
Solution Counts of Some Prominent
Quantified Boolean Formulas Families

Andreas Plank

Institute for Symbolic

Artificial Intelligence

Johannes Kepler University Linz

Linz, Upper Austria, Austria

andreas.plank@jku.at

Manuel Kauers

Institute for Algebra

Johannes Kepler University Linz

Linz, Upper Austria, Austria

manuel.kauers@jku.at

Martina Seidl

Institute for Symbolic

Artificial Intelligence

Johannes Kepler University Linz

Linz, Upper Austria, Austria

martina.seidl@jku.at

Abstract
In contrast to models of propositional formulas, which are sim-

ply Boolean variable assignments, solutions of quantified Boolean

formulas (QBFs) have a tree structure reflecting the dependencies

between universal and existential variables. The study of count-

ing QBF solutions has gained momentum in recent years, but it is

practically limited by the absence of benchmark sets consisting of

formulas for which the number of solutions is known. In this paper,

we analyse several crafted QBF formula families which are widely

used in the field of proof complexity. We provide scalable bench-

mark sets consisting of true and false formulas that are essential

for verifying the correctness of QBF solution counters.

CCS Concepts
• Theory of computation→ Logic and verification.

Keywords
QBF, Model Counting, Formula Families

ACM Reference Format:
Andreas Plank, Manuel Kauers, and Martina Seidl. 2025. Solution Counts of

Some Prominent Quantified Boolean Formulas Families. In Proceedings of
ACM SAC Conference (SAC’25). ACM, New York, NY, USA, Article 4, 8 pages.

https://doi.org/10.1145/3672608.3707850

1 Introduction
Over the last years many problems from different application fields,

like artificial intelligence, game theory and formal verification,

have been solved by encoding them to quantified Boolean formulas

(QBFs) [5]. Consequently, much progress has been made on solving

techniques as well as on development of theory, partly based on

generalizing known techniques from SAT (e.g. Q-resolution), partly

being developed especially for QBFs (e.g. prenexing strategies).

QBFs extend propositional formulas with existential and universal

This research was funded in part by the Austrian Science Fund (FWF) 10.55776/COE12

and the State of Upper Austria (LIT AI Lab). Manuel Kauers was supported by the

Austrian FWF grants 10.55776/PAT8258123, 10.55776/I6130, and 10.55776/PAT9952223.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC’25, March 31-April 4, 2025, Sicily, Italy
© 2025 ACM.

ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/10.1145/3672608.3707850

quantifiers over Boolean variables. This implies that unlike in SAT,

(counter-)models of QBFs are represented in a tree structure. Each

node corresponding to a universal (resp. existential) variable has

two child nodes, and each node representing an existential (resp.

universal) variables has one child. While the model counting prob-

lem in SAT (#SAT) is a well-established area of research, counting

the number of models for QBFs (#QBF) has mostly had only theo-

retical contributions in the past [1, 8, 11]. The first model counters

where published in recent years. In [19] an enumerative approach

for counting models (i.e assignments of the existential variables

such that the QBF evaluates to true) for true QBFs on the first quan-

tifier level was introduced, utilizing blocking clauses. Dually, the

authors also introduced an algorithm for counting the number of

counter-models of false QBFs on the outer quantifier level. This

approach was directly adopted from SAT as the solutions of vari-

ables in the outermost quantifier block are truth constants. A more

general approach was presented in [17], where (counter-)model

counting theory was lifted to the second quantifier level. In this

setting, tree models for true QBFs and tree counter-models for false

QBFs are counted. For both true and false QBFs, counting the solu-

tions now requires capturing the dependencies of the variables to

the previous quantifier levels, where blocking clauses for true QBFs

are now replaced by sets of blocking Skolem functions, respectively

cubes for false QBFs are replaced by sets of blocking Herbrand func-

tions. The authors also introduced two different notions of solutions

of a QBF, capturing the combinatorial possibilities based on the tree

(counter-)models and the number of Skolem (resp. Herbrand) func-

tions. An approximate model counter utilizing connections between

function counting and propositional model counting was presented

in [18]. The approach described in this paper showed promising

results handling similar benchmark sets as state-of-the-art QBF

solvers, proven to be accurate up to some theoretical assumptions.

To validate the accuracy of current and future (counter-)model

counting methods, it is crucial to have diverse and scalable for-

mulas whose number of (counter-)models is known. In this work

(counter-)model counts for several widely used QBF families are

presented. Furthermore, we present key metrics and experimental

results from the exact QBF model counters, d4 [12] for true formu-

las and QCounter [17] for false formulas. Our goal is to provide

insights into the efficiency of these counters, while also emphasiz-

ing the significance of encodings and the quantifier structures of

the individual formulas.

First, necessary preliminaries are presented in Section 2. Thenwe

present results for QParity formula family in Section 3, before we

discuss Equality formulas in Section 4. Results for Equality formulas

https://orcid.org/0000-0002-2653-0689
https://orcid.org/0000-0001-8641-6661
https://orcid.org/0000-0002-3267-4494
https://doi.org/10.1145/3672608.3707850
https://doi.org/10.1145/3672608.3707850

SAC’25, March 31-April 4, 2025, Sicily, Italy Anonymous

with a nested quantifier structure are presented in Section 5. Finally,

we present metrics and counts for formulas of the Kleine Büning,

Karpinski and Flögel class, before concluding the paper in Section 7.

2 Preliminaries
We consider quantified Boolean formulas of the form Π.𝜙 . Here,
Π = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 is called the quantifier prefix, where 𝑥1, . . . , 𝑥𝑛
are pairwise distinct Boolean variables and𝑄𝑖 ∈ {∀, ∃}. The matrix
𝜙 is a propositional formula built from the Boolean variables of

the prefix and standard logical connectives ¬ (negation), ∧ (con-

junction), ∨ (disjunction), → (implication), ↔ (equivalence) and ⊕
(exclusive or). The matrix 𝜙 is in conjunctive normal form (CNF) if 𝜙
is a conjunction of clauses, where a clause is a disjunction of literals.

A literal is a variable or a negated variable. For a literal 𝑙 , var (𝑙) = 𝑥
if 𝑙 = 𝑥 or 𝑙 = ¬𝑥 . Furthermore

¯𝑙 = 𝑥 , if 𝑙 = ¬𝑥 and ¯𝑙 = ¬𝑥 otherwise.
For a QBF Φ = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 .𝜙 , the set of its variables is denoted

by var (Φ) = {𝑥1, . . . , 𝑥𝑛}. An assignment 𝜎 of a QBF Φ = Π.𝜙 is

defined by a set of literals over (a subset of) var (Φ) such that there

is no 𝑙 ∈ 𝜎 with ¬𝑙 ∈ 𝜎 . We define var (𝜎) = {var (𝑙) | 𝑙 ∈ 𝜎}. If
var (𝜎) = var (Φ), then 𝜎 is called a full assignment, otherwise it is
called a partial assignment.

The QBF Φ |𝜎 = Π′ .𝜙 |𝜎 denotes the QBF obtained by setting

all variables 𝑥 ∈ var (𝜎) to true if 𝑥 ∈ 𝜎 and to false if ¬𝑥 ∈ 𝜎 ,

simplifying the matrix, and removing them from Π resulting in Π′
.

For assigning a single variable to true (resp. to false) we also write

Φ |𝑥 (resp. Φ |¬𝑥). A QBF ∀𝑥Π.𝜙 is true iff Π.𝜙 |𝑥 and Π.𝜙 |¬𝑥 are true.

Dually, ∃𝑥Π.𝜙 is true iff Π.𝜙 |𝑥 or Π.𝜙 |¬𝑥 is true. The semantics of

a QBF Π.𝜙 induces a variable ordering 𝑥𝑖 <Π 𝑥 𝑗 for 𝑄𝑖 ≠ 𝑄 𝑗 and

𝑖 < 𝑗 . A model of a true QBF Φ = Π.𝜙 with |var (Φ) | = 𝑛 is a tree

of height 𝑛 + 1 such that every node at level 𝑘 ∈ {1, . . . , 𝑛} in the

tree corresponds to variable 𝑥𝑘 in the ordered prefix Π. A node

at level 𝑘 has two children if 𝑄𝑘 = ∀ and one child if 𝑄𝑘 = ∃. A
path from the root to the leaves represents a full assignment of the

variables var (𝜙), under which thematrix𝜙 evaluates to true. Dually,

a counter model for a false QBF is defined as a tree counter model
where each node at level 𝑘 has two children if 𝑄𝑘 = ∃, and one

child if 𝑄𝑘 = ∀. An example of a tree model is shown in Figure 2.

The number of distinct QBF (counter-) models of a QBF Φ =

Π.𝜙 is denoted by #(Φ). Notably, the number of (counter-)models

is dependent on the given quantifier structure, which becomes

apparent in the following theorem.

Theorem 2.1. Let Φ = 𝑄𝑥Π.𝜙 . Then #(Φ) = #(Π.𝜙 |𝑥) ·#(Π.𝜙 |¬𝑥)
if 𝑄 = ∀ and #(Φ) = #(Π.𝜙 |𝑥) + #(Π.𝜙 |¬𝑥) if 𝑄 = ∃.

Proof. First, assume that 𝑄 = ∀. Models of Φ are the set of

trees whose root corresponds to the variable 𝑥 and is connected

to two sub-trees 𝑇0 and 𝑇1 such that 𝑇0 is a model of Φ |¬𝑥 and

𝑇1 is a model of Φ |𝑥 . There are #(𝜙 |𝑥) · #(𝜙 |¬𝑥) such trees hence

#(Φ) = #(𝜙 |𝑥) · #(𝜙 |¬𝑥).
Now assume 𝑄 = ∃. Again, the models of Φ are the set of trees

whose root 𝑟 is labeled by 𝑥 . If 𝑟 is connected to a subtree 𝑇 with

root 𝑟 ′ via an edge (𝑟, 𝑟 ′) that is labeled with a 0 (i.e. variable 𝑥 is

set to false), then 𝑇 is a model of 𝜙 |¬𝑥 . If the edge (𝑟, 𝑟 ′) is labeled
with a 1 (i.e. variable 𝑥 is set to true), then𝑇 is a model of 𝜙 |𝑥 . This
implies that there are #(𝜙 |¬𝑥) models ofΦ such that (𝑟, 𝑟 ′) is labeled
by 0 and #(𝜙 |𝑥) models of Φ such that (𝑟, 𝑟 ′) is labeled by 1. Since

Φ𝑘 = ∀𝑥1 . . . 𝑥𝑛 ∃𝑦 ∃𝑧2 . . . 𝑧𝑛
(𝑧2 ∨ 𝑥1 ∨ 𝑥2) ∧ (𝑧2 ∨ 𝑥1 ∨ 𝑥2)
(𝑧2 ∨ 𝑥1 ∨ 𝑥2) ∧ (𝑧2 ∨ 𝑥1 ∨ 𝑥2)
(𝑧𝑖 ∨ 𝑧𝑖−1 ∨ 𝑥𝑖) ∧ (𝑧𝑖 ∨ 𝑧𝑖−1 ∨ 𝑥𝑖) for 3 ≤ 𝑖 < 𝑘
(𝑧𝑖 ∨ 𝑧𝑖−1 ∨ 𝑥𝑖) ∧ (𝑧𝑖 ∨ 𝑧𝑖−1 ∨ 𝑥𝑖) for 3 ≤ 𝑖 < 𝑘
(𝑦 ∨ 𝑧𝑛) ∧ (𝑦 ∨ 𝑧𝑛)

Figure 1: Structure of formulas of the Parity True formula
for 𝑘 > 1.

⊤ ⊤ ⊤ ⊤

𝑥1:

𝑥2:

𝑦:

𝑧2:

𝜙 :

Figure 2: Model of the PARITYTrue Formula with 𝑛 = 2,
where dashed lines indicate that the according variable is set
to false. Solid lines indicate that the variable is set to true.

different labels of the edges (𝑟, 𝑟 ′) imply disjoint models of the QBF,

the model count can be described by #(Φ) = #(Π.𝜙 |𝑥) + #(Π.𝜙 |¬𝑥).
□

3 The QParity Formula Family
Parity formulas [4] are the classic example of formulas not effi-

ciently computable in 𝐴𝐶0
[6], a certain class in circuit complexity.

In proof complexity, this hardness is employed to argue that formu-

las of the Parity family do not have short proofs in Q-resolution.

As a consequence, several separations to other proof systems that

have short proofs for these formulas follow. We will discuss both

true and false parity formulas that share a similar structure except

for the prefix.

3.1 The ParityTrue Family
Description of the Formula Family: Parity formulas are of the

form 𝑃𝐴𝑅𝐼𝑇𝑌𝑇𝑟𝑢𝑒 (𝑥1, ..., 𝑥𝑛) = (𝑥1 ⊕ · · · ⊕ 𝑥𝑛) (where ⊕ denotes

the exclusive-or), and are used to determine if the number of true

variables is odd [4]. Parity formulas are the classic example of

formulas that can not be represented by 𝐴𝐶0
[6] circuits.

QBFs based on the parity formula family are of the form

𝑃𝐴𝑅𝐼𝑇𝑌𝑇𝑟𝑢𝑒 (𝑥1, . . . , 𝑥𝑛, 𝑦) = ((𝑥1 ⊕ . . . ⊕ 𝑥𝑛) ⊕ 𝑦), where the

prefix for true formulas is ∀𝑥1 . . . 𝑥𝑛∃𝑦 [7]. Parity formulas can be

classified by the parameter 𝑛, quantifying the number of universally

quantified variables and clauses.

Transformation to PCNF is done using Tseitin transformation [20],

where the definition variables 𝑧 𝑗 are appended to the innermost

quantifier block. The resulting formula in PCNF has prefix

∀𝑥1 . . . 𝑥𝑛 ∃𝑦 ∃𝑧2 . . . 𝑧𝑛 and clauses (with 2 < 𝑖 ≤ 𝑛) as depicted in

Figure 1.

Solution Count: When analyzing the given formula it is suf-

ficient to consider the original formula in non-CNF. All Tseitin

QBF Model Counting - Formula Families SAC’25, March 31-April 4, 2025, Sicily, Italy

variables 𝑧2 . . . 𝑧𝑛 are bound by the values of the universal vari-

ables ∀𝑥1, . . . , 𝑥𝑛 , and therefore can not add additional models to

the model count.

Theorem 3.1. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛𝑡ℎ true
parity formula is

#(𝑃𝐴𝑅𝐼𝑇𝑌𝑇𝑟𝑢𝑒 (𝑛)) = 1.

Proof. In order to satisfy each sub-tree generated by one com-

plete assignment of the universal variables, 𝑦 has to be set to the

same value as ¬((𝑥1 ⊕ · · · ⊕ 𝑥𝑛)) under the respective assignment

of the universal variables. This means that for each subtree there is

only one possible choice for the existential variable 𝑦. The values of

the other existential variables are fixed by the formula they define.

In consequence, the total model count is 1. □

3.2 The Parity False Family
The structure of Parity False formulas is identical to that of Parity

True formulas; however, the only difference is that some quantifiers

in the prefix are switched. Hence, formulas with generation param-

eter 𝑛 have prefix ∃𝑥1 . . . 𝑥𝑛∀𝑦∃𝑧2 . . . 𝑧𝑛 and clauses (2 < 𝑖 ≤ 𝑛) as
depicted in Figure 1.

Solution Count: Contrary to true parity formulas, we can no

longer satisfy the equation ¬((𝑥1 ⊕ · · · ⊕ 𝑥𝑛) ⊕ 𝑦), as 𝑦 can always

be chosen to the opposite polarity of (𝑥1 ⊕ · · · ⊕ 𝑥𝑛). However, this
is the only counter-model of the formula, hence we can formulate

the following theorem:

Theorem 3.2. For 𝑛 ∈ N, 𝑛 > 2 the counter-model count for the
𝑛th false parity formula is

#(𝑃𝐴𝑅𝐼𝑇𝑌𝐹𝑎𝑙𝑠𝑒 (𝑛)) = 1.

Proof. Dual to the proof of Theorem 3.1. □

3.3 Evaluation
Key metrics for true and false parity formulas are summarized in

Table 1, wherewe also included runtime results of themodel counter

d4 [12], which has been modified to support QBF formulas for true

formulas, and QCounter [16] for false formulas. All experiments in

this paper were performed on a cluster of dual-socket AMD EPYC

7313 @ 16 × 3.7GHz machines with 32GB memory limit and 1800

seconds as timeout (TO).

Noticeably, we observe better runtime results for d4 across all
input parameters, which is in accordance with the results presented

in [12]. Although the number of solutions is constantly one, the

runtimes of the counters reflect the hardness of the problem in their

runtime. For QCounter, the formulas become hard already at a very

small 𝑘 . This is not surprising, because internally it relies on the

solver DepQBF [13] which is a solver based on Q-resolution [9] for

which the parity formulas are inherently hard.

4 Equality Formulas
Equality formulas were first introduced in [3] in the context of

game theory, defining formulas with unique winning strategies

Variables and Clauses Time (T) Time (F)

𝑛 #V #Cls #∃V #∀V d4 QC QC

2 4 6 2 2 0.02 0.13 0.14

5 10 18 5 5 0.01 0.14 0.14

10 20 38 10 10 0.02 1.35 0.58

15 30 58 15 15 0.16 TO 915.12

20 40 78 20 20 5.89 TO TO

25 50 98 25 25 236.86 TO TO

𝑘 2𝑘 4𝑘 − 2 𝑘 𝑘 - - -

Table 1: Key metrics and runtime for true and false parity
formulas. The results produced by the model counter d4 re-
flect the true variant of the parity formulas. In contrast, the
results from the (counter-)model QCounter (QC) describe
outcomes for both true and false parity formulas.

for each instance. These formulas are proven to be hard for QU-

resolution [21], a proof system that is more powerful than Q-

resolution as shown in [3].

As for Parity Formulas, both true and false variants can be de-

fined. The differences lie in the quantifier prefix, while the proposi-

tional matrix remains identical for both variants.

4.1 The EqualityTrue Family
Originally, the Equality formulas are a family of false formulas [3].

Following the idea of [7] these formulas can be converted into

true formulas by modifying the prefix. The formulas describe the

equality of 𝑛 existential and 𝑛 universal variables, where at least

one of the equalities needs to be satisfied (see next section). For the

𝑛th equality formula this property can be expressed with the QBF

Π.𝜙 where

Π = ∀𝑥1, . . . , 𝑥𝑛∃𝑦1, . . . , 𝑦𝑛∃𝑙1 . . . 𝑙𝑛
and

𝜙 =

𝑛∨
𝑖=1

(𝑥𝑖 ↔ 𝑦𝑖)

≡ (𝑙1 → (𝑥1 ↔ 𝑦1)) ∧ · · · ∧ (𝑙𝑛 → (𝑥𝑛 ↔ 𝑦𝑛)) ∧ (𝑙1 ∨ · · · ∨ 𝑙𝑛).

Hereby Plaisted and Greenbaum [14] transformation was used to

minimize the number of generated clauses in the resulting CNF.

Finally, each sub-formula (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) can be converted to

CNF by rewriting it to (¬𝑙𝑖 ∨ 𝑥𝑖 ∨ ¬𝑦𝑖) ∧ (¬𝑙𝑖 ∨ ¬𝑥𝑖 ∨ 𝑦𝑖). The
resulting formula for 𝑘 > 1 is depicted in Figure 3.

Solution Count: Since 𝑉 = {𝑥1, . . . , 𝑥𝑛} are universal variables,
we can fix an assignment over 𝑉 and use Theorem 2.1 to compute

Φ𝑘 = ∀𝑥1 . . . 𝑥𝑘∃𝑦1 . . . 𝑦𝑘∃𝑙1 . . . 𝑙𝑘
(¬𝑥𝑖 ∨ 𝑦𝑖 ∨ ¬𝑙𝑖) ∧ for 1 ≤ 𝑖 ≤ 𝑘
(𝑥𝑖 ∨ ¬𝑦𝑖 ∨ ¬𝑙𝑖) ∧ for 1 ≤ 𝑖 ≤ 𝑘
(𝑙1 ∨ · · · ∨ 𝑙𝑘)

Figure 3: Structure of formulas of the Equality
True formula for 𝑘 > 1.

SAC’25, March 31-April 4, 2025, Sicily, Italy Anonymous

⊤ ⊤ ⊤ ⊤

𝑥1:

𝑥2:

𝑦1:

𝑦2:

𝑙1:

𝑙2:

𝜙 :

Figure 4: Model of the EqualityTrue Formula with 𝑛 = 2,
where dashed lines indicate that the according variable was
set to false, else the variable was set to true.

the model count by multiplying the propositional model counts of

the resulting formulas: #Φ =
∏

𝜎∈2
𝑉 #𝜙 |𝜎 where 2

𝑉
denotes the

sets of all possible assignments of variables 𝑉 . It is easy to show

that #𝜙 |𝜎 = #𝜙 |𝜏 =𝑚 for any 𝜎, 𝜏 ∈ 2
𝑉
, hence #Φ =𝑚2

𝑛
.

Now, let 𝑥𝑘
𝑖
(resp. 𝑦𝑘

𝑖
), be the 𝑖th, 1 ≤ 𝑖 ≤ 𝑘 , out of 𝑘 chosen vari-

ables of the set {𝑥1, . . . , 𝑥𝑛} (resp. set {𝑦1, . . . , 𝑦𝑛}). The number of

different possibilities to choose 𝑘 universal variables {𝑥𝑘
1
, . . . , 𝑥𝑘

𝑘
}

and existential variables {𝑦𝑘
1
, . . . , 𝑦𝑘

𝑘
} such that 𝑥𝑘

𝑖
= 𝑦𝑘

𝑖
for all

𝑖 ∈ {1, . . . , 𝑘} is
(𝑛
𝑘

)
. In order to satisfy a QBF encoding the equality

problem we still need to set values for the variables {𝑙1, . . . , 𝑙𝑛}.
Excluding the assignment which sets all {𝑙1, . . . , 𝑙𝑛} which always

falsifies the last clause of the formula, we can set 𝑘 or these vari-

ables freely. This is easy to see as 𝑘 clauses are already satisfied

by the satisfied 𝑘 equalities. Consequently, the number of possible

assignments of the {𝑙1, . . . , 𝑙𝑛} is given by 2
𝑘 − 1.

For a single assignment of {𝑥1, . . . , 𝑥𝑛} the number of possible

models for having exactly 𝑘 satisfying assignments is given by(𝑛
𝑘

)
(2𝑘 − 1). Summing over all values 𝑘 and considering all possible

assignments {𝑥1, . . . , 𝑥𝑛} as calculated above yields(𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
(2𝑘 − 1)

)
2
𝑛

. (1)

A closed form of Equation (1) is stated in the following theorem:

Theorem 4.1. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛𝑡ℎ

EqualityTrue formula is

#(𝐸𝑄𝑇𝑟𝑢𝑒 (𝑛)) = (3𝑛 − 2
𝑛)2

𝑛

. (2)

Proof. We have

∑𝑛
𝑘=1

(𝑛
𝑘

)
(2𝑘 − 1) 2

0=1

=
∑𝑛
𝑘=0

(𝑛
𝑘

)
(2𝑘 − 1) =∑𝑛

𝑘=0

(𝑛
𝑘

)
2
𝑘 − ∑𝑛

𝑘=0

(𝑛
𝑘

)
= 3

𝑛 − 2
𝑛
, using the binomial theorem∑𝑛

𝑘=0

(𝑛
𝑘

)
𝑎𝑘 = (𝑎 + 1)𝑛 in the last step.

□

4.2 The EqualityFalse Family
Similar to before, formulas from the EqualityTrue formula family [3]

describe the equality of 𝑛 existential and 𝑛 universal variables.

However, by flipping the quantifiers of the first two blocks, we

now seek 𝑛 existential variables such that at least one is equal to 𝑛

universal variables. Since it is always possible to set each variable

Φ𝑘 = ∃𝑥1 . . . 𝑥𝑘∀𝑦1 . . . 𝑦𝑘∃𝑙1 . . . 𝑙𝑘
(¬𝑥𝑖 ∨ 𝑦𝑖 ∨ ¬𝑙𝑖) ∧ for 1 ≤ 𝑖 ≤ 𝑘
(𝑥𝑖 ∨ ¬𝑦𝑖 ∨ ¬𝑙𝑖) ∧ for 1 ≤ 𝑖 ≤ 𝑘
(𝑙1 ∨ · · · ∨ 𝑙𝑘)

Figure 5: Structure of formulas of the EqualityFalse formula
for 𝑘 > 1.

⊥ ⊥ ⊥ ⊥

𝑥1:

𝑥2:

𝑦1:

𝑦2:

𝑙1:

𝑙2:

𝜙 :

Figure 6: Model of the EqualityFalse Formula with 𝑛 = 2,
where dashed lines indicate that the according variable was
set to false, else the variable was set to true.

to have the opposite value of the corresponding variable, which

results in a false formula.

For the 𝑛th EqualityFalse formula this property can be expressed

with the QBF Π.𝜙 where

Π = ∃𝑥1 . . . 𝑥𝑛∀𝑦1 . . . 𝑦𝑛∃𝑙1 . . . 𝑙𝑛
and

𝜙 = (𝑙1 → (𝑥1 ↔ 𝑦1)) ∧ · · · ∧ (𝑙𝑛 → (𝑥𝑛 ↔ 𝑦𝑛)) ∧ (𝑙1 ∨ · · · ∨ 𝑙𝑛).
Each sub-formula (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) can be converted to CNF by

rewriting it to (¬𝑙𝑖 ∨ 𝑥𝑖 ∨ ¬𝑦𝑖) ∧ (¬𝑙𝑖 ∨ ¬𝑥𝑖 ∨ 𝑦𝑖). The resulting
formula for 𝑘 > 1 is depicted in Figure 5.

Solution Count: As mentioned above, for an assignment to

falsify an EqualityFalse formula, all universal variables must be set

to the opposite value of their corresponding variables (i.e. 𝑥𝑖 ↮ 𝑦𝑖).

Hence, this assignment is the only possible counter-model of a

formula of the EqualityFalse family.

Theorem 4.2. For 𝑛 ∈ N, 𝑛 > 2 the counter-model count for the
𝑛th EqualityFalse formula is

#(𝐸𝑄𝐹𝑎𝑙𝑠𝑒 (𝑛)) = 1. (3)

4.3 Evaluation
Key metrics for the Equality formula family are summarized in

Table 2, including the runtime results of the model counter d4 for
the true variant, and QCounter for the false variant. Notably, d4
consistently outperforms QCounter across all input parameters 𝑛,

which is particularly remarkable given the exponential growth in

models for the EqualityTrue formulas.

5 The EqualityTrueNested Family
Formulas for the EqualityTrueNested family implement the same

behavior as the preceding formulas EqualityTrue of Section 4.1.

The propositional matrices are identical, however contrary to the

QBF Model Counting - Formula Families SAC’25, March 31-April 4, 2025, Sicily, Italy

Variables and Clauses #Solutions Runtime (in s)

𝑛 #Variables #Clauses #∃Variables #∀Variables True False d4 QCounter

2 6 5 4 2 625 1 0.01 0.15

5 15 11 10 5 2.38 · 10
74

1 0.02 0.13

10 30 21 20 10 8.75 · 10
4877

1 0.06 10.51

15 45 31 30 15 1.27 · 10
234482

1 0.78 TO

20 60 41 40 20 9.25 · 10
10005820

1 34.28 TO

25 75 51 50 25 2.08 · 10
400237740

1 1525.50 TO

𝑘 2 · 𝑘 4 · 𝑘 − 2 𝑘 𝑘 (3𝑘 − 2
𝑘)2

𝑘
1 - -

Table 2: Key metrics and runtime for Equality formulas. The results produced by the model counter d4 reflect the true variant
of the Equality formulas. In contrast, the results from the (counter-)model counter QCounter describe the corresponding
outcomes for false Equality formulas.

aforementioned EqualityTrue formulas, the quantifiers of the prefix

are now nested. Even though this does not influence the inherent

meaning of the formula, Theorem 2.1 indicates that the model count

differs from the non-nested case. Another factor that we have to

consider is the encoding used to transform the formula into CNF.

5.1 Tseitin Encoding
The structure of the formula using a Tseitin encoding can be de-

scribed as follows:

Π = ∀𝑥1∃𝑦1 . . .∀𝑥𝑛∃𝑦𝑛∃𝑙1 . . . 𝑙𝑛

and

𝜙 = (𝑙1 ↔ (𝑥1 ↔ 𝑦1))∧· · ·∧(𝑙𝑛 ↔ (𝑥𝑛 ↔ 𝑦𝑛))∧(𝑙1∨· · ·∨𝑙𝑛). (4)

Each sub-formula (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) can be converted to CNF by

rewriting it to (¬𝑙𝑖 ∨𝑥𝑖 ∨¬𝑦𝑖) ∧ (¬𝑙𝑖 ∨¬𝑥𝑖 ∨𝑦𝑖) ∧ (𝑙𝑖 ∨¬𝑥𝑖 ∨𝑦𝑖) ∧
(𝑙𝑖 ∨ 𝑥𝑖 ∨ ¬𝑦𝑖). The resulting propositional matrix is equal to the

matrix shown in Figure 5.

Solution Count: Analyzing the propositional matrix of the for-

mula using Tseitin transformation, it is apparent that the Tseitin

variables 𝑙1, . . . , 𝑙𝑛 are fully determined by the values of the cor-

responding equivalences (𝑥1 ↔ 𝑦1) to (𝑥𝑛 ↔ 𝑦𝑛). Hence we can
omit these variables from our calculations without changing the

model count of the underlying formula. The model count of the

formula can then be defined using a case distinction on the first

equivalence (𝑥1 ↔ 𝑦1). If this equivalence evaluates to false, one
of the other 𝑛 − 1 equivalences has to hold in order to satisfy the

formula. This implies that the model count in this case is equal to

#𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛−1). In the other case where the first equivalence
(𝑥1 ↔ 𝑦1) holds, equation (4) evaluates to true regardless of the val-
ues of all other 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑠 . Hence, in this case we have to consider

all combinations of the values the variables 𝑥2, . . . , 𝑥𝑛, 𝑦2, . . . , 𝑦𝑛 ,

which are aggregated according to Theorem 2.1, where the prod-

ucts can be replaced by powers of two due to the symmetry of the

formula. Consequently the number of solutions 𝑓 (𝑛) in this case

satisfies the recursion 𝑓 (𝑛) = (𝑓 (𝑛 − 1) · 2)2, 𝑛 ≥ 2, and 𝑓 (1) = 1.

Finally when we add the count of both cases (𝑦1 is an existential

variable), we square the result (𝑥1 is an universal variable) to obtain

the final result.

Theorem 5.1. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛th
EqualityTrueNested formula using Tseitin transformation is

#(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛)) = (#(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛 − 1)) + 2
2
𝑛−2)2

(5)

#(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (1)) = 1 (6)

Proof. It remains to show that the recursion 𝑓 (𝑛) = (𝑓 (𝑛 −
1) · 2)2, 𝑛 ≥ 2, with 𝑓 (1) = 1 has the solution 2

2
𝑛−2

for 𝑛 ≥ 2.

𝑓 (2) = (1 · 2)2 = 4 which is equal to 2
2

2−2 = 4, hence the initial

case is fulfilled. Now assume the relation holds for 𝑛, and we show

it for 𝑛 + 1. Since 𝑓 (𝑛 + 1) = (𝑓 (𝑛) · 2)2 = (22
𝑛−2 · 2)2 = 2

2
𝑛+1−2

we

have proven that 𝑓 (𝑛) = 2
2
𝑛−2

for all 𝑛. Hence equation (5) follows.

□

5.2 Plaisted and Greenbaum Encoding
The formula obtained from the Plaisted and Greenbaum encoding

closely resembles the formula derived from the Tseitin encoding.

Instead of the equivalences used before, now implications are used,

increasing the number of models we can find.

The structure of the formula using a Plaisted and Greenbaum

encoding is as follows:

Π = ∀𝑥1∃𝑦1 . . .∀𝑥𝑛∃𝑦𝑛∃𝑙1 . . . 𝑙𝑛

and

𝜙 = (𝑙1 → (𝑥1 ↔ 𝑦1)) ∧ · · · ∧ (𝑙𝑛 → (𝑥𝑛 ↔ 𝑦𝑛)) ∧ (𝑙1 ∨ · · · ∨ 𝑙𝑛) .

Each sub-formula (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) can be converted to CNF by

rewriting it to (¬𝑙𝑖 ∨ 𝑥𝑖 ∨ ¬𝑦𝑖) ∧ (¬𝑙𝑖 ∨ ¬𝑥𝑖 ∨ 𝑦𝑖).
Solution Count: Computing the number of models is now a bit

more sophisticated since the values for 𝑙1, . . . , 𝑙𝑛 , now are not fully

dependent on the corresponding values of (𝑥𝑘 ↔ 𝑦𝑘), 𝑘 ∈ {1, . . . , 𝑛},
but can be chosen freely under some constraints. More specifically,

when (𝑥𝑘 ↔ 𝑦𝑘) evaluates to false for a specific index 𝑘 , the corre-

sponding variable 𝑙𝑘 can be set arbitrarily as long as at least one

value 𝑙 𝑗 , 𝑗 ∈ {1, . . . , 𝑛} is true. This behavior can be described us-

ing function 𝑎(𝑘, 𝑙), which takes the number of variables 𝑙 which

can be chosen arbitrarily, as well as the level in the assignment-

tree 𝑘 (which again influences the aggregation we have to perform

according to Theorem 2.1). The base case at the lowest level of

the assignment-tree is defined by 𝑎(0, 𝑙) = 2
𝑙 − 1, which describes

SAC’25, March 31-April 4, 2025, Sicily, Italy Anonymous

the combinations of the variables 𝑙 which can be chosen arbitrar-

ily minus the assignment where all 𝑙𝑘 , 𝑘 ∈ {1, . . . , 𝑛} are set to

false, which would falsify the last clause of the formula. For level

𝑘 ∈ {2, . . . , 𝑛} the recursion can be defined according to Theorem

2.1, which yields 𝑎(𝑘, 𝑙) = (𝑎(𝑘−1, 𝑙 +1) + (𝑎(𝑘−1, 𝑙))2
. The number

of models for generation parameter 𝑛 can then be simply read of

by setting the 𝑘 = 𝑛 and 𝑙 = 0 (i.e. at level 𝑛 of the assignment-tree

there are no longer any other possibilities for parameter 𝑙). This

computation is also depicted in Figure 7 and can be quantified by

the following theorem.

Theorem 5.2. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛th
EqualityTrueNested formula is

#(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛)) = 𝑎(𝑛, 0) (7)

where

𝑎(𝑘, 𝑙) = (𝑎(𝑘 − 1, 𝑙 + 1) + 𝑎(𝑘 − 1, 𝑙))2
(8)

𝑎(0, 𝑙) = 2
𝑙 − 1 (9)

Proof. The straightforward induction proof of the closed form

of 𝑎(𝑘, 𝑙) is omitted for brevity. □

5.3 Plaisted and Greenbaum Encoding –
Alternative Quantifier Structure

Another method to modify the formula involves shifting the quan-

tifiers of the variables 𝑙𝑘 , 𝑘 ∈ {1, . . . , 𝑛} in the prefix, to the corre-

sponding quantifier blocks of 𝑥𝑘 and𝑦𝑘 . As discussed above, Tseitin

variables do not affect the number of models for this formula family.

Hence, we do not need to calculate the model count anew for this

encoding. The formula with a Plaisted and Greenbaum encoding

looks as follows.

Π = ∀𝑥1∃𝑦1∃𝑙1 · · · ∀𝑥𝑛∃𝑦𝑛∃𝑙𝑛
and

𝜙 = (𝑙1 → (𝑥1 ↔ 𝑦1)) ∧ · · · ∧ (𝑙𝑛 → (𝑥𝑛 ↔ 𝑦𝑛)) ∧ (𝑙1 ∨ · · · ∨ 𝑙𝑛) .
As before each sub-formula (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) can be converted to

CNF by rewriting it to (¬𝑙𝑖 ∨ 𝑥𝑖 ∨ ¬𝑦𝑖) ∧ (¬𝑙𝑖 ∨ ¬𝑥𝑖 ∨ 𝑦𝑖).
Solution Count: The model count of this formula family can

be computed recursively using Theorem 3.1. Notably, the formula

is completely symmetric with respect to the universal quantifiers,

which allows us to replace the products of Theorem 3.1 for the uni-

versal variable on the outer quantifier level with powers of two. Fur-

ther – without loss of generality – we only need to consider the case

where 𝑥1 = ⊤, and square the count for the sub-tree. We can further

distinguish cases based on the value of the existential variable 𝑦1.

When𝑦1 = ⊥ (i.e. 𝑥1 ↮ 𝑦1), the relation (𝑙1 → (𝑥1 ↔ 𝑦1)) requires
the Tseitin variable 𝑙1 to be set to ⊥. This means that the model

counting problem for the rest of the formula simplifies to counting

the number ofmodels for 𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛−1). By applying similar

reasoning, we can conclude that the formula reduces to the problem

of counting the number of models for 𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛 − 1) under
the assignments 𝑦1 = ⊤ and 𝑙1 = ⊥. If 𝑦1 = ⊤ and 𝑙1 = ⊤, the
clause (𝑙1 ∨ · · · ∨ 𝑙𝑘) is true, hence all other variables can be set

arbitrarily as long as (𝑙𝑖 → (𝑥𝑖 ↔ 𝑦𝑖)) is true for all 𝑖 ∈ {2, . . . , 𝑛}.
By applying Theorem 2.1, we obtain 3

2
𝑛−2

such assignments. Since

𝑦1 and 𝑙1 are existential variables, we have to sum these counts,

1.58e+22

1.26e+11

1.89e+8

13745

289

17

□2

13456

□2

1.26e+11

354512

13456

116

16

4

1 3

□2

116

10

3 7

□2

□2

341056

584

100

10

3 7

484

22

7 15

□2

□2

□2

□2

𝑛 = 2

𝑛 = 3

𝑛 = 4

Figure 7: Computation tree of the number of models up to
𝑛 = 4 for True Nested Equality formulas

square the result due to the universal variable 𝑥1, and obtain the

total model count for the formula.

Theorem 5.3. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛th
EqualityTrueNested formula is

#(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛))

= (2 · #(𝐸𝑄𝑇𝑟𝑢𝑒𝑁𝑒𝑠𝑡𝑒𝑑 (𝑛 − 1)) + 3
2
𝑛−1−2)2

(10)

5.4 Evaluation
Similar to before, we discuss key metrics for EqualityTrue formulas

with nested quantifiers and highlight the differences in runtime for

the model counter d4. Interestingly, despite the fact that the struc-
ture of the formulas, as well as the number of clauses and variables

are equal to the EqualityTrue formulas, we see noticeably different

runtime results for the model counter d4. The evaluation results

for the quantifier structure described in Section 5.1 to Section 5.3

are summarized in Table 3.

6 Kleine Büning, Karpinski and Flögel
Formulas (KBKF Family)

The formulas introduced by Kleine Büning, Karpinski and Flögel,

commonly referred to as formulas of the KBKF family [10], were the

first formulas are proven to be hard for Q-resolution. These formu-

las play a central role in QBF proof complexity theory, analogous

to the pigeonhole problem for propositional logic [2]. Originally,

the formulas of the KBKF formula family are false, but true variants

have been introduced as well [7]. Furthermore, there exist differenti-

ate variants of Q-resolution, resulting in a slightly different formula

structures as described in [4]. However, we focus on formulas based

QBF Model Counting - Formula Families SAC’25, March 31-April 4, 2025, Sicily, Italy

Variables and Clauses #Solutions Runtime - d4 (in s)

𝑛 #Vars #Clauses #∃Vars #∀Vars Classical Alternate Classical Alternate

2 6 5 4 2 289 121 0.01 0.01

5 15 11 10 5 6.53 · 10
54

8.69 · 10
28

0.01 -

10 30 21 20 10 5.02 · 10
3318

3.71 · 10
120

0.02 -

15 45 31 30 15 1.24 · 10
155542

1.15 · 10
31268

0.37 -

20 60 41 40 20 9.87 · 10
6555633

MO 14.76 -

25 75 51 50 25 2.04 · 10
260284763

MO 605.65 -

𝑘 3 · 𝑘 2 · 𝑘 + 1 2 · 𝑘 𝑘 Eq. (7) Eq. (10) - -

Table 3: Key metrics and runtime for Nested Equality formulas with classical and alternate quantifier structure.

Φ1 = ∃𝑑1𝑒1∀𝑥1∃𝑓1 .(¬𝑑1 ∨ ¬𝑒1) ∧ (𝑑1 ∨ 𝑥1 ∨ ¬𝑓1)∧
(𝑒1 ∨ ¬𝑥1 ∨ ¬𝑓1) ∧ (𝑥1 ∨ 𝑓1) ∧ (¬𝑥1 ∨ 𝑓1)

(a) Structure of formulas of the KBKF formula family based on
Q-resolution for 𝑘 = 1

Φ𝑘 = ∃𝑑1, 𝑒1∀𝑥1 . . . ∃𝑑𝑘𝑒𝑘∀𝑥𝑘∃𝑓1 . . . 𝑓𝑘 .
(¬𝑑1 ∨ ¬𝑒1) ∧
(𝑑𝑖 ∨ 𝑥𝑖 ∨ ¬𝑑𝑖+1 ∨ ¬𝑒𝑖+1) ∧ for 1 ≤ 𝑖 < 𝑘
(𝑒𝑖 ∨ ¬𝑥𝑖 ∨ ¬𝑑𝑖+1 ∨ ¬𝑒𝑖+1) ∧ for 1 ≤ 𝑖 < 𝑘
(𝑑𝑘 ∨ 𝑥𝑘 ∨ ¬𝑓1 ∨ . . . ∨ ¬𝑓𝑘) ∧
(𝑒𝑘 ∨ ¬𝑥𝑘 ∨ ¬𝑓1 ∨ . . . ∨ ¬𝑓𝑘) ∧
(𝑥𝑖 ∨ 𝑓𝑖) ∧ (¬𝑥𝑖 ∨ 𝑓𝑖) for 1 ≤ 𝑖 ≤ 𝑘

(b) Structure of formulas of the KBKF formula family based on
Q-resolution for 𝑘 > 1.

Figure 8: Overview of the structure and a specific model of
the KBKF formula family.

on Q-resolution, which we will discuss in both the true and false

variants.

Hereby, false formulas of the KBKF formula family are con-

structed as depicted in Figure 8a for 𝑘 = 1 and Figure 8b for 𝑘 > 1.

They can also be converted into true formulas by negating the

original formula and then applying the Tseitin transformation to

convert the resulting formula back to CNF. Negating KBKF formu-

las and applying Tseitin transformation yields true formulas with

the structure described in Figure 9a for 𝑘 > 1.

Solution Count: The solution count for the original KBKF for-

mula is given by the following recursive definition:

#(Φ1) = 4

#(Φ𝑘) = 2 · #(Φ𝑘−1
)3 · 𝑏 (𝑘)

where 𝑏 (1) = 2 and 𝑏 (𝑘) = 𝑏 (𝑘 − 1)4 · 2. Alternatively we

can describe the recursive function #(Φ𝑘) with the closed formula

#(Φ𝑘) = 2
4
𝑘−3

𝑘 · 2
(4𝑘−1)/3 = 2

(4·4𝑘−3·3𝑘−1)/3
.

Theorem 6.1. For 𝑛 ∈ N, 𝑛 > 2 the model count for the 𝑛th true
KBKF formula is given by

#(𝐾𝐵𝐾𝐹𝑇𝑟𝑢𝑒 (𝑛)) = 2
(4·4𝑛−3·3𝑛−1)/3 . (11)

Proof. The proof of the closed form follows by induction on 𝑘 ,

and is straightforward. We omit the details for brevity. □

6.1 Evaluation
Key metrics for the true and false KBKF formulas are presented in

Table 4, whereas for true formulas we can perform model counting

using the model counter d4. Again, we observe an exponential

increase in the number of models as the parameter 𝑛 grows, with a

significant rise in runtime for 𝑛 > 10. For formulas with parameters

𝑛 = 20 and 𝑛 = 25, the model counter terminated due to out-of-

memory errors.

7 Conclusion
In this paper we have examined several classical formula families

from proof complexity, calculating the number of (counter-)models

based on the structure of the formulas and combinatorial arguments.

We observed that computing the number of models based on their

inherent meaning is only possible for some families. In addition,

also the Tseitin variables introduced to transform formulas into

conjunctive normal form and the prenexing (i.e., the shifting of

the quantifiers to the front) might have an impact on the number

of solutions. The quantifier structure plays an important role for

the computation of the (counter-)model count. Even for formulas

with the same inherent meaning and the same propositional matrix

the number of (counter-)models may vary significantly. With this

work, we provide a huge benchmark set for counting solutions

of QBFs which is important for validating the correctness of such

solution counters. We also presented key metrics of the presented

formulas, as well as experimental results for the model counters d4
and QCounter, empathizing the importance of the encoding and

quantifier structure used to generate the formulas. All used formulas

and corresponding experimental logs as well as an implementation

of an instance generator are available at [15].

In future work we want to extend this collection with bench-

marks from real-world encodings. Furthermore, we want to explore

other definitions of models, such as disjoint solutions [17], which
are independent of the quantifier structure of the formulas.

References
[1] Michael Bauland, Elmar Böhler, Nadia Creignou, Steffen Reith, Henning Schnoor,

and Heribert Vollmer. 2005. Quantified Constraints: The Complexity of Decision

and Counting for Bounded Alternation. Electron. Colloquium Comput. Complex.
TR05-024 (2005).

[2] Olaf Beyersdorff and Joshua Blinkhorn. 2021. A simple proof of QBF hardness.

Inform. Process. Lett. 168 (2021), 106093. https://doi.org/10.1016/j.ipl.2021.106093

https://doi.org/10.1016/j.ipl.2021.106093

SAC’25, March 31-April 4, 2025, Sicily, Italy Anonymous

Φ1 = ∀𝑑1, 𝑒1∃𝑥1∀𝑓1∃𝑙1 . . . 𝑙5 .
(¬𝑙1 ∨ ¬𝑑1) ∧ (¬𝑙1 ∨ ¬𝑥1) ∧ (¬𝑙1 ∨ 𝑓1) ∧
(¬𝑙2 ∨ ¬𝑒1) ∧ (¬𝑙2 ∨ 𝑥1) ∧ (¬𝑙2 ∨ 𝑓1) ∧
(¬𝑙3 ∨ ¬𝑥1) ∧ (¬𝑙3 ∨ ¬𝑓1) ∧ (¬𝑙4 ∨ 𝑥1) ∧ (¬𝑙4 ∨ ¬𝑓1) ∧
(¬𝑙5 ∨ 𝑑1) ∧ (¬𝑙5 ∨ 𝑒1) ∧ (𝑙1 ∨ . . . ∨ 𝑙5)

(a) Structure of formulas of the true KBKF formula
family based on Q-resolution for 𝑘 = 1.

Φ𝑘 = ∀𝑑1, 𝑒1∃𝑥1 . . .∀𝑑𝑘𝑒𝑘∃𝑥𝑘∀𝑓1 . . . 𝑓𝑘∃𝑙1 . . . 𝑙4𝑘+1
.

(¬𝑙𝑖 ∨ ¬𝑑𝑖) ∧ (¬𝑙𝑖 ∨ ¬𝑥𝑖) ∧ (¬𝑙𝑖 ∨ 𝑑𝑖+1) (¬𝑙𝑖 ∨ 𝑒𝑖+1) ∧ for 1 ≤ 𝑖 < 𝑘
(¬𝑙𝑘+𝑖−1

∨ ¬𝑒𝑖) ∧ (¬𝑙𝑘+𝑖−1
∨ 𝑥𝑖) ∧ (¬𝑙𝑘+𝑖−1

∨ 𝑑𝑖+1) (¬𝑙𝑘+𝑖−1
∨ 𝑒𝑖+1) ∧ for 1 ≤ 𝑖 < 𝑘

(¬𝑙
2𝑘−1

∨ ¬𝑑𝑘) ∧ (¬𝑙
2𝑘−1

∨ ¬𝑥𝑘) ∧ (¬𝑙
2𝑘−1

∨ 𝑓1) . . . (¬𝑙2𝑘−1
∨ 𝑓𝑘) ∧

(¬𝑙
2𝑘 ∨ ¬𝑒𝑘) ∧ (¬𝑙

2𝑘 ∨ 𝑥𝑘) ∧ (¬𝑙
2𝑘 ∨ 𝑓1) . . . (¬𝑙2𝑘 ∨ 𝑓𝑘) ∧

(¬𝑙
2𝑘+𝑖 ∨ ¬𝑥𝑖) ∧ (¬𝑙

2𝑘+𝑖 ∨ ¬𝑓𝑖) ∧ (¬𝑙
3𝑘+𝑖 ∨ 𝑥𝑖) ∧ (¬𝑙

3𝑘+𝑖 ∨ ¬𝑓𝑖) ∧ for 1 ≤ 𝑖 ≤ 𝑘
(¬𝑙

4𝑘+1
∨ 𝑑1) ∧ (¬𝑙

4𝑘+1
∨ 𝑒1) ∧ (𝑙1 ∨ . . . ∨ 𝑙4𝑘+1

)

(b) Structure of formulas of the true KBKF formula family based on Q-resolution
for 𝑘 > 1.

Figure 9: Structure of formulas of the true KBKF formula family based on Q-resolution

𝑛 #Vars #Clauses #∃Vars #∀Vars #Solutions Runtime - d4 (in s)

2 8 9 6 2 4096 0.01

5 20 21 15 5 5.70 · 10
337

0.02

10 40 41 30 10 6.57 · 10
403094

0.23

15 60 61 45 15 2.08 · 10
426651877

148.16

20 80 81 60 20 2.12 · 10
440265014029

TO

25 100 101 75 25 4.87 · 10
451651132813455

TO

𝑘 4 · 𝑘 4 · 𝑘 + 1 3 · 𝑘 𝑘 2
(4·4𝑘−3·3𝑘−1)/3

-

Table 4: Key metrics and runtime for KBKF formulas.

[3] Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. 2017. Size, Cost, and Capac-

ity: A Semantic Technique for Hard Random QBFs. Logical Methods in Computer
Science Volume 15, Issue 1 (12 2017). https://doi.org/10.23638/LMCS-15(1:13)2019

[4] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2019. New Resolution-Based

QBF Calculi and Their Proof Complexity. ACM Transactions on Computation
Theory 11 (09 2019), 1–42. https://doi.org/10.1145/3352155

[5] P. Marin E. Giunchiglia and M. Narizzano. 2009. Reasoning with quantified

boolean formulas. In Handbook of Satisfiability. Frontiers in Artificial Intelligence

and Applications, Vol. 185. IOS Press.

[6] Merrick Furst, James B. Saxe, and Michael Sipser. 1981. Parity, circuits, and

the polynomial-time hierarchy. In 22nd Annual Symposium on Foundations of
Computer Science (sfcs 1981). 260–270. https://doi.org/10.1109/SFCS.1981.35

[7] Simone Heisinger and Martina Seidl. 2023. True Crafted Formula Families

for Benchmarking Quantified Satisfiability Solvers. In Intelligent Computer Mathe-
matics, Catherine Dubois andManfred Kerber (Eds.). Springer Nature Switzerland,

Cham, 291–296.

[8] Lane A. Hemaspaandra and Heribert Vollmer. 1995. The satanic notations: count-

ing classes beyond #P and other definitional adventures. SIGACT News 26, 1
(1995), 2–13.

[9] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. 1995. Resolution

for Quantified Boolean Formulas. Inf. Comput. 117, 1 (1995), 12–18. https:

//doi.org/10.1006/INCO.1995.1025

[10] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. 1995. Resolution

for Quantified Boolean Formulas. Inf. Comput. 117, 1 (1995), 12–18. https:

//doi.org/10.1006/INCO.1995.1025

[11] Richard E. Ladner. 1989. Polynomial Space Counting Problems. SIAM J. Comput.
18, 6 (1989), 1087–1097.

[12] Jean-Marie Lagniez, Florent Capelli, Andreas Plank, and Martina Seidl. 2024. A

Top-Down TreeModel Counter for Quantified Boolean Formulas. In (unpublished)
Proc. of the 33rd. Int. Conf. on International Joint Conference on Artificial Intelligence
IJCAI.

[13] Florian Lonsing. 2019. QBFRelay, QRATPre+, and DepQBF: Incremental Prepro-

cessing Meets Search-Based QBF Solving. J. Satisf. Boolean Model. Comput. 11, 1
(2019), 211–220. https://doi.org/10.3233/SAT190122

[14] David A. Plaisted and Steven Greenbaum. 1986. A Structure-preserving Clause

Form Translation. Journal of Symbolic Computation 2, 3 (1986), 293–304.

[15] Andreas Plank, Manuel Kauers, and Martina Seidl. 2024. Artifact for "Solution
Counts of Some Prominent Quantified Boolean Formulas Families". https://doi.org/

10.5281/zenodo.14515612

[16] Andreas Plank, Sibylle Möhle, and Martina Seidl. 2023. Enumerative Level-2

Solution Counting for Quantified Boolean Formulas. In 29th Int. Conf. on Principles
and Practice of Constraint Programming (CP 2023), Vol. 280. 49:1–49:10.

[17] Andreas Plank, Sibylle Möhle, and Martina Seidl. 2023. Enumerative Level-2

Solution Counting for Quantified Boolean Formulas (Short Paper). In Proc. of
the 29th Int. Conf. on Principles and Practice of Constraint (CP) (LIPIcs, Vol. 280).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 49:1–49:10.

[18] Arijit Shaw, Brendan Juba, and Kuldeep S. Meel. 2024. An Approximate Skolem

Function Counter. 38, 8 (Mar. 2024), 8108–8116.

[19] Ankit Shukla, SibylleMöhle, Manuel Kauers, andMartina Seidl. 2022. OuterCount:

A First-Level Solution-Counter for Quantified Boolean Formulas. In Proc. of the
15th Int. Conf on Intelligent Computer Mathematics (CICM) (LNCS, Vol. 13467).
Springer, 272–284.

[20] Grigori S Tseitin. 1983. On the complexity of derivation in propositional calculus.

Automation of reasoning: 2: Classical papers on computational logic 1967–1970
(1983), 466–483.

[21] Allen Van Gelder. 2012. Contributions to the Theory of Practical Quantified

Boolean Formula Solving. In Principles and Practice of Constraint Programming,
Michela Milano (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 647–663.

https://doi.org/10.23638/LMCS-15(1:13)2019
https://doi.org/10.1145/3352155
https://doi.org/10.1109/SFCS.1981.35
https://doi.org/10.1006/INCO.1995.1025
https://doi.org/10.1006/INCO.1995.1025
https://doi.org/10.1006/INCO.1995.1025
https://doi.org/10.1006/INCO.1995.1025
https://doi.org/10.3233/SAT190122
https://doi.org/10.5281/zenodo.14515612
https://doi.org/10.5281/zenodo.14515612

	Abstract
	1 Introduction
	2 Preliminaries
	3 The QParity Formula Family
	3.1 The ParityTrue Family
	3.2 The Parity False Family
	3.3 Evaluation

	4 Equality Formulas
	4.1 The EqualityTrue Family
	4.2 The EqualityFalse Family
	4.3 Evaluation

	5 The EqualityTrueNested Family
	5.1 Tseitin Encoding
	5.2 Plaisted and Greenbaum Encoding
	5.3 Plaisted and Greenbaum Encoding – Alternative Quantifier Structure
	5.4 Evaluation

	6 Kleine Büning, Karpinski and Flögel Formulas (KBKF Family)
	6.1 Evaluation

	7 Conclusion
	References

