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Abstract—Currently the most efficient automatic approach to
verify gate-level multipliers combines SAT solving and computer
algebra. In order to increase confidence in the verification, proof
certificates are generated. However, due to different solving
techniques, these certificates require two different proof formats,
namely DRUP and PAC. A combined proof has so far been
missing. Correctness of this approach can thus only be trusted
up to the correctness of compositional reasoning. In this paper
we show how to generate a single proof in one proof format,
which then allows to certify correctness using one simple proof
checker. We further investigate empirically the effect on proof
generation and checking time as well as on proof size. It turns
out that PAC proofs are much more compact and faster to check.

I. INTRODUCTION

Fully automated verification of gate-level multiplier circuits
is still considered to be hard. The currently most effective
approach relies on computer algebra [4], [13], [14]. Whereas
the authors of [4], [14] employ only algebraic reasoning, we
further combine Boolean satisfiability (SAT) solving [13]. We
conjectured in [13], that certain final stage adders are a real
challenge for the computer algebra approach. On the other
hand these adders can easily be verified using SAT solvers. In
our approach we replacing complex adders by simple ripple
carry adders (RCA). The correctness of the substitution is
proved by SAT solvers and the rewritten multiplier is verified
using the computer algebra approach.

We increase the trust in the verification result by generating
certificates in [13], which can be checked by independent
proof checkers. Since our technique relies on two different
reasoning techniques, also two proof certificates in different
proof formats are produced. The polynomial reduction algo-
rithm produces an algebraic proof in the practical algebraic
calculus (PAC) [16] and SAT solvers produce clausal proofs in
the delete reverse unit propagation (DRUP) proof format [10].
These proofs are checked by two different proof checkers,
leaving a hole in the certification argument. Compositional
reasoning using interactive theorem proving [12] could close
this gap but is not fully automatic.

In this work we present how these two proof formats
used in [13] can be merged into one common proof format.
Although this paper is tailored to the use case of [13], the
proposed methods are not limited to this particular application.

We are able to convert a DRUP proof into a PAC proof. On
the other hand our results for converting a PAC proof into a
DRUP proof can be considered to provide a lower bound on
the proof size. In the conversion we use a satisfiability modulo
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theories (SMT) encoding and thus are not able to track any
rewriting employed by SMT solvers as a DRUP proof.

Our experiments generate proofs in a single proof format.
It turns out that PAC proofs are superior to DRUP proofs, as
DRUP proofs are around three orders of magnitude larger than
PAC proofs. Additionally, as already mentioned, our DRUP
proofs do not yet cover all necessary proof steps.

II. PRELIMINARIES

We recapitulate the two proof formats DRUP and PAC
and further summarize the state-of-the-art [13] for automatic
verification of unsynthesized multiplier circuits.

A. Algebra and the PAC format

In this section we introduce basic concepts of algebra [5]
and describe the PAC proof format [16].

A nonempty subset of polynomials I ⊆ Z[X] is called an
ideal if ∀ p, q ∈ I : p+q ∈ I and ∀ p ∈ Z[X] ∀ q ∈ I : pq ∈ I .
A set P = {p1, . . . , ps} ⊆ Z[X] is called a basis of I if
I = {p1q1 + · · · + psqs | q1, . . . , qs ∈ Z[X]}. We then say I
is generated by P and write I = 〈P 〉.

Let f ∈ Z[X] and P ⊆ Z[X]. We are interested whether the
polynomial equation f = 0 is implied by the equations p = 0
with p ∈ P . This question is also called ideal membership
problem: Given f and P as above decide whether f ∈ 〈P 〉.

We focus on gate-level circuit verification, where all vari-
ables x ∈ X represent logic gates and thus take only values in
{0, 1}. This is enforced by Boolean value constraints of the
form x(1−x) = 0. Let B(X) = {x(1−x) | x ∈ X} ⊆ Z[X]
be the set of Boolean value constraints for X . Each gate
of the circuit is encoded by a polynomial relation, called
gate polynomial, which are collected in P . Consequently
the ideal membership problem we actually want to solve is
formulated as: Given f ∈ Z[X] and P ⊆ Z[X], decide
whether f ∈ 〈P ∪B(X)〉.

The practical algebraic calculus (PAC) format allows to
capture the derivation of an equation f = 0 from a given
set of polynomials equations P and thus f ∈ 〈P ∪B(X)〉.

Proofs are sequences of proof rules, which model the ideal
properties, where each rule has the following form:

+ : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof
or are contained in P
and pi + pj being reduced by B(X)

∗ : pi, q, qpi;
pi appearing earlier in proof or in P
and q ∈ Z[X] being arbitrary
and qpi being reduced by B(X)
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Propostional Formula Polynomial Relation

(x↔ a ∧ b) = > −x + a(1− b) = 0

CNF (x ∨ a ∨ b) = > (1− x)a(1− b) = 0
(x ∨ a) = > x(1− a) = 0

(x ∨ b) = > xb = 0

Fig. 1. Different encodings of the AIG node x = a ∧ b

B. SAT and the DRUP format
We briefly introduce the SAT problem and its common

proof formats, following [10]. The SAT problem seeks for
an assignment such that a formula F evaluates to true.

A clause C is redundant w.r.t. a formula F , if F ∧C is sat-
isfiable iff F is satisfiable. Redundant clauses are for example
derived using resolution: Given two clauses C1 = (a∨x) and
C2 = (a ∨ y), the clause C = (x ∨ y) can be resolved.

A further technique used in SAT solvers is called unit
propagation: If a formula F contains a unit clause C = l,
remove all clauses containing l and all occurrences of l.

If a formula is satisfiable a satisfying assignment can act as
witness. However if the formula is unsatisfiable more involved
reasoning is required to derive proofs of unsatisfiability, also
called refutation. Standard refutation proof formats are either
resolution proofs or clausal proofs. Clausal proofs are easier
to generate and are more compact than resolution proofs.

The most basic clausal proof format is reverse unit prop-
agation (RUP) [7]. We say C is a RUP clause if F ∧ C,
with C being the negation of C, is unsatisfiable. RUP proofs
are sequences of RUP clauses containing the empty clause. A
delete reverse unit propagation (DRUP) [9] proof extends RUP
by adding deletion information [18]. DRUP can further be ex-
tended to deletion resolution asymmetric tautology (DRAT) [8]
by for instance allowing to introduce new variables. Clausal
DRUP proofs are checked through unit propagation. As a
side effect a resolution proof [10] can be produced. The
TRACECHECK format is a common resolution proof format.

C. State-of-the-art Circuit Verification
Multipliers are usually made up of three stages: (i) genera-

tion of partial products (PPG), (ii) accumulation of the partial
products (PPA) and (iii) a final stage adder (FSA).

According to the state-of-the-art [13] the first two stages
are easy for computer algebra, but some final stage adders,
more precisely generate-and-propagate adders, are challenging
for the computer algebra approach. However these adders are
very easy for SAT solvers. In our technique of [13] we are
given multipliers as And-Inverter-Graphs (AIG). We identify
whether the final stage adder is a generate-and-propagate adder
and if necessary substitute it with a simple RCA.

To verify that the original FSA is substituted with an
equivalent RCA, a bit-level miter in CNF is generated, and
checked by a SAT solver, which also produces a DRUP proof
for certification. Correctness of the rewritten circuit is shown
using computer algebra. For details see [4], [13], [14]. A
PAC proof is computed alongside the polynomial reduction.
In the toolflow of [13] the PAC proof is split into the “.polys”
and “.pac” files, where “‘.polys” contains the initial set of
polynomials P and “.pac” contains the PAC proof rules.
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Fig. 2. Converting a DRUP proof into a PAC proof

III. FROM DRUP TO PAC

The necessary steps to merge the DRUP and the PAC proof
of [13] into one single PAC proof are shown Fig. 2. Converting
the DRUP proof into a PAC proof needs algebraic reasoning
over the CNF encoding derived during adder substitution. As
only the gate polynomials are contained in the constraints set
we need to deduce the CNF encoding in PAC. Figure 1 shows
an AIG node and the corresponding encodings as propositional
formulas and polynomial equations. Since in a satisfiable
CNF every clause needs to evaluate to true, the CNF can
be split into a system of “clausal equations” (on the right)
encoding this property. We derive the corresponding system
of polynomial equations from the initial polynomial relation
by simple polynomial operations. We added to the original
tool AMULET of [13] the ability to derive such polynomial
encodings of CNFs during adder substitution.

The generated CNF miter of the adder substitution is given
to the SAT solver PICOSAT [1]. We do not use CADICAL [2]
as [13], because PICOSAT allows to directly generate a reso-
lution proof in the TRACECHECK format. The TRACECHECK
proof alongside with the original CNF is passed on to our tool
DRUP2PAC. In DRUP2PAC we encode the resolution proof as
a PAC proof, by re-enacting the resolution steps in the given
traces using algebraic reasoning. However we do not want
to derive the empty clause, as this corresponds to deriving
the constant polynomial 1. Hence whenever we encounter the
unit clause encoding the assumption of the miter in a trace,
we remove it from the trace.

As a further optimization we internally apply bit-flipping,
as for instance proposed in [17], on the algebraic level to
keep the size of the intermediate polynomials small. It can be
seen in the polynomial encoding of the CNF in Fig. 1, that
each positive literal l in a clause introduces a factor (1 − l)
in the corresponding polynomial encoding of the clause. As
the PAC format uses only the expanded form of polynomials,
expanding clauses with multiple positive literals leads to a
tremendous growth in the polynomial encoding. In order to
overcome this issue, we introduce for each literal li a bit-
flipping polynomial −fi− li+1 = 0 in the constraints set and
internally flip variables in the CNF such that only negative
literals are contained. We monitor the bit-flipping in the clausal
polynomials by generating corresponding PAC rules and add
the bit-flipping polynomials to the constraints set.

After translating the full TRACECHECK proof we derive
for each pair of miter inputs the equations si(s

′
i − 1) = 0

and s′i(si − 1) = 0 using unit propagation. Encoding unit
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Fig. 3. Converting a PAC proof into a DRUP proof

propagation in PAC is very similar to encoding resolution.
Subtracting these polynomials leads to si − s′i = 0 for each
pair of input bits. We report these pairs in “.equal”.

We certify the rewritten AIG using AMULET. At this
point the specification which we derived in the PAC proof
uses the outputs s′i of the RCA. Our final tool MATCHSPEC
generates PAC rules which replace every occurrence of s′i by
the corresponding bit si using the equations si− s′i = 0. As a
last step the generated proof and the original specification (in
terms of si) is checked using PACTRIM.

IV. FROM PAC TO DRUP

We have seen how to encode a DRUP proof into PAC.
However, not only is PAC more complex than DRUP (and
DRAT), but PAC neither has certified proof checkers, while
DRAT and thus DRUP can be translated to LRAT, for which
such checkers exist [6]. Therefore it is natural to ask, whether
it is possible to translate PAC proofs into DRUP.

In this section we give a positive but impractical answer.
The first hurdle is to encode the specification into CNF. This
can in principle be achieved using SMT over the theory of bit-
vectors for a large enough bit-width followed by bit-blasting.
However, at this point, we are not able to track rewriting
within SMT solvers, which leaves a gap in the proof. A further
issue of our encoding is that we only translate each PAC rule
individually to SMT and CNF. We do not include a check that
the specification of the circuit is derived at the end, which is
another gap in our proof. Thus our resulting DRUP proof is far
from being a complete proof, in the sense of covering every
rewriting step. The size of these proofs can only be considered
as an empirically derived lower bound.

Note that our translation introduces new variables and
thus technically needs extended resolution (ER), thus actually
DRAT. But we continue to use DRUP instead of DRAT to
describe our approach. Our tool flow can be seen in Fig 3.
We apply adder substitution and certify the rewritten multiplier
as in [13]. In our tool PAC2SMT we abstract the polynomial
proof to a bit-vector proof. To this end we encode the PAC
proof as an SMT problem over the theory of quantifier free
fixed size bit vectors. Note that each variable in the PAC proof
represents the input or output of a gate. As a consequence we
encode each variable in the PAC proof as a single bit and the
coefficients are encoded as bit vectors. The length of the bit
vectors depends on the highest coefficient in the PAC proof.

In our encoding of the PAC rules we include the following
optimization when single bits are multiplied with bit-vectors.

(bvand #b011 ((_ sign_extend 2) x)) =
(bvmul #b011 ((_ zero_extend 2) x)).

We encode each rule of the PAC proof as a bit vector
equation and assume that the conjunction of all these equations
is unsatisfiable. The SMT encoding is given to BOOLEC-
TOR [15], which additionally is able to generate AIGs from
bit vector formulas. As discussed above, BOOLECTOR applies
rewriting steps, which are not covered in the DRUP proof.
Using the tool AIG2CNF from the Aiger library [3] we translate
the AIG into a CNF. Nodes from AIGs can easily be encoded
in CNF, as indicated in Fig. 1.

At this point we have two CNF encodings. The first CNF
is directly produced by AMULET and encodes the bit-level
miter proving the correctness of the adder substitution. The
second CNF encodes the translated PAC proof. Both CNFs
are encoded to deliver a refutation, i.e., for a correct multiplier
both CNFs should be unsatisfiable. More precisely each CNF
encodes a miter, thus both CNF contain one unit clause Ci = li
which represents the assumption for the miter output.

The CNFs are merged by collecting all clauses, except the
clause encoding the output assumption. The two output clauses
C0 = l0, C1 = l1 are merged into the clause l0 ∨ l1, thus
either l0 or l1 needs to be true to satisfy the CNF. As we
expect that both l0 and l1 are false, the clause l0 ∨ l1 should
be unsatisfiable, and thus the whole CNF too. The merged
CNF is solved using the SAT solver CADICAL [2], which
is instructed to generate a DRUP proof. Finally this proof is
checked using DRAT-TRIM [18].

V. EXPERIMENTS

Our experiments were conducted on Intel Xeon E5-2620 v4
CPUs running at 2.10 GHz (with turbo-mode disabled). The
time in Tbl. I is listed in rounded seconds (wall-clock time)
and we measure the time from starting the tools until they
finished or an error occurred, e.g. the time limit was reached,
set to 3600 sec (1h), or the memory limit of 128 GB.

We consider various multiplier architectures used in our
experiments in [13]. Benchmarks are generated with the Arith-
metic Module Generator [11] and BOOLECTOR [15]. Except
for the “btor” benchmarks from BOOLECTOR, the selected ar-
chitectures contain generate-and-propagate final stage adders,
thus adder substitution was required and applied as in [13] and
hence a DRUP as well as a PAC proof were generated. These
proofs are translated as explained in Sect. III and Sect. IV.

The first block shows the time for generating and checking
the proofs as in [13]. For “DRUP” and “PAC” we present the
time it takes to generate the corresponding proof and the time
to check proofs using DRAT-TRIM [18] and PACTRIM [16].
Additionally we depict the sizes of the proofs. The proof size
of DRUP proofs is measured by the number of added RUP
clauses [10]. The size of PAC proofs is defined by the number
of applied PAC rules [16].

The second block “PAC” shows the time for generating a
single PAC proof as described in Sect. III. Almost all of the
time in proof generation is used by converting the DRUP proof
to a PAC proof, eg. for “bp-wt-cl-32” our tool DRUP2PAC
needs 3130 seconds. We are able to generate and check PAC
proofs up to bit-width 32. The growth in the proof size depends



TABLE I
PROOF GENERATION AND CHECKING

architecture n
[13]

DRUP PAC total PAC DRUP
gen check size gen check size gen check total size aig smt cnf check total size

btor 16 - - - 0 0 5 181 0 - - - - 0 3 136 177 316 11 079 431
sp-ar-cl 16 0 0 1 299 0 0 7 962 0 2 2 3 185 588 0 7 300 264 570 19 317 884
sp-dt-lf 16 0 0 1 167 0 0 7 787 0 1 1 2 136 349 0 6 279 277 562 18 153 668
bp-ct-bk 16 0 0 1 029 0 0 7 205 0 1 1 2 128 720 0 7 TO - - -
bp-wt-cl 16 0 0 2 902 0 0 7 946 0 30 11 41 614 742 0 7 TO - - -
btor 32 - - - 0 0 21 629 0 - - - - 0 32 2 887 TO - -
sp-ar-cl 32 0 0 14 927 0 1 33 834 1 133 31 164 1 597 897 0 56 TO - - -
sp-dt-lf 32 0 0 3 138 0 1 33 451 1 2 3 5 321 720 0 52 TO - - -
bp-ct-bk 32 0 0 2 276 0 1 27 312 1 1 2 3 217 128 0 49 TO - - -
bp-wt-cl 32 1 1 46 502 0 1 30 561 2 3 133 242 3 375 5 536 176 0 55 TO - - -
PPG: simple (sp), Booth (bp) PPA: array (ar), Dadda tree (dt), compressor tree (ct), Wallace tree (wt) TO = 3600 sec
FSA: carry look-ahead (cl), Ladner-Fischer (lf), Brent-Kung (bk) Benchmarks are generated by the Arithmetic Module Generator [11].

highly on the benchmark, more precisely it depends on the
generated DRUP proof. For instance for 32 bit, the increment
of the PAC proofs is between factor 10 and factor 1600.

The third block “DRUP” lists the time for generating and
checking a single DRUP proof as described in Sect. IV.
Column “aig” shows the time needed for adder substitution
and generating the PAC proof. In column “smt” we present
the time needed to generate an SMT proof as well as the time
BOOLECTOR [15] needs to generate a CNF out of the SMT
proof. The following column “cnf” lists the time we need to
combine and solve the CNFs using CADICAL. We are only
able to generate and check DRUP proofs up to 16 bit. The
size of the DRUP proofs compared to the single PAC proofs
increases drastically. Especially for the “btor” benchmarks,
where no initial DRUP proof is generated, converting the PAC
proof to the DRUP proof increases the size by three orders
of magnitude. These are still not complete DRUP proofs.
Neither rewriting, nor the extensions to encode bit-blasting
(both requiring DRAT) are accounted yet.

VI. CONCLUSION

State-of-the-art verification techniques of arithmetic circuits
rely on SAT as well as computer algebra. However they
lack a proof certificate in a single proof format. With two
proof formats we argue that additional manual compositional
reasoning would be required to certify the verification. In this
paper we present how to translate the clausal reasoning proof
format DRUP into the algebraic proof format PAC and vice
versa in order to produce one single proof certificate.

Translating DRUP proofs to PAC proofs requires algebraic
reasoning. We include bit-flipping techniques in order to
reduce the size of polynomials. As a further optimization we
use the TRACECHECK format as input format, in order to
directly determine the necessary polynomial equations.

To obtain DRUP from PAC proofs we encode the PAC
proofs as an SMT problem, which then is translated into
CNF using bit-blasting by an SMT solver. However, this
intermediate step leaves gaps in the proof, since we are not
able to track internals of SMT solving. Even though far from
being complete proofs, they serve as empirically derived lower

bounds on such clausal proofs. These proofs are three orders
of magnitude larger than the corresponding PAC proofs.

As future work we want to be able to close the gap
in generating DRUP proofs. Generating smaller proofs by
applying more sophisticated reasoning is interesting as well.
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