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Abstract—The currently most effective approach for verifying
gate-level multipliers uses Computer Algebra. It reduces a word-
level multiplier specification by a Gröbner basis derived from a
gate-level implementation. This reduction produces zero if and
only if the circuit is a multiplier. We improve this approach by
extracting full- and half-adder constraints to reduce the Gröbner
basis, which speeds up computation substantially. Refactoring
the specification in terms of partial products instead of inputs
yields further improvements. As a third contribution we extend
these algebraic techniques to verify the equivalence of bit-level
multipliers without using a word-level specification.

I. INTRODUCTION

Arithmetic circuit verification is still considered a challenge,
even after more than 20 years after the Pentium bug [15].
Currently the most effective approach for gate-level arithmetic
circuit verification uses computer algebra [15], [16], [21].

The authors of [21] use a method called function extraction
where the output signature is reduced by a Gröbner basis to an
input signature and then compared to a specification. Indepen-
dently [16] presents optimizations which rewrite and simplify
the Gröbner basis. Based on these ideas we introduced in [15]
a column-wise checking which cuts the circuit logic into slices
and verifies correctness incrementally. Related work [11], [14]
uses algebraic techniques over finite fields to verify different
arithmetic circuits (Galois field multipliers). We focus on
integer multiplier circuits, as in [15], [16], [21]. Our first
contribution refines the approach of [15] by identifying full-
and half-adders in the circuit in order to rewrite the Gröbner
basis. As second contribution we observed that factoring out
partial products is beneficial in this context too.

Alternatively it is also common to apply gate-level equiv-
alence checking, which uses a reference circuit, instead of
requiring a word-level specification. In [18] equivalence check-
ing of multiplier circuits on the gate-level is achieved by first
extracting half-adder circuits (“addition graphs”) from the ac-
cumulation of partial products. Equivalence of these extracted
half-adder circuits is checked by a dedicated procedure. Proofs
of soundness and completeness are lacking.

More recently [17] proposes an algebraic variant of com-
binational equivalence checking, also based on Gröbner basis
theory. It is similar to SAT sweeping [10], and compares cir-
cuits bit-wise, e.g., output by output, again without soundness
nor completeness proof. As third contribution we present a

This work is supported by Austrian Science Fund (FWF), first two authors
by NFN S11408-N23 (RiSE), third author by Y464-N18 and SFB F5004.

new algebraic approach, an extension of [15], which incremen-
tally shows equivalence of two arbitrary gate-level circuits in a
column-wise fashion, and prove soundness and completeness.

II. ALGEBRA

As in [11], [14], [15], [17], [21] we describe each gate in the
circuit and its specification with multivariate polynomials. We
prove correctness of a circuit by showing that the specification
of the circuit is implied by the gate polynomials. We need facts
of the theory of Gröbner basis [3], [4], [5], [15]:
• The ring Q[X] contains all polynomials in variables X =
x1, . . . , xn with coefficients in Q.

• A polynomial is a finite sum of monomials. A monomial
is a constant multiple of a term, where a term is a power
product xu1

1 · · ·xun
n , ui ∈ N, over the variables X .

• An order ≤ is fixed on the set of terms such that 1 ≤ τ
and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2 for all terms τ, σ1, σ2.

• An order is a lexicographic term order if for all terms
σ1 = xu1

1 · · ·xun
n , σ2 = xv11 · · ·xvnn we have σ1 < σ2 iff

there exists i with uj = vj for all j < i, and ui < vi.
• The largest term (w.r.t. ≤) in a polynomial p ∈ Q[X]\{0}

is the leading term lt(p). The leading coefficient lc(p) and
leading monomial lm(p) are defined accordingly.

• A subset I ⊆ Q[X] is an ideal if (i) 0 ∈ I, (ii) if f, g ∈ I ,
then f + g ∈ I, (iii) if f ∈ I, h ∈ Q[X], then hf ∈ I.

• A set {p1, . . . , pm} ⊆ Q[X] is called a basis of an ideal I ,
if I = {q1p1 + · · · + qmpm | q1, . . . , qm ∈ Q[X]}. This
is denoted by I = 〈p1, . . . , pm〉.

• A basis {g1, . . . , gm} of an ideal I is said to be a Gröbner
basis (w.r.t. ≤) if 〈lt(g1), . . . , lt(gm)〉 = 〈lt(I)〉.

• Every ideal of Q[X] has a Gröbner basis. Given an arbi-
trary basis of an ideal, Buchberger’s algorithm computes
a Gröbner basis for it in a finite number of steps.

• If for all polynomials in the basis {p1, . . . , pm} ⊆
Q[X] of ideal I it holds that lcm(lm(pi), lm(pj)) =
lm(pi) · lm(pj) (with lcm=least common multiple) then
{p1, . . . , pm} is a Gröbner basis of I .

In combination with a multivariate version of polynomial
division, the theory of Gröbner bases allows to answer the
question whether a polynomial q ∈ Q[X] is an element of an
ideal I = 〈G〉 = 〈g1, . . . , gm〉 ⊆ Q[X]:
• The remainder r of the division of q by G is a polynomial

such that q − r ∈ I and no term in r can be divided by
any leading term of G. We say r is reduced w.r.t. G.

• If G is a Gröbner basis for I , then q ∈ I iff r is zero.



III. CIRCUIT TRANSLATION

Following [15] we consider multiplier circuits with 2n
boolean inputs a0, . . . , an−1, b0, . . . , bn−1 and 2n outputs
s0, . . . , s2n−1. Each internal gate (output) is represented by
a gate variable, denoted g0, . . . , gk. In this case we assume
X = a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1.

The structure of the circuit is not allowed to include any
cycles. We relate the output (gate variable) u of a gate to its
input(s) v, w by one of the following polynomials:

u = ¬v implies −u+ 1− v = 0
u = v ∧ w implies −u+ vw = 0
u = v ∨ w implies −u+ v + w − vw = 0
u = v ⊕ w implies −u+ v + w − 2vw = 0

(1)

All variables are supposed to range over boolean values. Thus
we have the relation u(u − 1) = 0. The polynomials on the
left hand side of this equation encoding this assumption are
called field polynomials F.

Definition 1. [15] Let C be a circuit. Let G ⊆ Q[X] be the set
containing for each gate of C the corresponding polynomial
of (1) (with u, v, w replaced by the variables of the edges
attached to the gate), as well as the polynomials ai(ai − 1)
and bi(bi − 1) for 0 ≤ i < n, called input field polynomials.
Then the ideal generated by G in Q[X] is denoted by J(C).

We use the last item in the list summarizing Gröbner basis
theory to generate a Gröbner basis for J(C):

Theorem 1. [19], [11], [15] Let C be a circuit, G as in Def. 1.
Let ≤ be a lexicographic term order for a variable order such
that the variable attached to the output edge of a gate is always
greater than all the variables attached to the input edges of that
gate. Then G is a Gröbner basis with respect to ≤.

Definition 2. [15] Let C be a circuit. A polynomial p ∈ Q[X]
is called a polynomial circuit constraint (PCC) for C if for
every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and resulting values g1, . . . , gk, s0, . . . , s2n−1 implied by the
gates of C the substitution of these values into p gives zero.

The following corollary derived from [15] shows that J(C)
contains all relations among the variables in the circuit C.

Corollary 1. Let p ∈ Q[X] then p is a PCC⇔ p ∈ J(C).

Thus a given word-level specification holds for C iff it is
a member of the ideal J(C). Since we know how to derive
a Gröbner basis of J(C) we can decide membership using
multivariate division. Because of Cor. 1 such a verifier is
sound and complete. We are particularly interested in relations
between circuit outputs and inputs.

Definition 3. [15] A circuit C is called a multiplier if

2n−1∑
i=0

2isi −
(n−1∑
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2iai

)(n−1∑
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Fig. 1. Full-adder circuit (left) and half-adder circuit (right)

In this and in the following section we focus on multipliers.
However, the theory presented in this section can easily be
generalized to arbitrary acyclic circuits. This generalization is
applied in Sect. VI to miters of multipliers.

IV. ADDER REWRITING

Simply reducing the specification w.r.t. the generated
Gröbner basis is not efficient. In general the number of
monomials in the results of intermediate reduction increases
drastically [8], [9], [15].

Since the Gröbner basis of an ideal is not unique, we can
try to improve the performance of reduction by using an
alternative Gröbner basis. A natural candidate is the (unique)
reduced Gröbner basis [5]. However, some simple experiments
show that already computing this Gröbner basis for a 4-bit
multiplier takes longer than 20 minutes and thus this notion
is not useful in practice. In recent work [16] more efficient
optimizations have been developed which only partially reduce
the Gröbner basis. The authors of [15] also make use of these
optimization originally proposed in [16].

On top of these optimizations [15] further introduced a
column-based incremental checking algorithm which divides
the overall Gröbner basis G of the multiplier circuit C into 2n
smaller sliced Gröbner bases. Then the specification in Def. 3
is split incrementally into so-called carry recurrence relations,
and it is shown that these carry recurrence relations hold, i.e.,
the reduction of their corresponding polynomials by the sliced
Gröbner bases reduces to zero.

We enhance the technique from [15] by further rewriting the
sliced Gröbner bases. We search for full- and half-adders in the
gate-level representation of a multiplier and consider them as
isolated circuits. We then apply variable elimination to replace
all polynomials of internal gates of full- and half-adders by
the specification of the corresponding adder. This results in a
smaller and more compact Gröbner basis representation of the
whole multiplier which speeds up the reduction procedure.

Definition 4. A circuit C is called a full-adder if

−2c− s+ a+ b+ i is a PCC

for outputs c, s and inputs a, b, i and a half-adder if

−2c− s+ a+ b is a PCC.

Example 1 (Full-adder). From the full-adder circuit A de-
picted in Fig. 1 we derive the following polynomials:

H = { − c+ g1 + g2 − g1g2, −s+ g0 + i− 2g0i,

− g2 + ab, −g1 + g0i, −g0 + a+ b− 2ab }



According to Thm. 1, H is a Gröbner basis for J(A) = 〈H〉
w.r.t. ordering a < b < i < g0 < g1 < g2 < s < c.

The goal is to eliminate the polynomials for the internal
variables g0, g1, g2 and express the outputs s, c directly in
terms of the adder inputs a, b, i. The following definition
and theorem are instances of a more general theory in [5]
specialized to our specific situation where R denotes the ring
Q[a, b, i, s, c, g0, g1, g2] and Relim the ring Q[a, b, i, s, c].

Definition 5. [5] Given J ⊂ R the elimination ideal Jelim
is an ideal of Relim defined by

Jelim = J ∩Relim .

Theorem 2. [5] Let J ⊂ R be an ideal and let H ′ be a
Gröbner basis of J with respect to the ordering

a < b < i < s < c < g0 < g1 < g2.

Then the set
Helim = H ′ ∩Relim

is a Gröbner basis of the elimination ideal Jelim .

Example 1 (continued). In order to eliminate g0, g1, g2, it is
not sufficient to remove the polynomials involving these vari-
ables from H . Instead, we need to compute a second Gröbner
basis H ′ with respect to an ordering as given in Thm. 2.
Discarding from H ′ the polynomials involving g0, g1, g2 gives

Helim = { − 2c− s+ a+ b+ i,

− s+ a+ b+ i− 2ab− 2ai− 2bi+ 4abi }.

By Thm. 2, Helim is a Gröbner basis for Jelim(A).

Note that since we use Q as coefficient domain, we could
as well make the first polynomial of Helim monic by dividing
it by −2. Not doing so has the advantage that we do not get
fractional coefficients.

The Gröbner basis Helim is not autoreduced, because the
polynomial −2c−s+a+b+i can be reduced by the polynomial
with leading term s. Autoreduction would further rewrite
and simplify the Gröbner basis Helim . In the incremental
approach [15] carries of full- and half-adders connect two
slices and are multiplied by two before remainder computation.
Therefore we do not apply autoreduction, since reducing by
the specification of a full- and half-adder turns out to be more
efficient, as we try to explain next.

In the Gröbner basis G the gates of a multiplier are
reverse topologically ordered. Figure 2 shows a column-wise
order [15] where the multiplier is partitioned into totally
ordered slices and the gates within a slice are ordered reverse
topologically. Assuming that the carry output c of a full-
or half-adder is always larger than the sum output s, the
intermediate reduction polynomial includes the terms 2c + s
before c is reduced. Therefore s is canceled in parallel during
reducing c by the specification of a full- or half-adder, i.e., the
first polynomial −2c− s+ a+ b+ i in Helim .

In a multiplier with only of full- and half-adders (such as
the multiplier in Fig. 2) we never reduce the specification by
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Fig. 2. Column-wise slicing for a 3-bit CSA multiplier as in [15].

the polynomials where the leading term is the sum output bit
s of a full- or half-adder, as confirmed by our experiments.

Without sacrificing completeness, we can not delete these
polynomials from the Gröbner basis, even though it further
speeds up verification, again confirmed by the experiments.

We do not apply Thm. 2 globally on the Gröbner basis
G of a multiplier, which would lead to the same computation
issues as for deriving a reduced Gröbner basis of G. We apply
Thm. 2 only locally on the extracted full-adders when the
gate variables g0, g1, g2 are used only internally in the full-
adder, meaning no gate outside the full-adder uses one of
these variables as input. We split the Gröbner basis G of the
multiplier into disjoint sets G′, G′′ such that G′ contains all
polynomials including the internal variables and G′′ contains
all other polynomials. By splitting the Gröbner basis G we
also split the ideal J(C) = 〈G〉 = 〈G′ ∪G′′〉 = 〈G′〉+ 〈G′′〉.

Since the internal variables do not occur in G′′ it is not
affected by variable elimination. We apply variable elimination
on G′ using Thm. 2 and the same ordering for G where the
internal variables are moved to be the largest elements. This
ensures that after variable elimination G′ and G′′ have the
same ordering. Actually we will never execute the calcula-
tions for eliminating the internal variables of full-adders. We
incrementally search for patterns as depicted in Fig. 1 and
write down directly the polynomials derived for Helim with
corresponding input and output variables.

Deriving a Gröbner basis H ′elim for a half-adder circuit
containing the specification −2c− s+ a+ b can be obtained
by exchanging the polynomial −c+ ab with the specification
polynomial in the original Gröbner basis H ′. Like for full-
adders it can easily be checked that H ′elim is a Gröbner basis.

V. PARTIAL PRODUCT ELIMINATION

In multipliers with simple partial product generation, i.e.
a partial product is the output of an AND-gate taking two
circuit inputs as inputs, we find exactly n2 polynomials in the
Gröbner basis representing these (partial product) AND-gates.

To eliminate these polynomials from the Gröbner basis we
cut off the partial product generation from the circuit and



verify it separately. We do not include the corresponding
polynomials pi,j = aibj in the Gröbner basis. Instead we
change the specification of the multiplier from Def. 3 to the
specification stated in Cor. 2.

Corollary 2. A circuit C is a multiplier if

2n−1∑
i=0

2isi −
n−1∑
i,j=0

2i+jpi,j ∈ J(C) with pi,j = aibj .

It can easily be checked by expanding the sums in Def. 3
and replacing pi,j with aibj in Cor. 2, that they are equal.

In multipliers using Booth encoding [13] these polynomials
can not be found and this technique is not applicable. It might
be possible to find similar patterns in this situation too.

VI. INCREMENTAL EQUIVALENCE CHECKING

The goal of equivalence checking is to verify that two
circuits C,C ′ produce the same output with regard to the
same input. Equivalence checking can be used to verify circuits
without requiring a word-level specification by showing that a
circuit is equivalent to a “golden” reference circuit. We present
an incremental equivalence checking technique based on [15],
which divides the problem into smaller sub-problems.

This section is not limited to multiplier circuits. It also
applies to all acyclic circuits under the condition that the inputs
and the number of output bits of the circuits are the same. We
generalize Sect. III as follows.

Consider C to be a circuit with l boolean inputs a0, . . . , al−1
and m outputs s0, . . . , sm−1. Each internal gate (output) is
represented by a gate variable g0, . . . , gj . Further let C ′ be a
circuit with m different outputs s′0, . . . , s

′
m−1 but with the

same l boolean inputs a0, . . . , al−1. Like for C each gate
(output) in C ′ is represented by a gate variable g′0, . . . , g

′
k.

By C ∪ C ′ we denote the union of C and C ′ and as before
Gröbner bases for C and C ′ can be derived.

Definition 6 (Equivalence Problem). Let C,C ′ be two circuits.
Then we say C and C ′ are equivalent written C ≡ C ′ if

si − s′i is a PCC for all i = 0, . . . ,m− 1.

Lemma 1. C ≡ C ′ iff
m−1∑
i=0

2i(si − s′i) ∈ J(C ∪ C ′)

Proof. Case “⇒”: Follows from the definition of an ideal.
Case “⇐”: Let ϕ : X → B ⊆ Q be an evaluation of all
variables consistent with PCCs, i.e., circuit semantics, of C
and C ′ as in Def. 2. Note that values of si, s′i in B are
uniquely determined for fixed values of inputs a0, . . . , al−1.
The evaluation is extended to an evaluation of polynomials
in the natural way (the unique homomorphic extension), i.e.,
ϕ : Q[X] → Q. Since ϕ(si), ϕ(s′i) ∈ B it is clear that
ϕ(si − s′i) ∈ {−1, 0, 1}.

Assume C 6≡ C ′, then there is a largest k with 0 ≤ k < m
and ϕ(sk − s′k) 6= 0, which gives the following contradiction

0 = ϕ(

m−1∑
i=0

2i(si − s′i)) =

k∑
i=0

2iϕ(si − s′i)

= 2kϕ(sk − s′k)︸ ︷︷ ︸
∈{−2k,2k}

+

k−1∑
i=0

2iϕ(si − s′i)︸ ︷︷ ︸
∈[−2k+1,2k−1]

6= 0

using
m−1∑
i=0

2i(si − s′i) ∈ J(C ∪ C ′) for the first equation. �

This lemma gives us a word-level specification for gate-level
equivalence checking. What remains is to derive a Gröbner
basis for J(C ∪ C ′) as follows.

Lemma 2. Let C,C ′ be two circuits. Let G,G′ be the
Gröbner bases for the ideals J(C), J(C ′) w.r.t. orderings
≤,≤′, satisfying the conditions of Thm. 1. Let ≤∪ be a reverse
topological order, such that ≤,≤′ are contained in ≤∪. Then
G ∪G′ is a Gröbner basis for J(C ∪ C ′) w.r.t. ≤∪.

Proof. G ∪ G′ contains all gate polynomials and input field
polynomials of C and C ′, but no further polynomials. Since
C,C ′ only share the input variables, the intersection G ∩ G′
only contains the input field polynomials. The input variables
are the smallest elements in ≤,≤′, thus by construction they
are also the smallest elements in ≤∪. Furthermore the term
orderings for the gate polynomials of C and C ′ are still
valid in ≤∪. By the constraints on ≤∪ the leading term of
each polynomial in G ∪ G′ is either the output variable of a
corresponding gate or the square of an input variable. Thus
by the last item in the list about Gröbner bases (cf. Sec. II)
G ∪G′ is a Gröbner basis for J(C ∪ C ′) w.r.t. ≤∪. �

For our incremental equivalence checking technique we use
the definitions of slices and sliced Gröbner basis of [15].

Definition 7. Let C and C ′ be two circuits as above.
1) For each pair of output bits si and s′i we determine its
input cone, namely the gates which si and s′i depends on:

Ii := {gate g | g is in input cone of output si or s′i}

2) We define slices Si as difference of consecutive cones Ii:

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0

Sj

Definition 8 (Sliced Gröbner Bases). Let Gi be the set of
polynomials of the gates of C and C ′ in slice Si cf. Eqn. 1.

Corollary 3. Gi is a Gröbner basis for slice Si.

Proof. Applying Lemma 2. �

Now we define a sequence of relations independent from the
underlying Gröbner basis representation, which yields an ab-
stract characterization of an incremental bit-level equivalence
checking algorithm.



Definition 9. Let C,C ′ be two circuits as above. A sequence
of m polynomials ∆0, . . . ,∆m over the variables of C, C ′ is
called a sequence of slice polynomials if

−∆i + 2∆i+1 + (si − s′i) ∈ J(C ∪ C ′) for all 0 ≤ i < m

Then the Ei = −∆i + 2∆i+1 + (si − s′i) polynomials are
called the slice relations for the sequence ∆0, . . . ,∆m.

Theorem 3. Let C,C ′ be two circuits as above and
∆0, . . . ,∆m be a sequence of slice polynomials as defined
in Def. 9. Then C,C ′ are equivalent (C ≡ C ′) in the sense of
Def. 6 iff 2m∆m −∆0 ∈ J(C ∪ C ′).

Proof. Using Def. 9 we obtain modulo J(C ∪ C ′)
m−1∑
i=0

2i(si − s′i) =

m−1∑
i=0

2i(2∆i+1 −∆i) = 2m∆m −∆0.

�

From this abstract theorem we derive our incremental equiv-
alence checking algorithm. We fix the boundary 2m∆m = 0
and derive ∆i recursively by computing the remainder of
2∆i+1+si−s′i modulo the sliced Gröbner bases. This ensures
that all Ei are contained in J(C ∪ C ′). Note that J(C ∪ C ′)
contains all field polynomials F , thus we add them to G∪G′.
In the end we check if ∆0 = 0. By similar arguments as in the
proof of Thm. 4 in [15] we show correctness of our algorithm.

Algorithm 1: Equivalence Checking Algorithm
Input : Circuits C,C ′ with sliced Gröbner bases Gi

Output: Decide if C and C ′ are equivalent (C ≡ C ′)
1 ∆m ← 0;
2 for i← m− 1 to 0 do
3 ∆i ← Remainder (2∆i+1 + si − s′i, Gi ∪ F )
4 end
5 return ∆0 = 0

Theorem 4. Algorithm 1 is correct.

Proof. By definition Ei is contained in 〈Gi ∪ F 〉 which is
a subset of 〈G ∪ G′ ∪ F 〉 since Gi ⊆ G ∪ G′. Therefore
Ei ∈ J(C ∪ C ′). We show inductively that ∆i is reduced
w.r.t. Hi :=

⋃
j≥i(Gj ∪ F ). For the induction it is required

that si and s′i are reduced w.r.t. to Hi+1, which holds due to
the construction of the sliced Gröbner bases (Def. 8). With
H0 = G∪G′∪F we get ∆0 is reduced w.r.t. G∪G′∪F thus
∆0 = 2m∆m −∆0 ∈ J(C ∪ C ′) iff ∆0 = 0, concluding the
proof using Thm. 3. �

VII. EXPERIMENTS

In our experiments we focus on integer multipliers with
2n output bits and two input bit vectors of size n. We use
the same multiplier types as [15]. The “btor”-benchmarks are
generated by Boolector [12]. The “sp-ar-rc”-multipliers are
part of the AOKI benchmark set [7] which includes several
multiplier architectures. In both multipliers the partial products

TABLE I
IMPROVING THE APPROACH OF [15] BY ADDER REWRITING AND

PARTIAL PRODUCT ELIMINATION

mult n
Mathematica Singular

[15] +Adder Rew. [15] +Adder Rew.
+cs +ppe -s +cs +ppe -s

btor 8 1 1 1 1 0 0 1 1 0 1
btor 16 4 4 1 1 1 1 1 0 0 1
btor 32 36 38 3 2 2 16 19 1 1 1
btor 64 417 443 11 6 5 MO MO 14 9 4
btor 128 TO TO 99 45 39 EE EE EE EE EE

sp-ar-rc 8 1 2 1 1 1 0 0 0 1 0
sp-ar-rc 16 7 7 1 1 1 1 2 0 1 0
sp-ar-rc 32 72 71 2 1 1 39 53 2 1 1
sp-ar-rc 64 874 897 10 6 5 MO MO 15 10 5
sp-ar-rc 128 TO TO 105 50 41 EE EE EE EE EE

are generated as products of two input bits which are then
accumulated by full- and half-adders, as in Fig. 3 for n = 4.

In “btor” full- and half-adders are accumulated in a grid-
like structure, whereas in “sp-ar-rc” full- and half-adders are
accumulated diagonally (see again Fig. 3). We used the avail-
able tool AIGMULTOPOLY [15] and added our optimizations
Adder Rewriting and Partial Product Elimination. We further
included our incremental equivalence checking approach. The
tool takes an AIG [10] representation of a circuit as input and
returns a file containing computation instructions which can
be passed on to Mathematica [20] or Singular [6].

In our experiments we used a standard Ubuntu 16.04
Desktop machine with Intel i7-2600 3.40GHz CPU and 16 GB
of main memory. The (wall-clock) time limit was set to 1200
seconds and the main memory usage was limited to 14GB.
All experimental data is available at http://fmv.jku.at/algeq.

The time in all experiments is listed in seconds (wall-
clock time). We measure from starting AIGMULTOPOLY until
Mathematica and Singular are finished including the time
which the tool needs to generate the files for Mathematica and
Singular (worst case 4 seconds for n = 128) and launching
time of the computer algebra systems. We mark unfinished
experiments by TO (reached time limit), MO (reached memory
limit) or EE (error state). An error occurs in Singular when
the maximum number of 32767 ring variables is exceeded.

In Table I Adder Rewriting (cf. Sect. IV) is applied on top of
the incremental column-wise approach of [15]. Including the
specification of each full- and half-adder to the Gröbner basis
as constraint (+cs), without eliminating any variable, slows
down computation slightly. Apparently, computer algebra sys-
tems can not make use of these redundant constraints.

Applying Adder Rewriting for the sliced Gröbner bases
speeds up the computation substantially. Additionally applying
Partial Product Elimination (+ppe) as described in Sect. V
brings further improvement. Since the considered multipliers
can fully be partionioned into full- and half-adders we never
reduce by a polynomial where the leading term is the sum
output of a full- or half-adder (cf. Sect. IV). Elimination of
these polynomials from the Gröbner basis (-s) brings further
improvements, but loses completeness.
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Fig. 3. Structure of “btor” (left) and “sp-ar-rc” (right) for n = 4 with pij = aibj

TABLE II
INCREMENTAL COLUMN-WISE EQUIVALENCE CHECKING.

mult n -Adder Rew. +Adder Rew. -s
btor vs. sp-ar-rc 8 1 0 1
btor vs. sp-ar-rc 16 10 1 1
btor vs. sp-ar-rc 32 114 3 2
btor vs. sp-ar-rc 64 TO 15 12
btor vs. sp-ar-rc 128 TO 116 98

Table II shows experiments on incremental equivalence
checking (Sect. VI). Mathematica is used as computer algebra
system, due to the more flexible input language and supporting
more variables. We derive the Gröbner bases of the circuits
using the approach of [15] with (4th column) and without (3rd
column) applying Adder Rewriting (Sect. IV). In our current
implementation we do not use the optimization of Sect. V,
since identifying equivalent partial products in two circuits
is more complex and error prone. As in Table I we further
enhance Adder Rewriting by deleting the polynomials where
the leading term is the sum of a full- or half-adder from the
Gröbner basis (5th column). We check the equivalence of the
“btor” and “sp-ar-rc” multipliers.

Despite their architectural similarity, neither Lingeling [2]
nor ABC [1] succeed to verify their equivalence for n = 16
within 10 hours, whereas it takes about a second for our in-
cremental column-wise equivalence checking approach using
Adder Rewriting.

VIII. CONCLUSION

In this paper we improved and extended recent algebraic
approaches for multiplier circuit verification using computer
algebra systems. As first optimization we used full- and half-
adders extracted from the circuit to eliminate from the Gröbner
basis internal variables of these full- and half-adders.

As second optimization we proposed to rewrite the spec-
ification of a multiplier in terms of partial products instead
of circuit inputs to further reduce the Gröbner basis. We also
presented a new incremental equivalence checking technique,
including formal proofs, applicable to all acyclic gate-level
circuits. As future work we want to extend these techniques to
floating point operations, to even more challenging multiplier
architectures and other arithmetic circuits such as dividers.
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