+(r+nr +1)E−nr .

We see that Er is a convex combination of the two copulas E−nr and E−(nr+1), and thus also a copula. Then the
parametric family (Er)r∈]−∞,0] of copulas is continuous and monotone non-decreasing with respect to the parameter r.
Taking into account (6.3) and the fact that W and Π are the only copulas where all the dependence parameters given
in Definition 6.1 are equal to −1 and 0, respectively (see (6.1)), we obtain

{ρEr | r ∈ ]−∞,0]}= {τEr | r ∈ ]−∞,0]}= {βEr | r ∈ ]−∞,0]}= {γEr | r ∈ ]−∞,0]}= ]−1,0] .

To conclude the proof, it is enough to consider the x-flipping Cxflip : [0,1]2 → [0,1] of a copula C [21] given
by (5.12) which is also a copula. Note that for each copula C we have ρCxflip =−ρC, τCxflip =−τC, βCxflip =−βC, and
γCxflip =−γC. Moreover, if C is a polynomial copula (of degree k) then also Cxflip is a polynomial copula (of degree k).

Now define, for each real number r ≥ 0, the copula Er : [0,1]2 → [0,1] by Er = (E−r)
xflip. Noting Π = Πxflip

and Mxflip =W , we see that the family of polynomial copulas (Er)r∈R attains all values from ]−1,1[ for each of the
dependence parameters given in Definition 6.1.

Since each copula Er is symmetric we even have shown the validity of the result of Proposition 6.4 if we restrict
ourselves to symmetric copulas, i.e., to parameters in (a,a,c) ∈ PC5sym:

Corollary 6.5. Denote by C
[poly]
sym the set of all symmetric polynomial copulas (of arbitrary degree). Then we have:{

ρC
∣∣C ∈ C

[poly]
sym

}
=
{

τC
∣∣C ∈ C

[poly]
sym

}
=
{

βC
∣∣C ∈ C

[poly]
sym

}
=
{

γC
∣∣C ∈ C

[poly]
sym

}
= ]−1,1[ .

7 Concluding remarks

Polynomial copulas can be seen as a genuine generalization of Eyraud-Farlie-Gumbel-Morgenstern copulas (which are,
in fact, just polynomial copulas of degree 4). We have focused on polynomial copulas of degree 5 which necessarily
have the form (2.13), i.e.,

C(a,b,c)(x,y) = xy+(ax+by+ c)x(1− x)y(1− y)

for suitable parameters (a,b,c) ∈ R3. This parameter set PC5 ⊂ R3 was fully characterized and illustrated, giving
analytical descriptions by means of inequalities of all level sets PC5[ζ ] = {(a,b,c) ∈ PC5 | c = ζ}, i.e., for each
ζ ∈

[
−1,1+2

√
2/3
]

(see Tables 1–2).
Similarly, we have considered and characterized additional properties of polynomial copulas of degree 5 such as

symmetry, Schur concavity, ultramodularity, and positive and negative quadrant dependence.
For each triplet (a,b,c) ∈ PC5 several dependence parameters (Spearman’s rho, Kendall’s tau, Blomqvist’s

beta and Gini’s gamma) with respect to the corresponding polynomial copulas were computed. As can be seen
from Corollary 6.2, here the expression a+b+2c plays a crucial role. As a consequence of (4.6), in PC5 this term
a+b+2c attains all values in the interval [−2,2], and it assumes the extremal values −2 and 2 for all parameters
(a,−a,−1) with a ∈ [−1,1] and (1− c,1− c,c) with c ∈ [0,2], respectively.
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An interesting result is that Spearman’s rho, Kendall’s tau, Blomqvist’s beta and Gini’s gamma cover the same
set of values for polynomial copulas of degree 5 as for polynomial copulas of degree 4, i.e., for EFGM copulas
(Proposition 6.3). The situation changes if we consider polynomial copulas of arbitrary degree, in which case these
four dependence parameters cover the maximal interval ]−1,1[ (Proposition 6.4 and Corollary 6.5).

For polynomial copulas of higher degrees, the number of coefficients to be taken into account grows quadratically.
For proper polynomial copulas of degree n ≥ 4 we have to consider (n−2)(n−3)

2 coefficients. For example, if n = 6 we
have to deal with sixtuples (a1,a2, . . . ,a6) ∈ R6, and all polynomial copulas of degree 6 necessarily have the form

C(x,y) = xy+(a1x2 +a2xy+a3y2 +a4x+a5y+a6)x(1− x)y(1− y). (7.1)

As an immediate consequence of Proposition 2.5 we must have ∂ 2C(x,y)
∂x∂y ≥ 0 which means that, e.g., for (x,y) = (0,0)

we obtain a6 ≥−1 (compare this with the corresponding inequality c ≥−1 for polynomial copulas C(a,b,c) of degree 5
in Figure 1).

As mentioned in Example 2.3 (iii) (see [59]), the function C : [0,1]2 → [0,1] given by (2.8) which can be rewritten
as

C(x,y) = xy+
1
2
(xy− x− y−1)x(1− x)y(1− y)

is a polynomial copula of degree 6 (compare the results of [92] and (2.9)). It therefore corresponds to the 6-tuple(
0, 1

2 ,0,−
1
2 ,−

1
2 ,−

1
2

)
. However, no characterization of all 6-tuples (a1,a2, . . . ,a6) ∈ R6 yielding a copula as given

by (7.1) is known so far.
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Wolfram Mathematica® (or simply Mathematica) is a technical computing system (featuring, among others,
computer algebra, symbolic and numerical computations, and visualizations), developed by Wolfram Research of
Champaign, Illinois (U.S.A., https://www.wolfram.com). In this paper we have used it mainly for the solution of
polynomial inequalities, the (numerical) computation of integrals, and for the production of the figures.

Appendix: Mathematica code

Here we give some rather technical details of the functions which proved to be helpful when using Mathematica to
identify the parameter triplets in PC5, i.e., to solve the polynomial inequality (3.2) subject to the linear constraints (4.6)
as described in Subsection 4.1:
1. Define the polynomial appearing in (2.13).

poly = 1 + c + 2 a x - 2 c x - 3 a x^2 + 2 b y - 2 c y - 4 a x y

- 4 b x y + 4 c x y + 6 a x^2 y - 3 b y^2 + 6 b x y^2;

2. Define a function for performing quantifier elimination as explained in Subsection 4.1.

elimExists[phi_] := phi /.

{Inequality[_, Less|LessEqual, x|y, Less|LessEqual, _] -> True};

https://www.wolfram.com
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3. Define a function for simplifying formulas by replacing u< x < v∨v< x <w by u< x <w and similar operations.

simplify[phi_] := phi //. {

(c_Symbol < u_ && xx_) || (Inequality[u_, Less, c_Symbol, Less, v_] && xx_)

-> (c < v && xx),

Inequality[u_, Less, c_Symbol, Less, v_] && xx_

|| Inequality[v_, Less, c_Symbol, Less, w_] && xx_

-> Inequality[u, Less, c, Less, w] && xx,

Inequality[u_, Less, c_Symbol, Less, v_] && xx_

|| c_Symbol > v_ && xx_ -> c > u && xx,

(c_Symbol < u_ && xx_ || c_Symbol > u_ && xx_) -> xx,

(c_Symbol < u_ ) || (Inequality[u_, Less, c_Symbol, Less, v_]) -> (c < v),

Inequality[u_, Less, c_Symbol, Less, v_]

|| Inequality[v_, Less, c_Symbol, Less, w_]

-> Inequality[u, Less, c, Less, w],

Inequality[u_, Less, c_Symbol, Less, v_] || c_Symbol > v_-> c > u,

(c_Symbol < u_|| c_Symbol > u_) -> True

};

4. Define a function that performs the whole computation explained in Subsection 4.1, for a particular given variable
order. The input argument should be a list of five variables such that the first three variables are a,b,c (in any
order) and the last two are x,y (in any order). For any such input, the function returns a formula equivalent to the
formula described in Subsection 4.2.

findConditions[vars_] := Module[ {out},

out = First[GenericCylindricalDecomposition[{0<=x<=1, 0<=y<=1,

a+c<=1, b+c<=1, a+b+c>=-1, c>=-1, poly < 0}, vars]];

out = simplify[elim[out]];

out = simplify[First[GenericCylindricalDecomposition[

{a+c<=1, b+c<=1, a+b+c>=-1,c>=-1,Not[out]}, vars]]];

Return[out]]
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