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Abstract

Continuing recent investigations of bounding the tensor rank of matrix multiplication using flip
graphs, we present here improved rank bounds for 24 matrix formats.
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1. Introduction

During the past few years, we have seen renewed activity in the search for matrix multiplica-
tion schemes of low rank for small and specific matrix multiplication formats. After Strassen’s
discovery that two 2 × 2 matrices over any coefficient ring can be multiplied using only seven
multiplications, one less than the standard algorithm, people have already been searching inten-
sively for multiplication schemes that multiply an n × m matrix with an m × p matrix over an
arbitrary coefficient ring using as few multiplications as possible. Notable early milestones in
this effort are Laderman’s algorithm (Laderman, 1976), which for (n,m, k) = (3, 3, 3) uses 23
multiplications rather than 27, and the paper by Hopcroft and Kerr (1971), which discusses the
ranks of all formats of the form (2,m, p).

The minimal number of multiplications required for multiplying an n×m matrix with an m×p
matrix is known as the rank of the matrix multiplication tensor of format (n,m, p). By slight
abuse of language, we also say that the number of multiplications needed by a specific algorithm
for carrying out this product is the rank of this algorithm. Note that the rank of an algorithm
is an upper bound for the rank of the tensor. While most of the work on matrix multiplication
focuses on the tensor rank of asymtptotically large matrices, also the ranks for many small matrix
formats remain unknown.

Nowadays computers are used for finding for matrix multiplication schemes of low rank.
There are several approaches. Smirnov (2013) found several improvements using numerical
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optimization. Drevet et al. (2011) used a variant of Pan’s trilinear aggregation method (Pan,
1984) to find improvements for various medium-sized formats. Sedoglavic (2017) uses a divide-
and-conquer technique to also improve various medium-size formats. Heule et al. (2021, 2019)
used SAT solvers to find many new instances matching Laderman’s bound for (3, 3, 3), but found
no improvements. AlphaTensor and AlphaEvolve (Fawzi et al., 2022; Novikov et al., 2025)
used machine learning to improve the rank bounds for a number of small formats. Kauers and
Moosbauer (2023, 2025) introduced flip graphs and found better ranks for (5, 5, 5) by performing
random searches in this graph.

Here we continue the development of the flip graph approach. As introduced by Kauers and
Moosbauer (2023), the flip graph for a certain fixed format (n,m, k) is a graph whose vertices are
all the multiplication algorithms for multiplying an n×m matrix with an m× p matrix, regardless
of how many multiplications are needed. Two such algorithms are connected by an edge if it is
possible to reach one of them from the other by means of a certain transformation. There are
three kinds of transformations. The first one, called “flip”, connects two algorithms of the same
rank. The second one, called a “reduction”, leads from one algorithm to an algorithm of rank one
less. The third transformation, which is called “plus” and was introduced by Arai et al. (2024),
leads from one algorithm to an algorithm of rank one higher.

In search for algorithms of low rank, reduction edges are most useful, but they are rare. The
flip graph method proceeds by starting from some given algorithm and traversing a random path
of flip edges until a node is encountered which has a reduction edge. Then this edge is taken and
the search continues. Following a plus edge is counter productive because it increases the rank,
but it is still useful to occasionally choose such an edge in order to avoid getting trapped in a part
of the graph from which no further reduction edges can be reached.

The technical details of the flip graph search procedure are not important for the present
work. What matters is that for every format (n,m, p), there is one flip graph, and given a node,
i.e., an algorithm for multiplying an n × m matrix with an m × p matrix, there is a way to search
for algorithms for the same format but of smaller rank. In principle, an algorithm of minimal
rank can always be found in this way (Kauers and Moosbauer, 2023, Thm. 9), but in practice,
the graph is so large that we can easily fail to find an optimal algorithm, and even if we do find
one, it cannot easily be recognized that there is no better one.

Whether or not a search succeeds depends partly on luck, partly on the choice of certain
parameters (e.g., how often to take a plus edge), partly on the amount of computing power
invested, and to a greater extent on the choice of the starting point of the search. Already in
their first paper on the subject, Kauers and Moosbauer (2023) noticed that while they were not
able to reach a better rank than 97 for (5, 5, 5) when starting from the standard algorithm, they
easily reached a rank scheme of rank 95 (over Z2) when they took as starting point a scheme of
rank 96 that had been found by AlphaTensor (Fawzi et al., 2022).

One year later, Arai et al. (2024) found a scheme of rank 94 for (5, 5, 5) (over Z2) using an
incremental approach. Starting from the standard algorithm for (2, 2, 2), they apply a flip graph
search to get a scheme of rank 7. Then they extend this scheme to a scheme of rank 11 for (2, 2, 3)
by exploiting the block multiplication rule A(B|C) = (AB|AC) for matrices and use it as starting
point for another new flip graph search. They proceed in the same way to construct good schemes
of formats (2, 3, 3), (3, 3, 3), (3, 3, 4), (3, 4, 4), (4, 4, 4), (4, 4, 5), (4, 5, 5), and finally (5, 5, 5).

The approach of Arai et al. (2024) not only led to improved bounds for (4, 5, 5) and (5, 5, 5),
but also required substantially less computation time than the searches which use the standard
algorithm as starting point. It thus seems to be a good idea to construct starting points from op-
timized schemes of neighboring formats. For the present paper, we have explored this approach
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further.
We connect the flip graphs for the various formats (n,m, p) to one single graph by adding

two new kinds of edges which connect schemes of different formats. The first kind is called
extension. It connects every multiplication scheme of some format (n,m, p) to a scheme of
format (n,m, p + 1) or (n,m + 1, p) or (n + 1,m, p). This is the same operation that was used by
Arai et al. (2024).

The second kind of new edges is called projection. It connects every multiplication scheme
of some format (n,m, p) to a scheme of format (n,m, p − 1) or (n,m − 1, p) or (n − 1,m, p) by
simply setting all the variables corresponding to a certain row or column to zero. For example,
if we have a (2, 2, 3) multiplication scheme for computing the product(

a1,1 a1,2
a2,1 a2,2

) (
b1,1 b1,2 b1,3
b2,1 b2,2 b2,3

)
=

(
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3

)
,

then we can obtain a (2, 2, 2) multiplication scheme by setting b1,3 and b2,3 to zero and dropping
the variables c1,3 and c2,3.

The graph obtained from all the flip graphs by adding all extension and projection edges is
called the meta flip graph. The purpose of this article is to share a bunch of rank improvements
that were obtained by exploring this graph.

2. Searching From Scratch

Given a collection of multiplication schemes of some format (n,m, p) and some rank r, here
is what we do to try to reduce the rank. We consider 100nmp random paths in the flip graph that
start at randomly chosen starting points chosen from the given collection. The length of each
path is restricted to 100000nmp. Most of the edges in the paths are flips, occasionally we also
allow plus edges. If a vertex that has a reduction edge, then we do the reduction. As soon as we
reach a vertex whose rank is r − 1, i.e., as soon as the number of reduction steps taken exceeds
the number of plus steps taken, we abort the search on this specific path and record the resulting
scheme.

The result of this process is a collection of various schemes of rank r − 1, with which we
proceed in the same way to obtain a collection of schemes of rank r − 2. The process is repeated
until we reach a rank at which none of the considered random paths leads to a reduction.

In order to traverse the meta flip graph, where we also allow extensions and projections to
change the format of the multiplication algorithms under consideration, we proceed as follows.

We take the standard algorithm for format (2, 2, 2) as starting point, apply the procedure out-
lined above, and arrive at a collection of schemes of rank 7. From all these schemes, we construct
schemes of format (2, 2, 3) by extension. Because of the symmetry of the matrix multiplication
tensor, there is no need to also consider the formats (2, 3, 2) or (3, 2, 2). Also, there is no need to
consider projections, because formats (n,m, p) with min(n,m, p) = 1 are trivial.

With the schemes of format (2, 2, 3), we apply again the flip graph search procedure to find
schemes of smallest possible rank. The resulting collection of schemes is then extended into a
collection of schemes of format (2, 2, 4) and a collection of schemes of format (2, 3, 3). At this
point, we could in principle also already apply a projection to return to format (2, 2, 2), but we
chose to refrain from returning to formats where we have already been.

Continuing in this way, we have explored most of the paths in the grid of formats (n,m, p)
of length 11 that start at (2, 2, 2) and don’t visit the same format more than once. There are
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Figure 1: Paths in the meta flip graph starting from the standard algorithm for format (2, 2, 2) (black) that led to improve-
ments for certain formats (boxed).

altogether 1245 such paths, and each format (n,m, p) with 2 ≤ min(n,m, p) and max(n,m, p) ≤ 8
and n + m + k ≤ 14 except for (n,m, p) = (4, 4, 6) is visited by at least one of them.

For the formats (2, 5, 7), (2, 6, 7), and (2, 6, 8), we were able to improve the rank bound by
one. In the case of (2, 6, 7), there were seven paths that led to the improvement. For each of the
two other formats, only one path led to the improvement. Figure 1 shows all the nodes visited by
some path that led to an improvement. We also considered paths involving projection steps, but
it turned out that none of the paths that led to an improvement contained such an edge.

3. Using other Starting Points

Although we do not know for sure, it is fair to believe that for most of the formats (n,m, p)
near (2, 2, 2), the currently best known upper bounds for the rank are actually sharp. This would
explain why starting from (2, 2, 2), we have to go some distance before reaching a format where
a rank drop can be achieved. However, continuing this approach to even larger format becomes
prohibitively expensive as the number of paths grows quickly with their lengths.

An attractive alternative is to take starting points of formats other than (2, 2, 2). Multiplication
schemes that were obtained by other techniques are natural choices. For example, Moosbauer
and Poole (2025) have recently obtained substantial rank improvements for the formats (5, 5, 5)
and (6, 6, 6) by using a variant of the flip graph method that takes symmetries of the matrix
multiplication tensor into account. Applying a meta flip graph search as described in the previous
section with their schemes as starting points, we were able to obtain rank reductions for a number
of formats in the vicinity of (5, 5, 5) and (6, 6, 6), respectively.

Figure 2 shows the formats visited on paths that led to success. These improvements were
already announced on our ISSAC’25 poster (Kauers and Wood, 2025). Note that unlike in the
previous section, there are now also successful paths containing projection edges. Another differ-
ence to the approach from Section 2 is that some improvements are obtained via paths that pass
through suboptimal vertices. For example, starting from (5, 5, 5), there are three paths reaching
rank 123 for (4, 6, 7) via the vertex (4, 6, 6), although the search only found schemes of rank 106
for this format. The best known rank bound for (4, 6, 6) is 105. Altogether, eight of the 25 paths
leading to a rank improvement pass through a vertex for which the best known rank bound was
not reached.
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Figure 2: Paths in the meta flip graph starting from a scheme found by Moosbauer and Poole (2025) (black) that led to
improvements for certain formats (boxed).

Shortly after the preprint of our ISSAC poster abstract appeared on ArXiv, AlphaEvolve
(Novikov et al., 2025) released rank improvements for about a dozen formats. Taking these as
starting points and exploring their vicinity in the meta flip graph, we were able to identify some
further rank improvements.

4. Coefficient Domains with more than Two Elements

Turning from one algorithm to another algorithm via a flip amounts to adding something and
subtracting it at some other position. In order to avoid having to decide what to add and subtract,
flip graph searches have so far always been performed with Z2 as ground domain. This has the
advantage that there is only one choice what to add and subtract (because adding and subtracting
zero would not change anything). The disadvantage of taking Z2 as a ground domain is that at
the end of the search, we only obtain a multiplication algorithm that is valid for this domain. It
would be more interesting to have algorithms with coefficients in Z or at least in Q, which are
applicable to matrices over any coefficient domain in which the denominators of the fractions
appearing in the coefficients are invertible.

Hensel lifting (von zur Gathen and Gerhard, 2013) can be used in order to translate an algo-
rithm for the ground domain Z2 into an algorithm for the ground domain Z2ℓ , for some ℓ ∈ N.
Every increment of the exponent ℓ requires solving an inhomogeneous linear system over Z2.
Occasionally, this system happens to be unsolvable, and in this case, no extension to a higher
exponent is possible. In most of the cases however, we observe that the algorithms found by the
flip graph method with the ground domain Z2 can be lifted to Z2ℓ for a sufficiently large ℓ such
that rational reconstruction (von zur Gathen and Gerhard, 2013) succeeds turning the algorithm
into one for the ground domain Q.

Algorithms with coefficients in Q that involve one or more fractions with even denominator
cannot be found in this way, because such fractions have no valid homomorphic image in Z2.
For this reason, in the computations reported in the previous section we could only explore
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the neighborhoods of 9 of the 13 new algorithms found by AlphaEvolve. The other four had
coefficients in Z[ 1

2 ] or in Z[ 1
2 , i]. Dumas et al. (2025a,b) succeeded in eliminating i from these

schemes, but not 1
2 .

In order to also explore the neighborhoods of the schemes that are not valid mod 2, we imple-
mented the flip graph method for the ground domains Z3 and Z5. They both contain multiplicative
inverses of 2, and the latter in addition contains a root of the polynomial x2 + 1. Unfortunately,
these efforts were in vein. While in some cases we succeeded in matching the currently best
known rank bound, we did not encounter any improvement.

5. Another Search from Scratch

In an extension step, one of the three dimensions of a matrix multiplication format (n,m, p)
is increased by one. For example, an algorithm for format (3, 4, 6) can be obtained from an
algorithm for format (3, 4, 5) by observing that the matrix product

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4



b1,1 b1,2 b1,3 b1,4 b1,5 b1,6
b2,1 b2,2 b2,3 b2,4 b2,5 b2,6
b3,1 b3,2 b3,3 b3,4 b3,5 b3,6
b4,1 b4,2 b4,3 b4,4 b4,5 b4,6


can be carried out by computing the matrix product

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4



b1,1 b1,2 b1,3 b1,4 b1,5
b2,1 b2,2 b2,3 b2,4 b2,5
b3,1 b3,2 b3,3 b3,4 b3,5
b4,1 b4,2 b4,3 b4,4 b4,5


and the expressions

a1,1b1,6 + a1,2b2,6 + a1,3b3,6 + a1,4b4,6

a2,1b1,6 + a2,2b2,6 + a2,3b3,6 + a2,4b4,6

a3,1b1,6 + a3,2b2,6 + a3,3b3,6 + a3,4b4,6

which require 12 multiplications.
The additional expressions amount to a matrix multiplication of format (3, 4, 1), so the exten-

sion can be viewed as obtaining the new (3, 4, 6) scheme by patching together a multiplication
scheme of format (3, 4, 5) with one of format (3, 4, 1).

Besides the possible alternatives to obtain (3, 4, 6) from (3, 3, 6) and (3, 1, 6) or from (2, 4, 6)
and (1, 4, 6), there are further options: we can also obtain (3, 4, 6) as a combination of (3, 4, 2)
and (3, 4, 4), as a combination of two copies of (3, 4, 3), or as a combination of two copies of
(3, 2, 6).

For all formats (n,m, p) with n + m + p ≤ 19, starting with (2, 2, 2), we have performed flip
graph searches for starting points that were obtained by combining two smaller formats in all
possible ways. Because of the large number of combinations, we did not consider increasing the
number of start points further by also using projections, and we also did not keep track of the full
paths that led to improvements. In fact, in this approach it is no longer adequate to talk about
‘paths’ because every starting point now has two predecessors rather than one.
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One of the formats for which an improvement could be found is (3, 4, 6). In this case, the
start points obtained from (3, 4, 5) and (3, 4, 1) have rank 58 and could be pushed down to rank
56 via flip graph searches. In contrast, the starting points obtained from two copies of (3, 2, 6)
have rank 60 but could be pushed down to rank 54.

In the meta flip graph as defined earlier, if a scheme has several incoming edges from schemes
of other formats, it means that it can be obtained in various different ways from other schemes
by extension or projection. It does not mean that it was obtained by combining the schemes from
which the incoming edges originate. One way to refine the definition of the meta flip graph such
as to accommodate also the combination of schemes as discussed in the present section is to
introduce a dummy vertex for each such combination. Merging two schemes S 1, S 2 into a new
scheme S 3 is then expressed edges from S 1 and S 2 to the dummy vertex and one edge from that
vertex to S 3.

In Figure 3, the genealogy of the improvement we found for (3, 6, 8) is displayed in this
sense. The starting points for the successful flip graph search for this format were obtained by
patching together two schemes of format (3, 3, 8). Other combinations were examined as well but
didn’t lead to an improvement and are therefore not shown in the picture. For the format (3, 3, 8)
itself, the flip graph search has reached schemes of best rank for starting points obtained in
three different ways: by extensions of schemes of format (3, 3, 7), by combination of a scheme of
format (3, 3, 6) with a scheme of format (3, 3, 2) (taking account that these schemes are equivalent
to schemes of format (2, 3, 3)), and by combination of a scheme of format (3, 3, 5) with a scheme
of format (3, 3, 3). All these best-rank schemes together formed the pool of starting points on
which the search for (3, 3, 8) was performed.

6. Summary of Results

A summary of our results is given in the table in Figure 4. Each row in this table indicates a
matrix multiplication format for which we were able to improve the previously best known upper
bound on the rank as indicated in the second column. These numbers are taken from Sedoglavic
(2025), who maintains a table with the best-known ranks for all matrix multiplication formats
(n,m, p) with max(n,m, p) ≤ 32.

The lowest ranks we found for a specific rank are highlighted in bold face. Other numbers
refer to ranks that are better than previously known but not as good as the improvements via
some other path. An “=” indicates that the previously best known upper bound (second column)
was reproduced. A “>” indicates that the search got stuck at a rank larger than the rank in the
second column. White space indicates that the format was not covered in the respective search.
Combinatorial explosion limits the number of cases that can be reached with a reasonable amount
of computation time in approaches that try out all paths.

“S. 2” refers to the search described in Section 2. “Sect. 5” refers to the search described
in Section 5. This setting was run twice, thus we give two columns. The columns labeled “Al-
phaEvolve” and “M/P” (for Moosbauer/Poole) refer to the searches described in Section 3. The
column “E” refers to results of various experiments we performed in an early stage of this project.
They were partly obtained as described in Section 2 and partly obtained using the schemes of
Moosbauer and Poole as starting points, but we are unable to reproduce along which paths these
results were found. We include this column nevertheless because it contains some improvements
that were not found by any of the other searches.

It is noteworthy that each approach finds at least one improvement that each of the other
approaches misses. For the approach of Section 2, it is the improvement for (2, 6, 8) from 76 to
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Figure 3: Genealogy of the improvement found for (3, 6, 8).
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size old S. 2 Starting from AlphaEvolve’s schemes M/P Sect. 5 E
rank 247 248 256 348 356 357 445 456 447 555 666

257 56 55 = = = = = 55 55 = = 55 55
258 64 > = > = = > > = 63
267 67 66 66 > 66 66 = > 66 66 66
348 74 > > > = = > > > > = 73
357 80 > > > > > = = > > > 79 = =

456 90 = > > 89 > > = = = = 89 89 =

268 76 75 > > > > > > = >

277 77 = > > > > > > > 76
358 93 > 92 > > > > > = 92 90 92
457 109 > 107 > 107 106 107 106 108 104 104 104 104 104
556 116 > 111 115 115 114 112 110 112 111 113 110
377 112 > > > > > 111 > >

458 122 > > > > = > = > 120 118 119 119
467 125 > > > = > = = = 123 123 = > 123
557 133 > > > = > = > > 127 127 131 131 127
566 137 > > > 136 130 130 133 136 130
378 130 > > > > 129 129
477 147 146 > 145 146 > > 144
558 151 > > > > > > 144 148 146
567 159 > > 157 > 152 150 158 158 150
388 149 > 145 147
568 176 > 172 170 > >

577 185 177 181 184 > 176
667 185 > > > > 183

Figure 4: Summary of results.
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75. For the approach of Section 3, it is for instance the improvement for (4, 5, 8) from 122 to
118. Interestingly however, all the improvements we found starting from one of AlphaEvolve’s
schemes was also found in some other way. The approach of Section 5 was most effective.

As explained in Section 4, we were not able to find any improvements running the flip graph
method for some ground field other than Z2. All the results documented in the table were thus
first obtained modulo 2. In most of the cases, at least one scheme of smallest rank could be lifted
to schemes with coefficients in Z, but not always. For the formats (4, 5, 6), (3, 7, 8) and (3, 8, 8),
the improvement appears to work only over Z2. The other exceptional formats are (2, 5, 7),
(2, 5, 8), (3, 4, 8), (3, 5, 7), (2, 6, 8), (2, 7, 7), and (3, 7, 7), where Hensel lifting did not lead to
integer coefficients but only to coefficients in Q.

More precisely, for (2, 5, 8), we found a scheme with coefficients in Z[ 1
3 ,

1
5 ,

1
7 ], for (2, 6, 8),

our scheme has coefficients in Z[ 1
3 ,

1
5 ,

1
11 ], and for (3, 4, 8), we even need denominators with

twelve distinct prime factors. For all other formats where we managed to obtain rational coeffi-
cients, these turn out to be in Z[ 1

3 ]. For (3, 7, 7), there is in addition one scheme with coefficients
in Z[ 1

5 ].

The multiplication schemes announced in this article are publicly available at https://
github.com/mkauers/matrix-multiplication.
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