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Abstract
Automated reasoning techniques based on computer algebra have seen renewed interest in
recent years and are for example heavily used in formal verification of arithmetic circuits.
However, the verification processmight contain errors. Generating and checking proof certifi-
cates is important to increase the trust in automated reasoning tools. For algebraic reasoning,
two proof systems,Nullstellensatz and polynomial calculus, are available and arewell-known
in proof complexity. A Nullstellensatz proof captures whether a polynomial can be repre-
sented as a linear combination of a given set of polynomials by providing the co-factors of
the linear combination. Proofs in polynomial calculus dynamically capture that a polynomial
can be derived from a given set of polynomials using algebraic ideal theory. In this article
we present the practical algebraic calculus as an instantiation of the polynomial calculus that
can be checked efficiently. We further modify the practical algebraic calculus and gain LPAC
(practical algebraic calculus + linear combinations) that includes linear combinations. In this
way we are not only able to represent both Nullstellensatz and polynomial calculus proofs,
but we are also able to blend both proof formats. Furthermore, we introduce extension rules
to simulate essential rewriting techniques required in practice. For efficiency we also make
use of indices for existing polynomials and include deletion rules too. We demonstrate the
different proof formats on the use case of arithmetic circuit verification and discuss how
these proofs can be produced as a by-product in formal verification. We present the proof
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checkers Pacheck, Pastèque, and Nuss- Checker. Pacheck checks proofs in practical
algebraic calculus more efficiently than Pastèque, but the latter is formally verified using
the proof assistant Isabelle/HOL. The tool Nuss- Checker is used to check proofs in the
Nullstellensatz format.

Keywords Algebraic proof systems · Nullstellensatz proofs · Polynomial calculus ·
Gröbner basis · Arithmetic circuit verification · Isabelle/HOL

1 Introduction

Formal verification aims to guarantee the correctness of a given system with respect to
a certain specification. However, the verification process might not be error-free and return
incorrect results, even inwell-known systems such asMathematica [15]. In order to guarantee
the correctness of the outcome, one would have to formally verify the verification tool, e.g.,
using a theorem prover, which typically is a demanding task and for complex software it
is often infeasible. Thus, a more common technique to increase the trust in verification
results is to generate proof certificates, which monitor steps of the verification process and
enables reproducing the proof. These certificates can be checked by a simple stand-alone
proof checker.

For example, many applications of formal verification use satisfiability (SAT) solving and
various resolution or clausal proof formats [20], such as DRUP [57, 58], DRAT [22], and
LRAT [14] are available to validate the verification results. In the annual SAT competition
it is even required to provide certificates since 2013. However, in certain applications SAT
solving cannot be applied successfully. For instance formal verification of arithmetic circuits,
more precisely of multiplier circuits, is considered to be hard for SAT solving.

Automated reasoning based on computer algebra has a long history [27–29] with renewed
recent interest. The general idea of this approach is to reformulate a problem as a question
about sets of multivariate polynomials, then do Gröbner bases [8] computations and use
properties of Gröbner bases to answer the question.

Formal verification using computer algebra provides one of the state-of-the-art techniques
in verifying gate-level multipliers [11, 34, 46, 47]. In this approach the circuit is modeled
as a set of polynomials and it is shown that the specification, also encoded as a polynomial,
is implied by the polynomials that are induced by the circuit. More precisely, for each log-
ical gate in the circuit a polynomial equation is defined that captures the relations of the
inputs and output of the gate. The polynomials are sorted according to a term ordering that
is consistent with the topological order of the circuit. This has the effect that these gate
polynomials automatically generate a Gröbner basis [8]. Preprocessing techniques based on
variable elimination are applied to simplify the representation of the Gröbner basis [34, 46].
After preprocessing the specification polynomial is reduced by the simplified gate polyno-
mials using a multivariate polynomial division with remainder until no further reduction is
possible. The given multiplier is correct if and only if the final result is zero.

Furthermore, algebraic reasoning in combination with SAT is successfully used to solve
complex combinatorial problems [7], e.g., finding faster ways for matrix multiplication [23,
24], computing small unit-distance graphs with chromatic number 5 [19], or solving the
Williamson conjecture [6], and has possible future applications in cryptanalysis [10, 56]. All
these applications raise the need to invoke algebraic proof systems for proof validation.
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Two algebraic proof systems are commonly studied in the proof complexity community,
polynomial calculus (PC) [12], and Nullstellensatz (NSS) [3]. Both systems allow reasoning
over polynomial equationswhere the variables representBoolean values. These proof systems
are well-studied, with the main focus on deriving complexity measures, such as degree and
proof size, e.g., [2, 26, 49, 50].

Proofs in PC allow us to dynamically capture whether a polynomial can be derived from a
given set of polynomials using algebraic ideal theory. However, PC as originally defined [12]
is not suitable for effective proof checking [31], because information of the origin of the proof
steps is missing. We introduce the practical algebraic calculus (PAC) [54], which includes
this information and therefore can be checked efficiently. A proof in PAC is a sequence of
proof steps, which model single polynomial operations. During proof checking each proof
step is checked for correctness. Thus, whenever the proof contains an error, we are able to
pinpoint the incorrect proof step.

In the first version of PAC [54] we explicitly require to write down all polynomial equa-
tions, including exponents, which leads to very large proof files. Since in our application all
variables represent elements of the Boolean domain, we can impose for each variable x the
equation x2 = x . We use this observation and specialize PAC to treat exponents implicitly.
That is, we immediately reduce all exponents greater than one in the polynomial calcula-
tions. Furthermore, we add an indexing scheme to PAC to address polynomial equations and
add deletion rules for efficiency. We include a formalization of extension rules that allow
us to merge and check combined proofs obtained from SAT and computer algebra [35] in a
uniform (and now precise) manner (Sect. 2).

Proofs in NSS capture whether a polynomial can be represented as a linear combination
of a given set of polynomials. These proofs are very concise as they consist only of the
input polynomials and the sequence of corresponding co-factor polynomials. However, if the
resulting polynomial is not equal to the desired target polynomial, it is unclear how to locate
the error in the proof. Furthermore, it is impossible to express intermediate optimizations
and rewriting techniques on the given set of polynomials in NSS, because we are not able
to explicitly model preprocessing steps. We conjectured for the application of multiplier
circuit verification [31] that: “In a correct NSS proof we would also need to express the
rewritten polynomials as a linear combination of the given set of polynomials and thus
loose the optimized representation, which will most likely lead to an exponential blow-up
of monomials in the NSS proof.” Surprisingly, we have to reject our conjecture, at least
for those multiplier architectures that are considered in our approach and our experimental
results demonstrate that we are able to generate compact NSS proofs.

In this article we introduce LPAC, a PAC format including linear combinations that
combines PAC with the strength of NSS (Sect. 3), namely a shorter proof, while retain-
ing the possibility to identify errors. All proof formats can be produced by our verification
tool AMulet 2.0 [33]. Depending on the options the proofs will have a stronger PAC, a
hybrid, or a stronger NSS flavor (Sect. 4).

We present our new proof checkers Pacheck and Pastèque. They support PAC (Sect. 5).
The proof checker Pastèque in contrast to Pacheck is verified in Isabelle/HOL, but
Pacheck is faster and more memory efficient. To (in)validate our conjecture, we also imple-
mented an NSS checker,Nuss- Checker. This gives us the evidence that NSS proofs do not
lead to an exponential blow-up (Sect. 6). Therefore, we also extend Pacheck and Pastèque
to check LPAC proofs (Sect. 7).

The tools are easy to use and their results can easily be interpreted. We experiment with
the verification of various multipliers that require our new extensions to be checked. The new
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PAC format makes the proofs easier to check and less memory hungry, but proofs in LPAC
achieve even better performance for both checkers (Sect. 8).

This article extends and revises work presented earlier [32, 39, 54]. As a novelty we
introduce LPAC, the modification of the PAC format [39] to additionally support linear
combinations of polynomials in the proof rules. Hence, we are able to not only simulate NSS
and PC proofs in PAC, but we are also able to derive hybrid proofs that consist of a sequence
of linear combinations. The hybrid format allows us to generate concise proofs, which are
faster to check by our new checkers (Sect. 8), and where errors in the proof can be located.
We present how LPAC proofs on different abstraction levels, i.e., NSS, hybrid or PC, are
generated in our recent verification tool AMulet 2.0 [33]. Extending [39], we highlight
necessary modifications in our proof checkers Pacheck and Pastèque to cover LPAC.

2 Algebraic proof systems

In this section we introduce the proof systems polynomial calculus (PC) [12] and its instan-
tiation PAC (Sect. 2.1) and Nullstellensatz [3] (Sect. 2.2). Our algebraic setting follows [13]
and we assume 0 ∈ N.

– Let R be a ring and X denote the set of variables {x1, . . . , xl}. By R[X ] we denote the
ring of polynomials in variables X with coefficients in R.

– A term τ = xd11 · · · xdll is a product of powers of variables for di ∈ N. A monomial is a
multiple of a term cτ with c ∈ R \ {0} and a polynomial is a finite sum of monomials
with pairwise distinct terms.

– On the set of terms [X ] an order ≤ is fixed such that for all terms τ, σ1, σ2 it holds that
1 ≤ τ and further σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. One such order is the so-called lexicographic
term order, defined as follows. If the variables of a polynomial are ordered x1 > x2 >

· · · > xl , then for any two distinct terms σ1 = xd11 · · · xdll , σ2 = xe11 · · · xell we have
σ1 < σ2 iff there exists an index i with d j = e j for all j < i , and di < ei . We have
σ1 = σ2 iff d j = e j for all 1 ≤ j ≤ l.

– For a polynomial p = cτ + · · · the largest term τ (w.r.t. ≤) is called the leading term
lt(p) = τ . The leading coefficient lc(p) = c and leading monomial lm(p) = cτ are
defined accordingly. We call tail(p) = p − lm(p) the tail of p.

As we will only consider polynomial equations with right hand side zero, we take the
freedom to write f instead of f = 0. In our setting all variables represent Boolean variables,
i.e., we are only interested in solutions where every variable x ∈ X is assigned either
0 or 1. We can therefore impose the equations x2 − x = 0 for all variables x . The set
B(X) = {x2 − x | x ∈ X} ⊂ R[X ] is called the set of Boolean value constraints. Note that
R is still an arbitrary ring as we do not restrict the coefficients of the polynomials, we only
restrict the values of the variables.

Definition 1 For a set G ⊆ R[X ], a model is a point u = (u1, . . . , ul) ∈ Rl such that
∀g ∈ G : g(u) = g(u1, . . . , ul) = 0. Here, by g(u1, . . . , ul) we mean the element of R
obtained by evaluating the polynomial g for x1 = u1, …, xl = ul . Given S ⊆ R a set
G ⊆ R[X ] and a polynomial f ∈ R[X ], we write G |�S f if every model for G is also a
model for { f }, i.e., G |�S f ⇐⇒ ∀u ∈ Sl : ∀g ∈ G : g(u) = 0⇒ f (u) = 0.

Algebraic proof systems typically reason about polynomial equations. Given G ⊆ R[X ]
and f ∈ R[X ], the aim is to show that an equation f = 0 is implied by the constraints g = 0
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for every g ∈ G ∪ B(X). This means that every common Boolean root of the polynomials
g ∈ G is also a root of f . In algebraic terms, we want to derive whether f belongs to the
ideal generated by G ∪ B(X).

Definition 2 A nonempty subset I ⊆ R[X ] is called an ideal if ∀u, v ∈ I : u + v ∈ I and
∀w ∈ R[X ],∀u ∈ I : wu ∈ I . If G = {g1, . . . , gm} ⊆ R[X ], then the ideal generated by G
is defined as 〈G〉 = {q1g1 + · · · + qmgm | q1, . . . , qm ∈ R[X ]}.
Definition 3 Let G ⊆ R[X ] be a finite set of polynomials. A polynomial f ∈ R[X ] can be
deduced from G if f ∈ 〈G〉. In this case we write G  f .

2.1 Polynomial calculus and PAC

The first proof system we consider is PC [12]. We discuss the original definition [12] over
fields in Sect. 2.1.1 and generalize the soundness and completeness arguments. In Sect. 2.1.2
we generalize the correctness arguments to commutative rings with unity, when the constraint
set G has a certain shape. For completeness the property “commutative ring with unity” is
not sufficient and we will require stronger assumptions on the constraint set G in Sect. 2.1.2.
In Sect. 2.1.3 we present our instantiation PAC.

2.1.1 Polynomial calculus over fields

In the original definition of PC [12] the coefficient ring R is assumed to be a field K. Let
G ⊆ K[X ] and f ∈ K[X ]. A proof in PC is a sequence of polynomials P = (p1, . . . , pm)

which are deduced by repeated application of the following proof rules:

Addition
pi p j

pi + p j

pi , p j appears earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appears earlier in the proof
or is contained in
G and q ∈ K[X ] being arbitrary

We present here a variant of the PC where the addition and multiplication rules are closely
related to the definition of an ideal. In the initial definition of PC [12], the addition rule is in
fact a linear combination rule and includes multiplication by constants. The multiplication
rule is more restrictive and only allows multiplication by a single variable x ∈ X [12] or
multiplication with any term, e.g., [9] instead of a polynomial. It is easy to see that our
definition of PC and the original definition are equivalent and are able to simulate each other
polynomially.

Note that every element pi of a PC proof P is an element of the ideal generated by G.
This means that every common root of the elements of G is also a root of every polynomial
appearing in the proof.

Thanks to the theory of Gröbner bases [4, 8, 13] the polynomial calculus is decidable,
i.e., there is an algorithm which for any finite G ⊆ K[X ] and f ∈ K[X ] can decide whether
G  f or not.

A basis of an ideal I is called a Gröbner basis if it enjoys certain structural properties
whose precise definitions are not relevant for our purpose. What matters are the following
fundamental facts:
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• There is an algorithm (Buchberger’s algorithm) which for any given finite set G ⊆ K[X ]
computes a Gröbner basis H for the ideal 〈G〉 = 〈H〉 generated by G.

• Given a Gröbner basis H , there is a computable function redH : K[X ] → K[X ] such
that ∀ p ∈ K[X ] : redH (p) = 0 ⇐⇒ p ∈ 〈H〉.

• Moreover, if H = {h1, . . . , hm} is a Gröbner basis of an ideal I and p, r ∈ K[X ]
are such that redH (p) = r , then there exist q1, . . . , qm ∈ K[X ] such that p − r =
q1h1 + · · · + qmhm , and such co-factors qi can be computed.

In [12] soundness and completeness are shown for degree-bounded polynomials. In this
context soundness means that every polynomial f which can be deduced by the rules of
PC from a given set of polynomials G vanishes on every common root of the polynomials
g ∈ G, i.e., G  f �⇒ G |�K f . Completeness means whenever a polynomial f
cannot be deduced by the rules of PC from G, then there exists a common root of the
polynomialsG where f does not evaluate to zero, i.e.,G � f �⇒ G �|�K f , or equivalently
G |�K f �⇒ G  f . We are able to generalize these arguments in this article without
forcing a bound on the degree of f and the polynomials in G. At the end of this section we
summarize how the results fit together in the context of algebraic verification.

To show soundness and completeness of PC over fields K, we now introduce the extended
calculus with the additional radical rule [13,Chap. 4§2 Def 2].

Radical
pm

p
m ∈ N \ {0} andpm appears earlier in the proof or is contained in G.

Definition 4 If the polynomial f can be deduced from the polynomials in G with the rules
of PC and this additional radical rule, we write G + f and call this proof radical proof.
In algebra, the set { f ∈ K[X ] : G + f } is called the radical ideal of G and is typically
denoted by

√〈G〉.
Theorem 1 Let K be an algebraically closed field and G ⊆ K[X ], f ∈ K[X ]. It holds

G + f ⇐⇒ G |�K f .

Proof It follows from Hilbert’s Nullstellensatz [13,Chap. 4§1 Thms. 1 and 2] that the set of
all models of G is nonempty if and only if 1 /∈ 〈G〉, and furthermore we have G + f ⇐⇒
G |�K f . ��

We are able to derive from Theorem 1 that the extended PC including the radical rule is
correct (“⇒”) and complete (“⇐”).

Also the extended calculus + is decidable. It can be reduced to  using the so-called
Rabinowitsch trick [13,Chap. 4§2 Prop. 8], which says

f ∈ √〈G〉 ⇐⇒ 1 ∈ 〈G ∪ {y f − 1}〉 or G + f ⇐⇒ G ∪ {y f − 1}  1,

depending whether you prefer algebraic or logic notation. In both cases, y is a new variable
and the ideal/theory on the right hand sides is understood as an ideal/theory of the extended
ring K[X , y].
Corollary 1 Let K be an algebraically closed field and assume G ⊆ K[X ], f ∈ K[X ], and
y /∈ X. We have G ∪ {y f − 1}  1 ⇐⇒ G |�K f .

The Rabinowitsch trick is therefore used to replace a radical proof (+) by a PC refutation
and we can therefore decide the existence of models and furthermore produce certificates
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for the non-existence of models using only the basic version of PC. Thus, we do not have to
consider the radical rule in practice.

In Theorem 1we considermodels u ∈ K
l . For our applications, onlymodels u ∈ {0, 1}l =

B
l ⊆ K

l matter. Using basic properties of ideals [13,Chap. 4§3 Thm. 4], it is easy to show
for G ⊆ K[X ], f ∈ K[X ] that G |�B f ⇐⇒ G ∪ B(X) |�K f . Recall from Definition 1
that G |�B f ⇐⇒ ∀u ∈ B

l : ∀g ∈ G : g(u) = 0⇒ f (u) = 0.
Furthermore, the equivalence G ∪ B(X) + f ⇐⇒ G ∪ B(X) |�K f holds even

when K is not algebraically closed, because changing from K to its algebraic closure K will
not have any effect on the models in B

l . Finally, let us remark that the finiteness of B
l also

implies that G ∪ B(X) + f ⇐⇒ G ∪ B(X)  f . This follows from Seidenberg’s lemma
[4,Lemma 8.13] and generalizes Thm. 1 of [12].

Corollary 2 Let G ⊆ K[X ], f ∈ K[X ], for any fieldK. Then the following holds: G∪B(X) 
f ⇐⇒ G |�B f .

Let us briefly put the results of this section into context on the use case of formal verifi-
cation. In algebraic verification the set G denotes the initial constraint set, e.g., for verifying
circuits G contains all polynomials induced by a given circuit. The polynomial f encodes
the specification. The goal of verification is to derive, whether f is implied by G, meaning
that all common roots of the polynomials in G are roots of f , i.e. G |�K f . From G  f
it trivially follows that G |�K f . However, the other direction G � f �⇒ G �|�K f does
not hold in general. From Hilbert’s Nullstellensatz, cf. Theorem 1, we are only able to derive
that G �

+ f �⇒ G �|�K f .
This means that in general an ideal membership test is not sufficient for verification and

we would need to involve the stronger radical membership test to prove non-existence of
models. Using the Rabinowitsch trick, cf. Corollary 1, allows us to replace the radical proof
by an ideal membership test.

If all variables are Boolean, which is often the case in algebraic verification, we can further
simplify Theorem 1, cf. Corollary 2. First, we relax on K being algebraically closed, because
we are only considering a finite number of modelsB

l . Second, because of the finiteness ofB
l ,

G∪B(X) is a zero-dimensional ideal, and using Seidenbergs’s Lemmawe are able to deduce
〈G ∪ B(X)〉 = √〈G ∪ B(X)〉. Thus, we are able to replace the radical proof in Theorem 1
by an ideal membership test.

Example 1 This example shows that the output c of an XOR gate over an input a and its
negation b = ¬a is always true, i.e., c = 1 or equivalently −c + 1 = 0. We apply the
polynomial calculus over the ring R[X ] = K[X ] = Q[c, b, a]. Over Q a NOT gate x = ¬y

G ∪ B(X) = { − b+ 1 − a,

− c+ a+ b − 2ab,

a2 − a, b2 − b, c2 − c}

a c

b

−c+ a+ b − 2ab −b+ 1 − a

−c+ 1 − 2ab
−b+ 1 − a

2ab − 2a+ 2a2

−c+ 1 − 2a+ 2a2
a2 − a

−2a2 + 2a
−c+ 1

Fig. 1 The circuit, polynomial representation of the gates and proof for Example 1
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is modeled by the polynomial −x + 1 − y and an XOR gate z = x ⊕ y is modeled by the
polynomial−z+x+y−2xy. Because X = {a, b, c}, we have B(X) = {a2−a, b2−b, c2−c}.
The corresponding circuit representation, the constraint setG∪B(X), and a polynomial proof
tree are shown in Fig. 1.

2.1.2 Polynomial calculus over commutative rings with unity

For certain sets of polynomials G we are further able to generalize the soundness and com-
pleteness arguments for rings R, which not necessarily have to be fields, e.g., R = Z. Let
now R denote a commutative ring with unity. By R× we denote the set of multiplicatively
invertible elements of R. The rules of PC remain unaffected.

Definition 5 Let G ⊆ R[X ]. If for a certain term order, all leading terms of G only consist
of a single variable with exponent 1 and are unique and further lc(g) ∈ R× for all g ∈ G,
then we say G has unique monic leading terms (UMLT). Let X0(G) ⊆ X be the set of all
variables that do not occur as leading terms in G.

Example 2 The set G = {−x + 2y, y − z} ⊆ Z[x, y, z] has UMLT for the lexicographic
term order x > y > z. In this case X0(G) = {z}.
Definition 6 Let ϕ : X → B ⊆ R denote an assignment of all variables X . We extend ϕ to
an evaluation of polynomials in the natural way, i.e., ϕ : R[X ] → R.

Theorem 2 (Soundness) Let G ⊆ R[X ] be a finite set of polynomials and f ∈ R[X ], then
G ∪ B(X)  f ⇒ G |�B f .

Proof If G ∪ B(X)  f then f ∈ 〈G〉 + 〈B(X)〉 by definition. This means there are
u1, . . . , um ∈ R[X ] and v1, . . . , vr ∈ R[X ]with f = u1g1+· · ·+umgm+v1b1+· · ·+vr br ,
where gi ∈ G and bi = xi (xi − 1) ∈ B(X) for i = 1 . . . r . Any assignment ϕ in the sense
of Definition 6 vanishes on B(X), i.e., ϕ(bi ) = 0. If ϕ is also a model of G then ϕ(gi ) = 0
too and as a consequence ϕ( f ) = 0. Therefore G |�B f , as claimed. ��

Completeness is less obvious. Consider for instance that {2x} |�B x but x /∈ 〈2x〉 in
Z[X ]. Requiring G to have UMLT turns out to be essential (which {2x} does not have in
Z[X ], because 2 /∈ Z

×). Additionally, we will require the considered ring R to be an integral
domain, which satisfies the property that the product of any two nonzero elements is nonzero
[13].

Lemma 1 If G |�B p and G |�B q then G |�B q ± p.

Lemma 2 Let G ⊆ R[X ] be a finite set of polynomials with UMLT. Then for all q ∈ R[X ]
there exist p ∈ 〈G〉 + 〈B(X)〉 and r ∈ R[X0(G)] with q = p+ r , such that the variables in
the monomials in r have only exponents 1.

Proof We construct p and r by division of q by the polynomials in G ∪ B(X) until no term
in r is divisible by any leading term of G ∪ B(X). First, we reduce q by the polynomials of
G. Let g1 ∈ G. Using polynomial division we are able to calculate f1, r1 ∈ R[X ] such that
q = f1g1 + r1 and no term in r1 is a multiple of the leading term of g1. We continuously
divide the remainder by polynomials of G and derive q = f1g1 + · · · + fmgm + rm for
gi ∈ G, fi , rm ∈ R[X ].
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This process has to terminate because the tail of a polynomial contains only smaller
variables and the number of variables in G is finite. Since G has UMLT, rm contains only
variables in X0(G) which do not occur as leading terms, i.e, rm ∈ R[X0(G)]. If any of these
variables occurs with exponent larger than one we can use B(X) to reduce their exponent to
1. Hence, we are able to derive q = f1g1+· · ·+ fmgm+v1b1+· · ·+vl bl+r , where gi ∈ G,
bi ∈ B(X), and fi , vi ∈ R[X ] and define p = f1g1 + · · · + fmgm + v1b1 + · · · + vlbl . ��
Example 3 LetG ⊆ Z[x, y, z]be as inExample 2 and assumeq = 2x2+xy+z2 ∈ Z[x, y, z].
Consequently

p = (−2x−5y)(−x+2y)+ (10y+10z)(y − z)− 11(−z2+z)
= 2x2 + xy + z2 − 11z ∈ 〈G〉 + 〈B(X)〉 and

r = 11z ∈ Z[X0(G)].
Lemma 3 Assume that R is an integral domain. Let p ∈ R[X ] with p2 − p ∈ 〈B(X)〉 =
〈{x2 − x | x ∈ X}〉. Further let ϕ be an assignment in the sense of Definition 6. Then ϕ(p) ∈
B = {0, 1}.
Proof Since p2 − p ∈ 〈B(X)〉 there are fi ∈ R[X ] with p2 − p = ∑

i fi · (x2i − xi ).
Thus, ϕ(p2 − p) = 0, as ϕ vanishes on B(X). Assume now ϕ(p) = ε with ε ∈ R. Then
ϕ(p2 − p) = ϕ(p)2 − ϕ(p) = ε2 − ε = ε(ε − 1). As R is an integral domain, only ε ∈ B

yields ϕ(p2 − p) = 0. ��
Theorem 3 (Completeness) Let R be an integral domain and let G ⊆ R[X ] be a finite set of
polynomials with UMLT. Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.
Then for every f ∈ R[X ] we have

G |�B f ⇒ G ∪ B(X)  f .

Proof Suppose we have G |�B f . Then our goal is to show f ∈ 〈G〉 + 〈B(X)〉. First, by
applying Lemma 2, we obtain p ∈ 〈G〉 + 〈B(X)〉 and r ∈ R[X0(G)] with f = p + r .
Thus G ∪ B(X)  p by definition. Using Theorem 2 we derive G |�B p and accordingly
G |�B f − p = r by Lemma 1. Now assume r �= 0 and let m be a monomial of r which
contains the smallest number of variables. Consider the assignment ϕ that maps x ∈ X0(G)

to 1 if it appears in m and to 0 otherwise. Therefore ϕ(r) �= 0 since the coefficient of m is
unequal to 0. This assignment on X0(G) admits a unique extension to X which vanishes on
G. First, we consider the polynomial αx + t ∈ G, where α ∈ R× and t = tail(g), with the
smallest leading term x . For this polynomial all variables in t are already considered in ϕ.
Since αx + t = 0 ⇔ x = −α−1t and we require (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) =
(α−1t)2 + (α−1t) = (−α−1t)2 − (−α−1t) ∈ 〈B(X)〉, we have ϕ(−α−1t) ∈ {0, 1} by
Lemma 3. We extend the assignment ϕ to x by choosing ϕ(x) = ϕ(−α−1t). We continue in
this fashion until all leading terms ofG are assigned. SinceG has UMLTwe are able to derive
such an assignmentϕ, which contradictsG |�B r . Thus r = 0 and f = p+r ∈ 〈G〉+〈B(X)〉.

��
In an earlier version of the manuscript, as well as in the conference paper [34,Thm. 2],

the assumptions “∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉” and “R is an
integral domain” were missing. We thank one of the referees for making us aware of these
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bugs. If any of the three assumptions of Theorem 3 is missing, the theorem is wrong, as can
be seen in the following examples.

First, let G = {xyz + xy − x − y} ⊆ Z[x, y, z] and f = x − y ∈ Z[x, y, z]. The ring
R = Z is an integral domain and we have (xy − x − y)2 + xy − x − y ∈ 〈B(X)〉. However
G does not have UMLT, because the leading term of xyz+ xy− x − y consists of more than
one variable. We have G |�B f with the models (x, y, z) = (0, 0, 0), (0, 0, 1), and (1, 1, 1),
but G ∪ B(X) � f because r = x − y.

Next, consider G = {−x + 2y} ⊆ Z[x, y] and f = y ∈ Z[x, y]. The polynomials in G
have UMLT and Z is an integral domain. However, for the polynomial −x + 2y we have
4y2 − 2y /∈ 〈B(X)〉. We have G |�B f with the model (x, y) = (0, 0) but G ∪ B(X) � f
because r = y.

Finally, let G = {x + 4y} ⊆ Z10[x, y] and f = y ∈ Z10[x, y]. The polynomial in G
has UMLT, and we have (4y)2 + 4y = 6y2 − 6y ∈ 〈B(X)〉. However the ring R = Z10 is
not an integral domain as 5 · 2 = 0. We have G |�B f with the model (x, y) = (0, 0), but
G ∪ B(X) � f because r = y.

Although the previous example shows that the assumption that R is an integral domain
cannot simply be dropped from Theorem 3, it is somewhat stronger than necessary. What
really enters through Lemma 3 into the proof of Theorem 3 is the assumption that R is a
ring in which the formula ∀ x ∈ R : x(x − 1) = 0⇒ x = 0 ∨ x = 1 is true. This holds in
every integral domain, but also in some rings that are not integral domains, for example in
rings Z2k for k > 1. In our use case of algebraic circuit verification, which we introduce in
Sect. 4.1, we choose R = Z2k for k ≥ 1 to admit modular reasoning [34]. In the following
lemma, we use Hensel lifting to prove that the rings Z2k have the desired property.

Lemma 4 Let k ∈ N \ {0}, let ϕ be an assignment in the sense of Definition 6, and let
p ∈ Z2k [X ] be such that p2 − p ∈ 〈B(X)〉. Then ϕ(p) ∈ B = {0, 1}.
Proof Proof by induction over k. Base case k = 1: For k = 1 the ring Z2 is a field. Since
every field is an integral domain the base case follows by Lemma 3.

Induction step k → k + 1: Assume p ∈ Z2k+1 [X ] with ϕ(p2 − p) = 0 mod 2k+1. Let
now ϕ(p) = ε with ε ∈ Z2k+1 . Since ε ∈ {0, . . . , 2k+1 − 1} we can write ε = 2kε1 + ε0 for
ε1 ∈ {0, 1}, ε0 ∈ {0, . . . , 2k − 1}:

ϕ(p2 − p) = ϕ(p)2 − ϕ(p) = ε(ε − 1) = 0 mod 2k+1

�⇒ (2kε1 + ε0)(2
kε1 + ε0 − 1) = 0 mod 2k+1

�⇒ 22kε21 + 2kε1(ε0 − 1)+ 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

First, since k ≥ 1, we have 22k = 0 mod 2k+1. Second, it follows that ε0(ε0 − 1) = 0 mod
2k . Thus by the induction hypothesis we have ε0 ∈ {0, 1} and the equation above simplifies
to

22kε21 + 2kε1(ε0 − 1)+ 2kε1ε0 + ε0(ε0 − 1) = 0 mod 2k+1

�⇒ 2kε1(ε0 − 1)+ 2kε1ε0 = 0 mod 2k+1

�⇒ ε1(ε0 − 1)+ ε1ε0 = 2ε1ε0 − ε1 = ε1 = 0 mod 2

�⇒ ε1 = 0

Hence ϕ(p) = ε = ε0 ∈ {0, 1}. ��
Corollary 3 (Completeness for Z2k ) Let R = Z2k for k ≥ 1 and

let G ⊆ R[X ] be a finite set of polynomials with UMLT.
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Algorithm 1: Proof-Checking(G ∪ B(X), R, f )
Input : Constraint set G ∪ B(X), PAC steps R = r1, . . . , rk , target polynomial f
Output: “incorrect” or “correct”

1 P0 ← G ∪ B(X);
2 for i ← 1 . . . k do
3 let ri = (oi , vi , wi , pi );
4 case oi = +
5 if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi Pi←append(Pi−1, pi );
6 return“incorrect”

7 case oi = ∗
8 if vi ∈ Pi−1 ∧ pi = vi ∗ wi Pi←append(Pi−1, pi );
9 return“incorrect”

10 if ∃pi ∈ Pk ∧ pi = f return“correct”return“incorrect”

Suppose further that

∀g ∈ G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉.
Then for every f ∈ R[X ] we have G |�B f ⇒ G ∪ B(X)  f .

In the use case of algebraic circuit verification, cf. Sect. 4.1, we automatically have “∀g ∈
G : (lc(g)−1 tail(g))2 + (lc(g)−1 tail(g)) ∈ 〈B(X)〉”. All polynomials g ∈ G have the
form g := − lt(g) + tail(g), with lc(g) = −1, and encode the relation between the output
and inputs of a gate. The leading term lt(g) represents the gate output and tail(g) computes
the output signal in terms of the inputs, cf., Fig. 3. Thus ϕ(tail(g)) ∈ {0, 1} and hence the
assumption tail(g)2 − tail(g) ∈ 〈B(X)〉 holds.

2.1.3 Practical algebraic calculus

PC proofs as defined so far cannot be checked efficiently, because they only contain the
conclusion polynomials of each proof step.

Example 4 Consider again the example of Fig. 1. The corresponding PC proof is P = (−c+
1−2ab, 2ab−2a+2a2,−c+1−2a+2a2,−2a2+2a,−c+1). To check the correctness
of this proof we would need to verify that each polynomial is derived using one of the PC
rules, which is hard, because we do not have information on the antecedents.

For practical proof checking we translate the abstract rules of PC into a concrete proof
format, i.e., we define a format based on PC, which is logically equivalent but more detailed.
In principle a proof in PC can be seen as a finite sequence of polynomials derived from the
initial constraint set and previously inferred polynomials by applying either an addition or
multiplication rule. To ensure correctness of each proof step it is of course necessary to know
which rule was used, to check that it was applied correctly, and in particular which given or
previously derived polynomials are involved. During proof generation these polynomials are
usually known and thus we require that all of this information is part of a rule in our concrete
PAC proof format to simplify proof checking. A proof rule contains four components

o : v,w, p;
The first component o denotes the operator which is either ‘+’ for addition or ‘*’ for multi-
plication. The next two components v,w specify the two (antecedent) polynomials used to
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derive p (conclusion). In the multiplication rule w plays the role of the polynomial q of the
multiplication rule of PC.

For proof validation we need to make sure that two properties hold. The connection prop-
erty states that the components v,w are either elements of the constraint set or conclusions
of previously applied proof rules. For multiplication we only have to check this property for
v, because w is an arbitrary polynomial. By the second property, called inference property,
we verify the correctness of each proof step, namely we simply calculate v + w resp. v ∗ w

and check that the obtained result matches p. In a correct PAC proof we further need to verify
that at least one conclusion polynomial p matches the target polynomial f . The complete
checking algorithm is shown in Algorithm 1. Checking each step allows pinpointing the first
error, instead of claiming that the proof is wrong somewhere in one of the (usually millions)
steps.

Example 5 Consider again the example presented in Example 1. One PAC proof obtaining
−c + 1 ∈ 〈G ∪ B(X)〉 ⊆ Q[X ] is:

Constraint Set Proof
-b+1-a; + : -c+a+b-2a*b, -b+1-a, -c+1-2a*b;
-c+a+b-2a*b; * : -b+1-a, -2a, 2a*b-2a+2a^2;
a^2-a; + : -c+1-2a*b, 2a*b-2a+2a^2, -c+1-2a+2a^2;
b^2-b; * : a^2-a, -2, -2a^2+2a;
c^2-c; + : -c+1-2a+2a^2, -2a^2+2a, -c+1;

Adaptions We adapt PAC to admit shorter and more concise proofs. First, we index poly-
nomials, i.e., each given polynomial and proof step is labeled by a unique positive number.
It can be seen in Example 5 that the conclusion polynomial of the first proof step is again
explicitly given as the first antecedent in the third proof step. Using indices, similar to LRAT
[14], allows us now to label the first proof step and use this index in the third proof step.
Naming polynomials by indices reduces the size of the proof files significantly and makes
parsing more efficient, because only the conclusion polynomials of each step and the initial
polynomials of G are stated explicitly. However, introducing indices for polynomials has the
effect that the semantics changes from sets to multisets, as in DRAT [58], and it is possible
to introduce the same polynomial under different names.

Second, we treat exponents implicitly. For bit-level verification [54] only models of the
Boolean domain {0, 1}n are of interest. Initially, we added the set of Boolean value constraints
B(X) = {x2 − x | x ∈ X} to G and have to include steps in the proofs that operate
on these Boolean value constraints. Instead, we now handle operations on Boolean value
constraints implicitly to reduce the number of proof steps. That is, we remove the Boolean
value constraints from the constraint set and when checking the correctness, we immediately
reduce exponents greater than one in the polynomials, i.e., x2 = x .

Third, we further introduce a deletion rule to reduce the memory usage of the proof
checker. After each proof step the conclusion polynomial will be added to the constraint set,
thus the number of stored polynomial increases. If we know that a certain polynomial is not
needed anymore in the proof, we use the deletion rule to remove polynomials.

We introduce the semantics of PAC as a transition system. Let P denote a sequence of
polynomials which can be accessed via indices. We write P(i) = ⊥ to denote that the
sequence P at index i does not contain a polynomial, and P(i �→ p) to denote that P at
index i is set to p. The immediate reduction of exponents is denoted by “mod〈B(X)〉”. The
initial state is (X = Var (G ∪ { f }), P) where P maps indices to polynomials of G. The
following two rules implement the properties of ideals as introduced above for the original
PAC.
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[Add (i, j, k, p)] (X , P) �⇒ (X , P(i �→ p))

provided that P( j) �= ⊥, P(k) �= ⊥, P(i) = ⊥,
p ∈ R[X ], and p = (P( j)+ P(k))mod〈B(X)〉.

[Mult (i, j, q, p)] (X , P) �⇒ (X , P(i �→ p))

provided P( j) �= ⊥, P(i) = ⊥, p, q ∈ R[X ], and p = (q · P( j))mod〈B(X)〉.
In the deletion rule we remove polynomials from P which are not needed anymore in

subsequent steps to reduce the memory usage of our tools.
[Deletion (i)] (X , P) �⇒ (X , P(i �→ ⊥))

Example 6 The proof of Example 1 in the adapted PAC format.We do not include all possible
deletion steps in the proof.

Constraint Set Proof
1 -b+1-a; 3 + 2, 1, -c+1-2a*b;
2 -c+a+b-2a*b; 2 d;

4 * 1, -2a, 2a*b;
1 d;
5 + 3, 4, -c+1;

Extension Similar to the polynomial calculus with resolution (PCR) [1], which extends PC
by a negation rule, we include an extension rule which allows us to add new polynomials to
the constraint set. The negation rule of PCR introduces for each variable x ∈ X an additional
variable x that represents the negation of x . We generalize this extension rule such that new
variables can act as placeholders for polynomials.

We use the extension rule to combine SAT solving and algebraic reasoning in our previous
work [34] for multiplier verification. Thus, two proof certificates in different proof systems,
DRUP and PAC are generated. In order to derive a single proof certificate we converted
DRUP proofs to the PAC format [35]. However, to efficiently convert the resolution steps
we encountered the need to extend the initial set of polynomials G to reduce the size of the
polynomials (number of monomials) in the PAC proof. We included polynomials of the form
− fx + 1 − x , similar to the negation rule in PCR, which introduced the variable fx as the
negation of the Boolean variable x . An example for modelling a resolution step in PAC is
given in Example 7 below, where the proof step with index 3 demonstrates our new extension
rule.

However, at that point we did not apply a proper extension rule, but simply added these
extension polynomials to G. This may affect the models of the constraint set, because any
arbitrary polynomial can be added as an initial constraint. For example, we could simply add
the constant polynomial 1 toG whichmakes any PAC proof obsolete. To prevent this issuewe
add an extension rule to PAC, which allows us to add further polynomials to the knowledge
base with new variables while preserving the original models on the original variable set of
variables X .
[Ext (i, v, p)] (X , P) �⇒ (X ∪ {v}, P(i �→ −v + p))

provided that P(i) = ⊥ and v /∈ X and p ∈ R[X ], and p2 − p ∈ 〈B(X)〉.
With this extension rule, variables v can act as placeholders for polynomials p, i.e.,−v+ p =
0, which enables more concise proofs. The variables v are not allowed to occur earlier in
the proof. Furthermore, to preserve Boolean models, we require p2 − p ∈ 〈B(X)〉. This
can be easily checked by calculating p2 − p and reducing all exponents larger than one to
one. The normalized result has to be zero. Without this condition v might take non-Boolean
solutions. In that case vn cannot be simplified to v, requiring to manipulate exponents in the
proof checkers, which is currently not supported.
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Consider for example P = {−y + x − 1}. The only Boolean model is (x, y) = (1, 0).
If we extend G by −v + x + 1 we derive v = 2, because x = 1 for all models of G. Thus
v2 − v = 0 does not hold.

Proposition 1 Ext preserves the original models on X.

Proof We show that adding pv := −v+ p does not affect the models of G ∪ B(X) ⊆ R[X ].
We have 〈G ∪ {pv} ∪ B(X ∪ {v})〉 = 〈G ∪ {pv} ∪ B(X)〉 because v2 − v = p2 − p and
p2− p ∈ 〈B(X)〉. However, every model of 〈G∪{pv}∪B(X)〉 is also a model of 〈G∪B(X)〉
because the variable v appears only as leading term in pv . Hence the result. ��

The Isabelle formal proof is very similar to the idea given here, but we have to be more
explicit. In particular, we explicitly manipulate a linear combination of the polynomials and
show that every dependence in v can be removed from the linear combination, since the
variable v appears only in pv .

Example 7 Let x̄ ∨ ȳ and y∨ z be two clauses. From these clauses we derive the clause x̄ ∨ z
using resolution. The clauses are translated into polynomial equations using De Morgan’s
laws and using the fact that a logical AND can be represented bymultiplication. For example,
from x̄ ∨ ȳ = � ⇔ x ∧ y = ⊥ we derive the polynomial equation xy = 0.

For the PAC proof we introduce an extension variable fz , which models the negation of
z, i.e. − fz + 1− z = 0 in order to find a shorter representation of the second constraint, cf.
proof step 5.

Constraint Set Proof
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
Target 6 * 1, fz, fz*x*y;
-x*z+x; 7 * 5, x, -fz*x*y+fz*x;

8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;

10 + 8, 9, -x*z+x;

2.2 Nullstellensatz

The Nullstellensatz (NSS) proof system [3] derives whether a polynomial f ∈ R[X ] can be
represented as a linear combination of polynomials from a given set G = {g1, . . . , gm} ⊆
R[X ]. That is, an NSS proof for a given polynomial f and a set G = {g1, . . . , gm} is a tuple
P = (h1, . . . , hm) of polynomials such that

m∑

i=1
hi gi = f .

By the same arguments given for PAC, the soundness and completeness arguments of NSS
proofs can be generalized to rings R[X ] when G has UMLT. In NSS the Boolean value
constraints are treated implicitly to yield shorter proofs. Thus, the NSS proof we consider
for a given polynomial f ∈ R[X ] and a set of polynomials G = {g1, . . . , gm} ⊆ R[X ] is
a tuple of co-factors P = (h1, . . . , hm) of polynomials such that there exist polynomials
r1, . . . , rl ∈ R[X ] with

m∑

i=1
hi gi +

l∑

i=1
ri (x

2
i − xi ) = f . (1)
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Checking NSS proofs seems straightforward as we simply need to expand the prod-
ucts hi gi , calculate the sum, and compare the derived polynomial to the given target
polynomial f . However, we discuss practical issues of proof checking in Sect. 6, where
we introduce our NSS proof checker Nuss- Checker. Unlike PAC introduced above, NSS
does not support extensions.

Example 8 A NSS proof for our running example introduced in Example 1 is

Constraint Set Proof
-b+1-a; 1-2a;
-c+a+b-2a*b; 1;

We derive (1− 2a)(−b+ 1− a)+ (1)(−c+ a+ b− 2ab) = −c+ 1 mod 〈B(X)〉 in Q[X ].

3 Merging NSS and PAC into the hybrid proof system LPAC

PAC proofs are very fine-grained, because for each polynomial operation on the constraint
set a single proof step is generated and checked for correctness. This makes it on the one
hand simple to locate an error in the proof and thus to trace back the error in the automated
reasoning tool. On the other hand the proof files are very large as for each proof step we write
down a single line consisting of an index, the operation, two antecedents and the conclusion
polynomial.

Nullstellensatz proofs are concise, as the core proof only consists of the ordered sequence
of the co-factors, which has equal length of the constraint set. Thus the corresponding proof
files are typically orders of magnitude smaller than PAC proofs, e.g., compare the proofs in
Examples 6 and 8. However, because proof checking an NSS proof consists of calculating
the linear combination and comparing it to the target polynomial, it is impossible to locate a
possible error in the proof. Furthermore, the extensions of PAC are not directly portable to
core NSS proofs.

To take the best of both worlds we propose now a modified proof format, called LPAC
(practical algebraic calculus + linear combinations). It includes a rule to merge the addi-
tion and multiplication rule to a single proof rule, which represents linear combination of
polynomials. The syntax is given in Fig. 2. Thus we gain the following semantics. Let P
denote a sequence of polynomials, which can be accessed via indices. The initial state is
(X = Var (G ∪ { f }), P) where P maps indices to polynomials of G.
[LinComb (i, ( j1, . . . , jn), (q1, . . . , qn), p)] (X , P) �⇒ (X , P(i �→ p))

provided that P( j1) �= ⊥, . . ., P( jn) �= ⊥, P(i) = ⊥, p, q1, . . . , qn ∈ R[X ], n ≥ 1,
and p = (q1 · P( j1)+ . . .+ qn · P( jn))mod 〈B(X)〉.

[Deletion (i)] (X , P) �⇒ (X , P(i �→ ⊥))

[Ext (i, v, p)] (X , P) �⇒ (X∪{v}, P(i �→ −v+p))

provided that P(i) = ⊥ and v /∈ X and p ∈ R[X ], and p2 − p ∈ 〈B(X)〉.
Our new LPAC format allows us to simulate both the PAC format and NSS proofs as

follows. The LinComb is able to simulate both the Add and the Mult rule of PAC. By
taking n = 2, (p1, p2), and (1, 1), we obtain the normal Add rule. By taking n = 1, (p1),
and (q1), we obtainMult. The rules Deletion and Ext remain the same as for PAC. In the
actual proof file, elements of the sequence (q1, . . . , qn) can be skipped and are interpreted
as the constant sequence 1. We simulate NSS proofs by providing a single LinComb rule in
the proof file.
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letter ::= ‘ a ’ | ‘ b ’ | . . . | ‘ z ’ | ‘ A ’ | ‘ B ’ | . . . | ‘Z ’
number ::= ‘ 0 ’ | ‘ 1 ’ | . . . | ‘ 9 ’
constant ::= (number)+

variable ::= letter (letter | number)∗
term ::= variable (‘ * ’ variable)∗

monomial ::= constant | [ constant ‘ * ’ ] term
poly ::= [ ‘ - ’ ] monomial (‘ + ’ | ‘ - ’ monomial)∗

id ::= constant
input ::= (id poly ‘ ; ’)∗

lin com rule ::= id ‘ % ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ] ( ‘ + ’ id [ ‘ * ’ ‘ ( ’ poly ‘ ) ’ ])∗‘ , ’ poly ‘ ; ’
del rule ::= id ‘ d ’ ‘ ; ’
ext rule ::= id ‘ = ’ variable ‘ , ’ poly ‘ ; ’

proof ::= (lin com rule | del rule | ext rule)∗
target ::= poly ‘ ; ’

Fig. 2 Syntax of input polynomials, target, and proofs in the LPAC-format

Furthermore, we are able to generate hybrid proofs, which are not as concise as a single
linear combination, but also not as fine-grained as an extended PAC proof. For example, in
multiplier verification we apply polynomial reductions which always consist of a multipli-
cation and addition of polynomials. In the LPAC proof format we are able to combine these
two operations in a single proof step.

Example 9 A possible proof in LPAC for Example 1 is as follows:

Constraint Set Proof
1 -b+1-a; 3
2 -c+a+b-2a*b; 1 d;

4 Proof generation

In this section we demonstrate on the real-world application of multiplier verification how
PAC, LPAC, and NSS proofs can be generated. We first provide a brief introduction to
multiplier verification using our tool AMulet 2.0, before discussing how proof certificates
can be generated.

4.1 Multiplier verification

We developed a verification tool, called AMulet 2.0 [33, 34], which takes as input signed
or unsigned integer multipliers C , given as And-Inverter-Graphs (AIGs), with 2n input bits
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and output bits s0, . . . , s2n−1 ∈ {0, 1}. Nodes in the
AIG represent logical conjunction and markings on the edges represent negation. We denote
the internal AIG nodes by l1, . . . , lk ∈ {0, 1}. Let Z[X ] = Z[a0, . . . , an−1, b0, . . . , bn−1,
l1, . . . , lk, s0, . . . , s2n−1]. In our application we require the coefficient domain to be Z,
because this allows us to apply modular reasoning by adding a constant 2k to the set of
ideal generators, which helps to keep the size of the intermediate verification results reason-
ably small. More details on modular reasoning are given in [34].

The multiplierC is correct iff for all possible inputs ai , bi ∈ {0, 1} the specificationL = 0
holds:

L = −
2n−1∑

i=0
2i si +

(n−1∑

i=0
2i ai

)(n−1∑

i=0
2i bi

)
(2)
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Algorithm 2: Reduction(p, pv, v)
Input : Polynomials p, pv ∈ Z[X ], lm(pv) = −v

Output: Polynomials h, r ∈ Z[X ] such that p + hpv = r
1 t ← p, r ← p, h ← 0;
2 while t �= 0 do
3 if v ∈ lt(t) then
4 h = h + lm(t)/v;
5 r = r + pv lm(t)/v mod 〈B(X)〉;
6 t = t − lm(t);

7 return h, r

The semantics of each AIG node implies a polynomial relation, cf., Fig. 3. Let G(C) ⊆
Z[X ] be the set of polynomials that contains for each AIG node of C the corresponding
polynomial relation.

The polynomials in G(C) ∪ B(X) are ordered according to a lexicographic order, such
that the output variable of a gate is always greater than the inputs of the gate, also called
reverse topological term order (RTTO) [44]. Using this variable ordering leads to G(C)

having UMLT.
Let J (C) = 〈G(C) ∪ B(X)〉 ⊆ Z[X ] be the ideal generated by G(C) ∪ B(X). The

circuit fulfills its specification if and only if we can derive that L ∈ J (C), which can be
established by reducing L by the polynomials G(C)∪ B(X) and checking whether the result
is zero [34]. The algorithm for reducing a polynomial p by a second polynomial pv is shown in
Algorithm 2.We again treat B(X) implicitly, thus we never explicitly reduce by a polynomial
from B(X), but always cancel exponents greater than one to one, which is included in line
5. As a reduction order we follow the same order that is established for the variables.

However, simply reducing the specification by G(C) leads to large intermediate results
[45]. Hence, we eliminate variables in G(C) prior to reduction to yield a more compact poly-
nomial representation of the circuit [34]. In the preprocessing step, we repeatedly eliminate
selected variables v ∈ X \ X0 from G(C), cf. Sect. 4.2. in [36]. Let pv ∈ G(C) such that
lt(pv) = v. Since G(C) has UMLT and v /∈ X0, such a pv exists. All polynomials p, with
v ∈ tail(p) are reduced by pv to remove v from G using Algorithm 2.

In contrast to more general polynomial division/reduction algorithms we use the fact in
Algorithm 2 that lm(pv) = −v. Because of the UMLT property and the fact that all leading
coefficients of G(C) are -1, Algorithm 2 essentially boils down to substituting v = lt(pv)

by tail(pv) in p in the case of circuit verification.
Algorithm2 returns polynomials h, r ∈ Z[X ] such that p+hpv = r mod 〈B(X)〉 ∈ Z[X ].

We replace the polynomial p by the calculated remainder r [34]. To keep track of the rewriting
steps we want to store information on the derivation of the rewritten polynomial r .

4.2 Generating PAC proofs

AMulet 2.0 generates PAC proofs as follows. The set of polynomials G(C) determines the
initial constraint set. The specificationLdefines the target polynomial of the proof. Proof steps
have to be generated whenever polynomials are manipulated, that is during preprocessing
for variable elimination and during reduction.

For variable elimination we produce proof steps which simulate reduction of a polynomial
p by a polynomial pv , cf. Algorithm 2. Note that p and pv are both contained in G(C) and
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AIG node Index Polynomial equation
l10 = b0 ∧ a0 1 -l10 + b0*a0;
l12 = b0 ∧ a1 2 -l12 + b0*a1;
l14 = b1 ∧ a0 3 -l14 + b1*a0;
l16 = l14 ∧ l12 4 -l16 + l14*l12;
l18 = ¬l14 ∧ ¬l12 5 -l18 + l14*l12-l14-l12+1;
l20 = ¬l18 ∧ ¬l16 6 -l20 + l18*l16-l18-l16+1;
l22 = b1 ∧ a1 7 -l22 + b1*a1;
l24 = l22 ∧ l16 8 -l24 + l22*l16;
l26 = ¬l22 ∧ ¬l16 9 -l26 + l22*l16-l22-l16+1;
l28 = ¬l26 ∧ ¬l24 10 -l28 + l26*l24-l26-l24+1;
s0 = l10 11 -s0 + l10;
s1 = l20 12 -s1 + l20;
s2 = l28 13 -s2 + l28;
s3 = l24 14 -s3 + l24;

Fig. 3 AIG of a simple 2 bit multiplier in AIGER format (left) with induced constraint set (right)

thus appear earlier in the proof. In general two proof steps are generated, a multiplication
step and an addition step

idi * h,idpv,hpv; idi+1 + idp,idi,r;

where idi and idi+1 define unused indices, and idp and idpv represent the indices of polyno-
mials p resp. pv . The polynomial hpv in above proof steps defines the expanded polynomial
of multiplying h · pv in Z[X ]. If lt(pv) = v does not occur in any other polynomial
g ∈ G(C) \ {pv}, we can delete pv from the constraint set, which we indicate by gener-
ating a deleting step

idpv d;

After preprocessing is completed we gain the simplified polynomial model G(C)′. For
monitoring the reduction of L by G(C)′ we have to generate proof steps which simulate the
reduction of L by polynomials g ∈ G(C)′. We consider the polynomials g ∈ G(C)′ in the
reverse topological order, such that each polynomial in G(C)′ has to be considered exactly
once for reduction.

However in contrast to variable elimination, the specification L, which acts as p in Algo-
rithm 2, is not part of the constraint set. Thus we are not able to simply generate two proof
steps as before, because checking the addition rule would raise an error, as p = L does
not occur earlier in the proof. On the other hand recall that all elements of an ideal can be
represented as a linear combination of the generators of the ideal. To simulate the linear
combination we generate a multiplication PAC step for each reduction step by a polynomial
g ∈ G(C)′ and store the computed factor hg (h is the returned co-factor of Algorithm 2).
After reducing by several polynomials, we use a sequence of addition steps to gain a single
intermediate specification polynomial. The reason for the intermediate summing up of poly-
nomials is to keep the memory usage for proof generation small as we do not want to store
too many factors at the same time. After reduction is completed we sum up all intermediate
specifications. If the circuit is correct the final polynomial is the specification of the circuit.

Example 10 Figure 3 shows an AIG of a simple 2-bit multiplier. For each node we introduce
the corresponding polynomial equation. These polynomials are shown on the right side of
Fig. 3 and define the initial constraint set. The multiplier is correct if we derive that the gate
polynomials imply the specification−8s3−4s2−2s1−s0+4a1b1+2a1b0+2a0b1+a0b0 = 0.

The corresponding PAC proof can be seen in Fig. 4. Steps 15–22 are generated during
preprocessing. The remaining steps are generated during reduction of the specification by
G(C)′. The result of step 43 matches the circuit specification.
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15 * 5, l16 -1, -l18*l16+l18+l16*l14*l12 -l16*l14 -l16*l12+l16 -l14*l12+l14+l12 -1;
16 + 6, 15, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
17 * 4, l14*l12 -l14 -l12 , -l16*l14*l12+l16*l14+l16*l12 -l14*l12;
18 + 16, 17, -l20 -2*l14*l12+l14+l12;
19 * 9, l24 -1, -l26*l24+l26+l24*l22*l16 -l24*l22 -l24*l16+l24 -l22*l16+l22+l16 -1;
20 + 10, 19, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
21 * 8, l22*l16 -l22 -l16 , -l24*l22*l16+l24*l22+l24*l16 -l22*l16;
22 + 20, 21, -l28 -2*l22*l16+l22+l16;
23 * 14, 8, -8*s3+8*l24;
24 * 13, 4, -4*s2+4*l28;
25 * 22, 4, -4*l28 -8* l22*l16+4*l22 +4*l16;
26 + 25, 24, -4*s2 -8* l22*l16+4*l22 +4*l16;
27 * 8, 8, -8*l24 +8*l22*l16;
28 * 7, 4, -4*l22 +4*b1*a1;
29 + 28, 27, -8*l24+8*l22*l16 -4*l22 +4*b1*a1;
30 + 29, 26, -4*s2 -8* l24+4*l16 +4*b1*a1;
31 + 30, 23, -8*s3 -4*s2+4* l16+4*b1*a1;
32 * 12, 2, -2*s1+2*l20;
33 * 18, 2, -2*l20 -4* l14*l12+2*l14 +2*l12;
34 + 32, 33, -2*s1 -4* l14*l12+2*l14 +2*l12;
35 * 4, 4, -4*l16 +4*l14*l12;
36 * 3, 2, -2*l14 +2*b1*a0;
37 + 35, 36, -4*l16+4*l14*l12 -2*l14 +2*b1*a0;
38 + 37, 34, -2*s1 -4* l16+2*l12 +2*b1*a0;
39 * 2, 2, -2*l12 +2*b0*a1;
40 + 38, 39, -2*s1 -4* l16+2*b1*a0+2*b0*a1;
41 + 1, 11, -s0+b0*a0;
42 + 40, 41, -2*s1-s0 -4*l16+2*b1*a0+2*b0*a1+b0*a0;
43 + 42, 31, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 4 Generating PAC steps during multiplier verification

Algorithm 3: Add-to-basis-representation( f , h, base(r))
Input : Polynomials f , h ∈ Z[X ], basis representation base(r)
Output: Updated base(r) such that ( f , h) is included

1 if base( f ) = {( f , 1)} then
2 if ( f , hi ) ∈ base(r) for any hi then
3 base(r) ← (base(r) \ {( f , hi )}) ∪ {( f , hi + h)};
4 else
5 base(r) ← base(r) ∪ {( f , h)};
6 else
7 foreach ( f ′i , h′i ) ∈ base( f ) do
8 base(r) ← Add-to-basis-representation( f ′i , hh′i , base(r))

9 return base(r)

4.3 Generating NSS proofs

In this sectionwe discuss howNSS proofs are generated in our verification toolAMulet 2.0.
We introduced in the previous section that we distinguish two phases during verification of
multipliers. In the preprocessing step we eliminate variables from G(C) to gain a simpler
polynomial representation G(C)′. In the second step the specification is reduced by G(C)′
to determine whether the given circuit is correct. Both phases have to be included in the NSS
proof to yield a representation of the specification L as a linear combination of the original
gate polynomials G(C) ∈ Z[X ].
Definition 7 For a given set of polynomials G ⊂ Z[X ], let base(r) = {(pi , qi ) | pi ∈ G,
qi ∈ Z[X ]}. We call base(r) a basis representation of r ∈ Z[X ] in terms of G, if there exist
polynomials v1, . . . vl with r =∑

(pi ,qi ) ∈base(r) qi pi +
∑l

i=1 vi (x2i − xi ).
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To derive a NSS proof for L we aim to find a basis representation of L in terms of G(C).
For all polynomials g ∈ G(C) it holds that base(g) = {(g, 1)} is a basis representation in
terms of G(C).

As discussed in Sect. 4.1, we rewriteG(C) by replacing polynomials ofG(C) by rewritten
polynomials r that are derived using Algorithm 2. To keep track of the rewriting steps we
store information on the derivation of the rewritten polynomial r , i.e., we derive a basis
representation of r in terms of G(C). That is, we include the tuples (p, 1), (pv, h) as used
in Algorithm 2 in base(r).

Algorithm3 showshowweupdate base(r)by adding a tuple ( f , h). If the input polynomial
f of Algorithm 3 is an element of G(C), i.e. base( f ) = {( f , 1)}, we add the tuple ( f , h)

to base(r). If f does not occur in any tuple in base(r), we simply add ( f , h) to base(r).
Otherwise base(r) contains a tuple ( f , hi ) that has to be updated to ( f , hi + h), which
corresponds to merging common factors in base(r).

If the polynomial f is not an original gate polynomial, f can be written as a linear
combination f = h′1 f1 + · · · + h′l fl for some original polynomials fi and h′i ∈ Z[X ]. Thus
the tuple ( f , h) corresponds to h f = hh′1 f1 + · · · + hh′l fl . We traverse through the tuples
( fi , h′i ) ∈ base( f ), multiply each of the co-factors h′i by h and add the corresponding tuple
( fi , hh′i ) to base(r).

Multiplying and expanding the product hhi may lead to an exponential blow-up in the
size of the NSS proof as the following example shows.

Example 11 ConsiderOR-gates y0 = x0∨x1, y1 = y0∨x2, . . ., yk = yk−1∨xk+1 represented
by the set of polynomials G = {−y0 + x0 + x1 − x0x1,−y1 + y0 + x2 − y0x2, . . . ,−yk +
yk−1+ xk+1− yk−1xk+1)} ⊆ Z[y0, . . . yk, x0, . . . xk+1]. Assume we eliminate y1, . . . , yk−1,
yielding yk = x0 ∨ x1 ∨ . . .∨ xk+1. The expanded polynomial representation of yk contains
2k+2 monomials.

These sequences of OR-gates are common in carry-lookahead adders, which occur in
complex multiplier architectures. This lead to the conjecture [31], which we stated in the
introduction of this article. However, our previous verification approach [34] to tackle com-
plex multipliers also relies on SAT solving. We substitute complex final-stage adders in
multipliers by simple ripple-carry adders that do not rely on large OR-gates. Thus this blow-
up does not occur in our experiments with our implementation (Sect. 6) for arithmetic circuit
verification.

Example 12 We demonstrate a sample run of Algorithm 3. LetG(C) = {p1, p2, p3} ⊆ Z[X ]
and x, y, z ∈ Z[X ]. Assume q1 = p1 + xp2, q2 = p3 + yp2, and their basis representations
base(q1) = {(p1, 1), (p2, x)} and base(q2) = {(p2, y), (p3, 1)}. Let p = q1 + zq2. We
receive the basis representation of p in terms of G(C) by adding (q1, 1) and (q2, z) to
base(p).

(q1, 1): Since q1 /∈ G(C), we add each tuple of base(q1) = {(p1, 1), (p2, x)} with co-
factors multiplied by 1 to base(p).

(q2, z):Weconsider base(q2) = {(p2, y), (p3, 1)} and add (p2, yz) and (p3, z) to base(p).
Since p3 is not yet contained in the ancestors of p, we directly add (p3, z) to base(p). The
polynomial p2 is already contained in base(p), thus we add yz to the co-factor x of p2 and
we derive base(p) = {(p1, 1), (p2, x + yz), (p3, z)}.

After preprocessing is completed, we repeatedly apply Algorithm 2 and reduce the spec-
ification polynomial L by G(C)′. We generate the final NSS proof by deriving a basis
representation for L. Therefore we add after each reduction step the tuple (g, h), where
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srotcaf-oCtestniartsnoC
;10a*0b+01l-
;21a*0b+21l-
;20a*1b+41l-

;4+21l*2-41l*2-21l*41l*221l*41l+61l-
-l18 + l14*l12 - l14 - l12 + 1 2*l16 -2;
-l20 + l18*l16 - l18 - l16 + 1 2;

;41a*1b+22l-
;8+61l*4-22l*4-61l*22l*461l*22l+42l-

-l26 + l22*l16 - l22 - l16 + 1 4*l24 -4;
-l28 + l26*l24 - l26 - l24 + 1 4;

;101l+0s-
;202l+1s-
;482l+2s-
;842l+3s-

Fig. 5 NSS proof for verifying the 2-bit multiplier that is depicted in Fig. 3

15 % 5*(l16 -1) + 6, -l20+l16*l14*l12 -l16*l14 -l16*l12 -l14*l12+l14+l12;
16 % 4*(l14*l12 -l14 -l12) + 15, -l20 -2* l14*l12+l14+l12;
17 % 9*(l24 -1) + 10, -l28+l24*l22*l16 -l24*l22 -l24*l16 -l22*l16+l22+l16;
18 % 8*(l22*l16 -l22 -l16) + 17, -l28 -2* l22*l16+l22+l16;
19 % 14*(8) , -8*s3+8*l24;
20 % 7*(4) + 8*(8) + 18*(4) + 13*(4) , -4*s2 -8* l24+4*l16 +4*b1*a1;
21 % 2*(2) + 3*(2) + 4*(4) + 16*(2) + 12*(2) , -2*s1 -4*l16 +2*b1*a0+2*b0*a1;
22 % 1 + 11, -s0+b0*a0;
23 % 22 + 21 + 20 + 19, -8*s3 -4*s2 -2*s1 -s0+4*b1*a1+2*b1*a0+2*b0*a1+b0*a0;

Fig. 6 Generating a LPAC proof during multiplier verification

h is the corresponding co-factor of polynomial g, to base(L) using Algorithm 3. After the
final reduction step, base(L) represents an NSS proof and is printed to a file.

Example 13 Figure 5 shows the corresponding NSS proof for the verification of the 2-bit
multiplier that is depicted in Fig. 3. It can be seen that the proof contains only the (ordered)
co-factors and thus is smaller than the extensive PAC proof.

4.4 Generating LPAC proofs

The LPAC format allows us to deliver dense PAC proofs. Thus, the proof generation is very
similar as described in Sect. 4.2, with the difference being the level of compactness of the
produced proof steps.

For each substitution step during preprocessing we generate a linear combination. That
is, we merge the multiplication and addition steps, presented in Sect. 4.2 and gain for each
preprocessing step a single step

idi % idpv*(h) + idp, r;

Similar as before, we generate deletion steps whenever pv can be removed.
During the reduction phase we calculate and store the factors of each reduction step. After

reducing by several polynomials we generate a linear combination step which sums up these
factors to gain intermediate specifications. Thus, we are able to narrow down possible errors.
Finally, we sum up the intermediate specifications in a single step and yield the specification
L.

Example 14 Figure 6 shows the corresponding LPAC proof for the verification of the 2-bit
multiplier that is depicted in Fig. 3. The proof steps 15–18 are generated during preprocessing,
19–22 are generated during reduction and step with index 23 is the final step for summing
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Fig. 7 Term representation w.r.t. v > u > x > y (left) and x > u > y > v (right)

up the intermediate specifications. It can be seen that LPAC enables merging PAC steps. For
example the steps with indices 15 and 16 of Fig. 4 are now combined in the first proof step.

5 PAC checkers

Wehave implemented two checkers for PACproofs. Thefirst,Pacheck, (Sect. 5.1) is efficient
while the second, Pastèque, is verified using Isabelle/HOL (Sect. 5.2).

5.1 PACHECK 1.0

Pacheck consists of approximately 1 800 source lines of C code and is published [38] under
MIT license. The default mode of Pacheck supports the extended version of PAC for the
new syntax using indices. Pacheck also supports reasoning with exponents as described in
the initial version of PAC. However, extension rules are only supported for Boolean models.

Pacheck reads three input files<constraints>,<proof>, and<target> and then
verifies that the polynomial in <target> is contained in the ideal generated by the poly-
nomials in <constraints> using the proof steps provided in <proof>. The polynomial
arithmetic needed for checking the proof steps is implemented from scratch, because in the
default setting we always calculate modulo the ideal 〈B(X)〉. General algorithms for poly-
nomial arithmetic need to take exponent arithmetic over Z into account [55], which is not
the case in our setting.

In the default mode of Pacheck we order variables in terms lexicographically using
strcmp. All internally allocated terms are shared using a hash table. It turns out that the
order of variables has an enormous effect onmemory usage, since different variable orderings
induce different terms. For example, given the monomials uxy and vxy. For the ordering v >

u > x > y, the internal sharing is maximal and only 4 terms are allocated. For the ordering
x > u > y > v, terms cannot be shared and thus 6 terms need to be allocated, cf. Figure 7.
For one example withmore than 7million proof steps, using-1*strcmp as sorting function
leads to an increase of 50% in memory usage. A further option for sorting the variables is to
use the variable appearance ordering from the given proof files. That is, we assign increasing
level values to newvariables during parsing of the proof file and sort according to this value.
However, the best ordering that maximizes internal sharing cannot be determined in advance
from the original constraint set, as it highly depends on the applied operations in the proof
steps. Pacheck supports the orderings strcmp, -1*strcmp, level, and -1*level.
Terms in polynomials are sorted using a lexicographic term order that is induced by the order
of the variables.

Initially each polynomial from <constraints> is sorted and stored as an inference.
Inferences consist of a given index and a polynomial and are stored in a hash table. Proof
checking is applied on-the-fly. We parse each step of <proof> and immediately apply the
necessary checks discussed in Sect. 2.1.3. If the proof step is either Add or Mult, we have
to compute whether the conclusion polynomial of the step is equal to the arithmetic operation
performed on the antecedent polynomials.
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Since the monomials of the polynomials are sorted, addition of polynomials is performed
by merging their monomials in an interleaved way. Normalization of the exponents is not
necessary in theAdd rule, butwe still use this technique formultiplication,wherewemultiply
each monomial of the first polynomial with each monomial of the second polynomial. In the
Mult rule we normalize exponents larger than one, before testing equality. Furthermore, we
check whether the conclusion polynomial of theAdd orMult steps matches the polynomial
in <target> to identify whether the normalized target polynomial was derived.

5.2 PASTÈQUE 1.0

To further increase trust in the verification, we implemented a verified checker called
Pastèque in the proof assistant Isabelle/HOL [52]. It follows a “refinement” approach, start-
ing with an abstract specification of ideals, which we then refine with the Isabelle Refinement
Framework [41] to the transition system from Sect. 2, and further down to executable code
using Isabelle’s code generator [18]. The Isabelle files have been made available [17]. The
generated code consists of 2 800 lines Standard ML (2 400 generated by Isabelle, 400 for
the parser) and is also available [17, 38] under MIT license.

On the most abstract level, we start from Isabelle’s definition of ideals. The specification
states that if “success” is returned, the target is in the ideal. Then we formalize PAC and
prove that the generated ideal is not changed by the proof steps. Proving that PAC respects
the specification on ideals was not obvious due to limited automation and development of the
Isabelle library of polynomials (e.g., “Var (1) = ∅” is not present). However, Sledgehammer
[5] automatically proved many of these simple lemmas. We made a slightly different choice
for definitions: Instead of using B(X) = {x2 − x | x ∈ X}, we used {x2 − x | True} and
proved that we only need variables of X . This made little difference for proofs, but avoided
checking that variables are present in the problem.

While the input format identifies variables as strings, Isabelle only supports natural num-
bers as variables. Therefore, we use an injective function to convert between the abstract
specification of polynomials (with natural numbers as variables) and the concrete manip-
ulations (with strings as variables). The code does not depend on this function, only the
correctness theorem does. Injectivity is only required to check that extension variables did
not occur before.

In the third refinement stage, Sepref [40] changes data structures automatically, such as
replacing the set of variables X by a hash-set. Finally, we use the code generator to produce
code. This code is combined with a trusted (unproven) parser and can be compiled using the
Standard ML compiler MLton [59].

The implementation does not support the usage of exponents and is less sophisticated
than Pacheck’s. In particular, even if terms are sorted, sharing is not considered (neither
of variables or of monomials) as it can be executed partially by the compiler, although not
guaranteed by StandardML semantics. Some sharing could also be performed by the garbage
collector. We tried to enforce sharing by usingMLton’s shareAll function and by using
a hash map during parsing, i.e., using a hash map that assigns a variable to “itself” (the
same string, but potentially at a different memory location) and normalize every occurrence.
However, performance became worse.

Pastèque is four times slower than Pacheck. First, this is due to Standard ML being
intrinsically slower than C or C++. While Isabelle’s code generator to LLVM [43] produces
much faster code, we need integers of arbitrary large size, which is currently not supported.
Also achieving sharing is entirely manual, which is challenging due to the use of separation

123



Formal Methods in System Design

logic Sepref. Second, there is no axiomatization of file reading and hence parsing must be
applied entirely before calling the checker in order for the correctness theorem to apply.
This is more memory intensive and less efficient than interleaving parsing and checking.
Pastèque can be configured via the uloop option to either use the main loop generated by
Isabelle (parsing before calling the generated checker) or instead use a hand-written copy of
the main loop, the unsafe loop, where parsing and checking is interleaved. It is only unsafe
because it is unchecked. However, the performance gain is large (on sp-ar-cl-64 with
32GBRAM, the garbage collection timewent from700 s down to 25 s), but only the checking
functions of each step are verified, not the main loop.

6 The NSS checker NUSS-CHECKER

Our NSS proof checker, Nuss- Checker is implemented in C. It consists of ∼ 1500
source lines of code and is published [30] as open source under the MIT license. Similar
to Pacheck, Nuss- Checker reads three input files <constraints>, <cofact>, and
<target>. The file <constraints> contains the initial constraints gi ∈ G, <cofact>
contains the corresponding co-factors hi in the same order. Nuss- Checker reads the files
<constraints> and <cofact>, generates the products and then verifies that the sum
of the products is equal to the polynomial f given in <target>. Nuss- Checker uses the
same internal representation of polynomials as Pacheck and furthermore supports the same
variables orders as Pacheck, with strcmp being the default ordering.

Wevalidate the correctness of the generatedNSSproofs by checkingwhether
∑l

i=1 hi gi =
f ∈ Z[X ] for pi ∈ G ⊆ Z[X ], f , hi ∈ Z[X ]. This sounds rather straightforward as
theoretically we only need to multiply the original constraints gi by the co-factors hi and
calculate the sum of the products. However, we will discuss in this section that depending
on the implementation the time and maximum amount of memory that is allocated varies by
orders of magnitude.

Nuss- Checker generates the products hi gi on the fly. That is, we parse both files
<constraints> and <cofact> simultaneously, read two polynomials gi and hi from
each file and calculate hi gi . Since addition of polynomials in Z[X ] is associative, we are
able to derive different addition schemes for n-ary addition. We experimented with five dif-
ferent addition/subtraction patterns. The addition patterns are depicted in Fig. 8 for adding
six polynomials. The subscript i in “+i” shows the order of the addition operation.

If we sum up all polynomials at once, we do not generate the intermediate addition results.
Instead we push all monomials of the l products hi gi onto one big stack. Afterwards, the
monomials on the stack are sorted and merged, which corresponds to one big addition.
However, all occurring monomials of the products are pushed on the stack and stored until
the final sorting and merging, which increases the memory usage of Nuss- Checker.

If we add up in sequence, we only store one polynomial in the memory, and always add
the latest product hi gi . On the one hand, this allows for monomials to cancel, which helps
to reduce the memory usage. On the other hand, in the application of multiplier verifica-
tion (cf. Sect. 4.1) the target polynomial L contains n2 partial products aib j that lead to
intermediate summands of quadratic size, which slows down the checking time.

For adding up in sequence we also experimented with the “inverse” operation, where
we start with the target polynomial and step by step subtract the products hi gi in the order
originally used during the verification. We check whether the final polynomial is equal to
zero. Againwe always store only one polynomial in thememory, which admits a lowmemory
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Fig. 8 Addition schemes of 6 polynomials

usage. However, in our application the target polynomial is of quadratic size, making step-
wise subtractions time-consuming.

If we add up in a tree structure with breadth first, we add two consecutive products of the
NSS proof and store the resulting sum. After parsing the proof, we have l

2 polynomials on a
stack. We repeatedly iterate over the stack and always sum up two consecutive polynomials,
until only one polynomial is left. Using a tree addition scheme reduces the likelihood of
quadratic sized intermediate summands for multiplier verification.

In the addition scheme, where we use a tree structure and sum up depth first, we develop
the tree on-the-fly by always adding two polynomials of the same layer as soon as possible. It
may be necessary to sumup remaining intermediate polynomials that are elements of different
layers, as shown in Fig. 8. We always store at most !log(l)" polynomials in the memory, as a
binary tree with l leafs has height !log(l)" and we never have more polynomials than layers
in the memory.

We apply the presented addition schemes for our use case of multiplier verification. We
choose two multiplier architectures. In our first experiment we consider a simple multiplier
architecture, called btor, that is generated usingBoolector [51] for various input sizes. Sec-
ond, we examine a more complex multiplier architecture, called bp-wt-rc, that uses a Booth
encoding and Wallace-tree accumulation. Figures 9 and 10 show that the results compare
favorably to our conjectures of checking time and memory usage for each addition scheme.
However, Nuss- Checker supports all presented options for addition, with adding up in
binary tree, depth first set as default, because for different applications, using other addition
schemes may be more beneficial. For example, we shuffled the order of the polynomials in
the NSS proof of 128-bit btor-multipliers 200 times. The addition schemes “adding up in
sequence” and “subtract” always exceeded the time limit of 300 seconds. The fastest addition
scheme is “all at once”, which is a factor of two faster than both tree-based addition schemes.
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Fig. 9 Time (left) and memory usage (right) of addition schemes for btor multipliers

Fig. 10 Time (left) and memory usage (right) of addition schemes for bp-wt-rc multipliers

7 LPAC checkers

TheLPACcheckers combine the strength of PAC (checking intermediate steps and supporting
extensions), while allowing doing a linear combination in a single step like NSS proofs. We
have extended Pacheck (Sect. 7.1), based on our experiments for Nuss- Checker, and
Pastèque (Sect. 7.2) to Pacheck 2.0 and Pastèque 2.0.

7.1 PACHECK 2

Pacheck 2.0 is a re-factorization and improved C++ reimplementation of our previous proof
checkers. Since we are able to simulate PAC and NSS proofs in LPAC, Pacheck 2.0 unites
and extends Pacheck 1.0 and Nuss- Checker.

The internal representation of polynomials is almost the same as for Pacheck 1.0. How-
ever, Pacheck 2.0 does no longer support the usage of exponents and thus only supports
Boolean models. Proof checking is applied on the fly. That is, we parse a proof step and
calculate that the linear combination of known polynomials is equal to the given conclusion
polynomial of the proof step. We calculate linear combinations similar to proof checking a
NSS proof in Nuss- Checker, i.e., whenever we parse a product of a polynomial and an
index, we directly calculate the factor. The factors of the linear combination are processed
using a tree structure with depth first addition scheme. Figure 11 shows a demonstration of
Pacheck 2.0 on the LPAC proof of Example 14.
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$ pacheck btor2.input btor2.proof btor2.target
[pck2] Pacheck Version 2.0
[pck2] Practical Algebraic Calculus Proof Checker
[pck2] Copyright(C) 2020, Daniela Kaufmann, Johannes Kepler University Linz
[pck2] sorting according to strcmp
[pck2] checking target enabled
[pck2] reading target polynomial from 'btor2.target'
[pck2] read 74 bytes from 'btor2.target'
[pck2]
[pck2] reading original polynomials from 'btor2.input'
[pck2] found 14 original polynomials in 'btor2.input'
[pck2] read 327 bytes from 'btor2.input'
[pck2]
[pck2] reading polynomial algebraic calculus proof from 'btor2.proof'
[pck2] found and checked 9 inferences in 'btor2.proof'
[pck2] read 680 bytes from 'btor2.proof'
[pck2]
[pck2] ----------------------------------------------------------------------
[pck2] c TARGET CHECKED
[pck2] ----------------------------------------------------------------------
[pck2]

)slaimonylopforebmunlatot(32:htgnelfoorp]2kcp[
)slaimonomforebmunlatot(28:ezisfoorp]2kcp[

3:eergedfoorp]2kcp[
[pck2]
[pck2] total inferences: 23
[pck2] original inferences: 14 (61% of total rules)

)selurlatotfo%93(9:selurfoorp]2kcp[
)selurecnerefnifo%0(0:snoisnetxe]2kcp[

[pck2] linear combination: 9 (100% of inference rules
snoitidda51gniniatnoc]2kcp[
)snoitacilpitlum41dna]2kcp[

)selurlatotfo%0(0:deteledselur]2kcp[
[pck2]
[pck2] total allocated terms: 30
[pck2] max allocated terms: 30 (100% of total terms)
[pck2] searched terms: 170 (82% hits,

)snoisillocegareva0.0]2kcp[
[pck2] searched inferences: 69 (3.0 average searches,

)snoisillocegareva0.0]2kcp[
[pck2]
[pck2] maximum resident set size: 2.67 MB

sdnoces10.0:emitssecorp]2kcp[

Fig. 11 Output of Pacheck 2.0 for the proof of Example 14

7.2 Pastèque 2

Pastèque 2.0 [16] is developed on top of Pastèque 1.0. In order to reuse as much as
possible from Pastèque 1.0, we reuse the specification and the rules of PAC. Instead of
proving the correctness of the LPAC rules directly, we reduce them to the PAC rules, by
seeing the LinComb rule as a series of Add andMult. This requires the linear combination
to not be empty: While 0 is always in the ideal, it cannot be generated by the PAC rules.

Additionally, we introduced explicit sharing of variables. We map every variable string to
a unique 64-bit machine integer. In turn, this integer is the index of the original string in an
array. Sharing is introduced in a new refinement step. The major change is that importing a
new variable can now fail (if the problem contains more than 264 different variables). This
is nearly impossible in practical problems, but we had to add several new error paths in
Pastèque. We obviously set up the code generator to make the array access from machine
words in an array without converting it to an unbounded integer. This change give us a
performance improvement of around 10%, most likely because the memory representation is
more efficient (fewer pointer indirections), making the work of the garbage collector easier.
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On top of that, as we know that all our array accesses are valid (this is checked by Sepref
during synthesis of the code),1 we add a flag such the compiler makes use of that. This
also allowed us to use MLton’s LLVM backend that produce faster code, according to our
experiments.

We did not change the implementation of the uloop option. Like Pastèque 1.0, a full
proof step is parsed before being checking. For NSS-style LPAC proof, this means that the
full proof is still parsed before checking. In particular, for such proofs, Pastèque 2.0 should
be compared the default version of Pastèque 1.0. The new sharing reduces memory usage,
but parsing the full proof still causes a extreme memory pressure, as demonstrated by the
experiments (Sect. 8). A solution would be to move the parsing to Isabelle (i.e., take a string
as input instead of polynomials).

8 Experiments

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with turbo-mode
disabled) with a memory limit of 128 GB. The time is listed in rounded seconds (wall-clock
time). We measure the wall-clock time from starting the tools until they are finished. In our
experiments we aim to provide a comprehensive comparison between our tools. Source code,
benchmarks and experimental data are available [37].

8.1 PAC proofs

For the experiments of Table 1we generate PACproofs as in previouswork [34, 35] to validate
the correctness of multipliers with input bit-width n. The circuits are either generated with
AMG [25], Boolector [51], or GenMul [48].

For the upper part of Table 1 we generate proof certificates with our toolAMulet 2.0 [33]
to validate the correctness of simple multiplier circuits. Our previous approach [34] to tackle
complex multipliers also relies on SAT solving. We substitute complex final-stage adders
in multipliers by simple ripple-carry adders. A bit-level miter is generated, which is passed
on to a SAT solver to verify the equivalence of the adders. Computer algebra techniques are
used to verify the rewritten multiplier. Since two different solving techniques are used, two
proof certificates in distinct formats are generated. SAT solvers generate a DRUP proof and
computer algebra techniques produce a PAC proof. In order to obtain a single proof certificate
we translate DRUP proofs into PAC [35]. In the experiments of [35] all gate polynomials of
the given multiplier, the equivalent ripple-carry adder, and the bit-level miter are assumed
as initial set of constraints G. We even added polynomials that define Boolean negation to
the initial constraint set. All these polynomials are now added using extension steps. This
preserves the models of the gate polynomials of the given multiplier. Experiments for these
proof certificates are shown in the lower part of Table 1. The second column shows the input
bit-width and the third column shows the number of generated proof steps.

The memory usage for Pastèque depends on the garbage collector, which likely explains
the peak around 64 GB, that is exactly half of the available memory, observed for the largest
problems.Details onwhen and how the garbage collection trigger could explain the surprising
bp-wt-cl where the uloop option uses more memory.

1 The hash map setup relies on exceptions, which is why we did not do that for Pastèque 1.0, but now we
changed the setup.
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The effect of deletion rules and indices in Pacheck can also be seen in Table 1. In average
deletion rules reduce the memory usage by ∼60%, with minimum 40% (for bp-ct-bk) and
maximum 72% (for sp-ar-rc 512). Although the effect on runtime is limited. Using indices
reduces the runtime by 30 to 80%.Note that in our earlier experiments [35] the proof checking
time is slightly faster than in the column “no index”, because we did not use proper extension
rules, which requires the additional checks p ∈ Z[X ] and p2 − p ≡ 0mod〈B(X)〉.

8.2 LPAC and NSS

We have changed our pipeline to generate LPAC proofs instead of PAC proofs, using
AMulet 2.0. The experiments are done on the same hardware. In the experiments of this
section we only consider Pastèque with the uloop option.

We can only generate NSS proofs to validate the correctness of simple multiplier circuits
that don’t require combining algebra and SAT (i.e., extensions). It can be seen in Table 2
that NSS-style LPAC proofs are faster to check for Pacheck 2.0 than NSS proofs for Nuss-
Checker. However, the memory usage of Pacheck 2.0 is around an order of magnitude
higher than for Nuss- Checker, because Pacheck 2.0 reads and stores the complete con-
straint set before checking the proof. In Nuss- Checker the constraint set is parsed on the
fly.

Pastèque 2.0 is very slow on NSS-style LPAC proofs because it must parse the entire
file first, before starting checking, leading to very high memory usage. For those proofs, the
uloop has no effect: A full proof step is parsed before checking, but since the entire proof
is a single step, it is the same as parsing the full proof beforehand.

LPAC proofs (right block of Table 3) are checked as efficiently as NSS-style LPAC proofs
(right block of Table 2) by Pacheck 2.0. For Pastèque 2.0 we gain a significant speed-up
when using LPAC proofs. LPAC proofs only need between 1%− 11% of the corresponding
checking time of NSS-style LPAC proofs. Additionally, checking LPAC proofs is more
memory efficient.

If we compare checking LPAC proofs to checking PAC-style LPAC proofs, we can see
that both Pacheck 2.0 and Pastèque 2.0 are a factor of two faster on checking LPAC proofs.
The memory usage remains the same.

We further can see in Table 3 that both Pacheck 2.0 and Pastèque 2.0 are faster on
LPAC proofs that simulate PAC than Pacheck 1.0 and Pastèque 1.0 on PAC proofs. The

Table 2 NSS Proof Checking, without extension (in bold the fastest version)

Multiplier n Nuss- Checker LPAC simulates NSS

Steps Steps Pacheck 2.0 Pastèque 2.0

sec MB sec MB sec MB

btor 128 1 2 18 1 2 98 53 2044

btor 256 1 8 71 1 7 385 762 8819

btor 512 1 41 295 1 35 1555 14, 347 41, 712

sp-ar-rc 128 1 3 24 1 2 142 80 2845

sp-ar-rc 256 1 13 95 1 10 561 1181 12, 275

sp-ar-rc 512 1 67 392 1 48 2261 21, 543 51, 415
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explicit sharing of variables in Pastèque 2.0 also significantly reduces the memory usage,
except for sp-ar-rc 512 (the reasons for this behavior are unclear).

Finally, we can compare the performance of Pacheck and Pastèque. In both versions,
Pastèque 1.0 and Pastèque 2.0 is less efficient than Pacheck 1.0 and Pacheck 2.0.
Pastèque is both much slower and more memory hungry. Verified checkers of SAT cer-
tificates [21, 42] have the same level of efficiency as state-of-the-art checkers [53], likely
because of the imperative style (unlike our mostly functional code) and the more efficient
memory usage by managing most memory directly (e.g., for clauses) instead of relying on
the garbage collector.

9 Conclusion

In this article we presented the algebraic proof formats PAC, LPAC and NSS, which are
able to validate algebraic verification results. We presented soundness and completeness
arguments for these proof formats and showed how proof certificates can be generated as a
by-product of algebraic reasoning on the use case of arithmetic circuit verification. Proofs in
NSS capturewhether a polynomial can be represented as a linear combination of a given set of
polynomials by providing the co-factors of the linear combination. PAC proofs dynamically
capture whether a polynomial can be derived providing a sequence of proof steps. We extend
PAC by including an extension rule capturing rewriting techniques. Furthermore, we added
a deletion rule and used indices for polynomials. Our novel format LPAC extends PAC by
providing the ability to combine several steps at once.

Our proof checkers Pacheck, Pastèque, and Nuss- Checker are able to check proofs
efficiently. Our experiments showed that the PAC optimizations cut the memory usage
of Pacheck in half and reduce the runtime by around 30–80%. Our reimplementation
Pacheck 2.0 and Pastèque 2.0, which use LPAC further reduce the runtime by around
25–50%. To our surprise, the size of NSS proofs does not explode in our experiments and is
faster to check than PAC. This was themotivation to combine the advantages of PAC andNSS
into LPAC. Checking LPAC proofs is as time efficient as checking NSS proofs, while still
providing detailed error messages. However, the memory usage of checking LPAC proofs is
an order of magnitude higher than checking pure NSS proofs. On LPAC, Pacheckwas three
times faster than Pastèque and used an order of magnitude less memory, whereas Pastèque
was formally verified in Isabelle.

In the future we want to capture more general extension rules in PAC as the calculus from
Sect. 2 allows. We imagine that it can be extended in two ways. First, we could relax the
condition p2 = p. This condition is necessary to have v2 = v, but could be lifted even if it
means that vn cannot be simplified to v anymore, requiring to manipulate exponents. Second,
we currently restrict the extension to the form v = p where p contains no new variables.
The correctness theorem does not rely on that and we leave it as future work to determine
whether lifting one of these restrictions can lead to shorter proofs.

In AMulet 2.0 no redundant proof steps are generated, hence no backward proof check-
ing is necessary unlike SAT certificates. This might still be interesting in other applications.
Another idea for future work is to bridge the gap between C and Isabelle, either by imperative
code or by verifying the C code directly.
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