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ABSTRACT
A considerable portion of the work on special functions in com-
puter algebra during the past decades was focused on D-finite
functions. This focus was chosen for good reasons, as the concept
of D-finiteness has proven to provide a fairly good compromise
between, on the one hand, covering as many functions as possible,
and on the other hand, keeping the class of functions restricted
enough that computations stay reasonably efficient. In the talk, we
will illustrate how questions about D-finite functions naturally arise
in applications and how computer algebra is nowadays routinely
used to answer such questions.
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1 INTRODUCTION
It has taken a long time until it was realized that the roots of a poly-
nomial cannot always be expressed in terms of radicals. Nowadays,
we can construct for a given polynomial such representations of the
roots whenever they exist, but even when this is the case, it is often
more convenient to express the roots implicitly through the poly-
nomial equations they satisfy. The situation is quite similar with
ordinary linear differential equations with polynomial coefficients:
their solutions need not admit any “closed form” expressions, and
although have algorithms that can find such expressions whenever
they exist (or prove that they don’t exist), it is usually more con-
venient to use the differential equation itself for representing its
solutions.

A (univariate) function is called D-finite if there is an ordinary
linear differential equation with polynomial coefficients which has
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this functions among its solutions. The concept of D-finite func-
tions is therefore conceptually similar to the concept of algebraic
numbers. Many functions arising in all kinds of different contexts
are D-finite. As already pointed out by Salvy in his invited talk
at ISSAC’05 [77], “approximately 60% of the functions described
in Abramowitz & Stegun’s handbook [4] fall into this category”.
Moreover, many applications lead to D-finite functions that have
not acquired a particular name.

There is also a discrete version of the concept: a (univariate)
infinite sequence is called P-recursive (or P-finite or simply also
D-finite) if it satisfies a linear recurrence equation with polynomial
coefficients. Similar as in the differential case, there are algorithms
for finding closed form solutions of such recurrence, but we often
prefer to represent a D-finite sequence by a recurrence of which it
is a solution. Again quoting Salvy [77], about “25% of the sequences
in Sloane’s encyclopedia [82]” were D-finite in 2005. While the
number of sequences recorded in this database has significantly
increased since then, according to Yurkevich [92], the percentage
of D-finite entries remained more or less stable, which means that
there currently are about 100000 cases.

The word “D-finite” was proposed by Stanley in his 1980 survey
paper [83], where he summarized a number of useful properties
of D-finite functions that were already known in the 19th century.
For example, it is easy to see that a formal power series is D-finite
(in the differential sense) if and only if its coefficient sequence is
D-finite (in the discrete sense). Moreover, D-finiteness is preserved
under addition, multiplication, and various other operations.

The notion of D-finiteness becomes more interesting and more
powerful in the case of several variables. Here we say that a func-
tion in several variables is D-finite if it is a solution of a system of
partial linear differential (or recurrence) equations with polynomial
coefficients which is such that its solution space has only finite
dimension. If instead of equations we talk about operators that act
on functions, the condition amounts to saying that the left ideal
containing all the operators which map the function to zero should
have dimension zero. Yet another way to say the same thing is that
for each variable the function should satisfy a linear differential
equation or a linear recurrence which contains only derivations or
shifts with respect to the chosen variable and polynomial coeffi-
cients (that may contain all variables).

Computational aspects of D-finite functions have been studied
since the early 1990s, and continue to be an active research area.
Every year, the program of ISSAC includes papers which in one way
or another provide some new algorithmic insight to D-finiteness.
This work is not only of theoretical interest, but has also led to
implementations in software packages, and these software packages
are nowadays routinely applied in so many different contexts that
it is difficult to give a reasonably complete overview. Here is just
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a list of some example application areas (adapted from Sect. 1.4
of [56]), along with some sample references:

• Enumeration of lattice walks [12, 17, 26],
• Permutation patterns [11, 18],
• Determinant evaluations [38, 65, 96],
• Graph counting [33, 44, 73],
• Analysis of algorithms [39],
• Program verification [49, 66, 67],
• Statistical mechanics [13, 24, 25],
• Particle physics [80],
• Special functions [7, 43],
• Analytic number theory [10, 97],
• Arithmetic number theory [30, 37, 48, 84],
• Experimental mathematics [46, 61, 88],
• Numerical engineering [8, 9, 74],
• Probability theory [6, 39],
• Knot theory [40, 41],
• Computational algebra [35],
• Biology [20, 70, 91],
• Coding theory [21–23],
• Control theory [76],
• Cryptography [27],
• Statistics [72],
• Spaceflight [52, 81],
• Sociology [42],
• Simulation [89].

Altogether, the development of algorithms for D-finite functions is
a true success story for computer algebra.

2 ALGORITHMS
A univariate D-finite sequence is uniquely determined by a recur-
rence it satisfies and a suitable (finite!) number of sequence terms.
Likewise, a univariate D-finite power series is uniquely determined
by a differential equation and a suitable (finite!) number of series
terms. Also in the multivariate case, D-finite objects are uniquely
determined by some finitely many equations they satisfy, together
with some finitely many initial values. This gives rise to a natu-
ral data structure for representing D-finite objects on a computer.
Algorithms for D-finite functions operate primarily with these rep-
resentations, but also with various other types of objects, such as
truncated series, closed form expressions, etc. Altogether, there is a
whole computational ecosystem around D-finite objects, and we are
in the fortunate situations that this ecosystem comes with a lot of
efficient algorithms for solving typical problems related to D-finite
functions. In particular, and among other things, we know

• how to recover annihilating operators from sequence terms
or series coefficients [47, 53, 56, 78],

• how to execute closure properties efficiently [15, 16, 55],
• how to solve symbolic summation and integration prob-
lems [31, 32, 34, 64, 94],

• how to find closed form solutions of differential and recur-
rence equations [56, 79, 87],

• how to extract residues, diagonals, or positive parts [17, 69],
• how to uncouple coupled systems of equations [1, 14, 98],
• how to test whether or not a given D-finite function is in
fact algebraic [19],

• how to remove apparent singularities from linear opera-
tors [2, 3, 29, 51],

• how to expand D-finite objects as asymptotic series [39, 54,
90],

• how to compute arbitrary precision evaluations of D-finite
functions [71, 85, 86].

Some of these operations are quite simple. For example, given a
differential equation satisfied by a D-finite function 𝑓 , say of order 𝑟 ,
and a differential equation satisfied by a D-finite function 𝑔, say of
order 𝑠 , it is not hard to construct a differential equation which has
ℎ := 𝑓 + 𝑔 among its solutions. The key observation is that 𝑓 and
all its derivatives belong to the vector space

𝐶 (𝑥) 𝑓 +𝐶 (𝑥) 𝑓 ′ + · · · +𝐶 (𝑥) 𝑓 (𝑟−1)

generated by 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟−1) over the rational function field 𝐶 (𝑥)
and that 𝑔 and all its derivatives belong to the vector space

𝐶 (𝑥)𝑔 +𝐶 (𝑥)𝑔′ + · · · +𝐶 (𝑥)𝑔 (𝑠−1) .

The reason is simply that the given differential equations allow
to rewrite any higher order derivatives in terms of lower order
derivatives. But then the sum ℎ = 𝑓 + 𝑔 and all its derivatives
belong to the vector space

𝐶 (𝑥) 𝑓 +𝐶 (𝑥) 𝑓 ′ + · · · +𝐶 (𝑥) 𝑓 (𝑟−1)

+𝐶 (𝑥)𝑔 +𝐶 (𝑥)𝑔′ + · · · +𝐶 (𝑥)𝑔 (𝑠−1) .

Since the dimension of space is at most 𝑟 + 𝑠 , the elements

ℎ,ℎ′, . . . , ℎ (𝑟+𝑠 )

must be linearly dependent. The dependence is the desired equation.
Its coefficients can be easily computed by solving a linear system.

An ansatz with undetermined coefficients and coefficient compari-
son lead to a linear system over 𝐶 (𝑥) with 𝑟 + 𝑠 + 1 variables and
𝑟 + 𝑠 equations, which necessarily has a nonzero solution.

A more advanced computational technique for D-finite func-
tions is known as creative telescoping. It applies in the multivariate
setting and is used for definite summation/integration and related
operations. Let’s say we have a bivariate D-finite function 𝑓 (𝑥,𝑦)
and we want to compute its residue 𝐹 (𝑦) = [𝑥−1] 𝑓 (𝑥,𝑦). The idea
is to somehow find an annihilating operator of the integrand 𝑓

which is of the form

𝑃 (𝑦, 𝐷𝑦) − 𝐷𝑥𝑄 (𝑥,𝑦, 𝐷𝑥 , 𝐷𝑦),

where𝐷𝑥 , 𝐷𝑦 refer to the partial derivations with respect to 𝑥 and𝑦,
respectively. Since 𝑃 is required to be free of 𝑥 and 𝐷𝑥 , it commutes
with the residue extraction, and since 𝐷𝑥𝑄 (𝑥,𝑦, 𝐷𝑥 , 𝐷𝑦) (𝑓 ) is a
derivative, its residue is zero. We thus find

𝑃 (𝑦, 𝐷𝑦) (𝐹 ) = 0.

This is the desired relation for 𝐹 .
The existence of an annihilating operator of the required form is

ensured in the differential case, and under some technical assump-
tions also in the recurrence case. Starting in the 1990s [34, 93–95],
the computation of such operators has been subject of intensive
research throughout the years, with lots of papers on the subject
appearing at ISSAC conferences, way too many to list them here.
We refer to [28, 32, 56] and the references given there for details.



3 TWO EXAMPLES
Residue extraction may seem like a somewhat artificial operation.
Is this really so important? In order to illustrate how residue extrac-
tions arise naturally in enumerative combinatorics, we will give
two examples. They are chosen to be somewhat complementary to
the context of lattice walk enumeration, for which the relevance of
residue extractions has already been nicely presented by Bostan in
his invited talk at ISSAC’21 [12].

3.1 The Gerrymander Sequence
Consider a rectangular grid of size 𝑛×𝑚 whose
cells can be marked in black or white. Cells of
the same color form connected regions, and we
are interested in the number of ways to mark
the cells of the array in such a way that there is
exactly one black and exactly one white region.
Moreover, the two regions should have exactly the same size. An
example for 𝑛 =𝑚 = 8 is given on the right.

Let us say we fix𝑚 and let 𝑛 vary. Write 𝑎𝑛,𝑘 for the number
of arrays of size 𝑛 ×𝑚 with at most one region in each color and
where the black region consists of exactly 𝑘 cells, and let

𝑎(𝑥, 𝑡) =
∞∑︁
𝑛=0

∞∑︁
𝑘=0

𝑎𝑛,𝑘𝑥
𝑘𝑡𝑛

be the corresponding generating function. The number of arrays in
which both regions have the same size is then 𝑎𝑛,𝑛𝑚/2 (understood
to be zero if𝑚𝑛 is odd). The corresponding generating function is

[𝑥−1]𝑥−1 𝑎(𝑥2, 𝑡/𝑥𝑚) = [𝑥−1]
∞∑︁
𝑛=0

∞∑︁
𝑘=0

𝑎𝑛,𝑘𝑥

=−1⇔𝑘=𝑛𝑚/2︷    ︸︸    ︷
2𝑘−𝑛𝑚−1𝑡𝑛,

so if we can get hold of the bivariate series 𝑎(𝑥, 𝑡), then we are just
a residue extraction away from the final result.

The bivariate series is not too hard to find, once we realize that
it is equivalent to counting paths in a certain graph. Think of the
arrays as being generated column by column, from left to right.
Given an array, there are certain columns we are allowed to at-
tach at the right hand side, and others which we cannot attach
because they would violate the requirement of having at most two
connected regions. The key observation is that in order to decide
which columns are legitimate extensions, we do not need to know
the full history. It is enough to know the previous column plus
some information about whether or not separated cells of the same
color belong to the same region.

Here is an example from our joint paper with Koutschan and
Spahn [59]:

+ ?

✓ ✓ ⊘ ⊘ ✓ ✓ ⊘ ⊘

⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

Now consider the directed graph whose vertices are all the pos-
sible situations that we may encounter in the right-most column

of an array, i.e., the information which of its cells are marked in
which color and whether they are connected through cells in ear-
lier columns. Draw an edge from a vertex 𝑣1 to a vertex 𝑣2 if it is
possible to turn a legal array whose right-most column is 𝑣1 by
adding a single column to a legal array whose right-most column
is 𝑣2. Here is what this graph looks like for𝑚 = 3:

′
′

•
•

•

•
•

••
•

•

•
•

•

The arcs indicate cells that have been connected in the past, and
a prime indicates that the other color has already been seen in the
past. Each state can also be followed by itself.

The arrays that we want to count amount to paths through
this graph. The number of paths of length 𝑛 from the 𝑖th to the
𝑗th vertex appears in the (𝑖, 𝑗)th entry of the 𝑛th power of the
adjacency matrix of the graph. Let us call this matrix 𝐴. If 𝑣start
and 𝑣end are vectors which indicate legitimate starting and ending
states, respectively (by having 1 at the positions corresponding to
legitimate states and 0 in all other positions), then

𝑣end𝐴
𝑛𝑣start

is the number we are interested in. It follows that the generating
function
∞∑︁
𝑛=0

(𝑣end𝐴𝑛𝑣start)𝑡𝑛 = 𝑣end

( ∞∑︁
𝑛=0

𝐴𝑛𝑡𝑛
)
𝑣start = 𝑣end (𝐼 −𝐴𝑡)−1𝑣start

is a rational function in 𝑡 that we can easily compute.
This rational function is 𝑎(1, 𝑡). It counts the total number arrays,

regardless of how many black cells there are. To keep track of the
number of black cells, it suffices to multiply each entry of 𝐴 by the
monomial 𝑥𝑘 where 𝑘 is the number black cells that gets added by
attaching the respective column to the array. This turns 𝐴 into an
element ofQ[𝑥], and the calculation above yields 𝑎(𝑥, 𝑡) and shows
that this is a rational function in 𝑥 and 𝑡 .

For example, for𝑚 = 3, we obtain

𝑎(𝑥, 𝑡) = [[ lengthy polynomial ]]
(1−𝑡)2 (1−𝑡𝑥6)2 (1−𝑡𝑥2) (1−𝑡𝑥4) (𝑡𝑥4+2𝑡𝑥3+𝑡𝑥2−1)

,

and from here, via creative telescoping, a differential equation for
𝑥−1 𝑎(𝑥2, 𝑡/𝑥3). This case appeared as a Monthly problem a few
years ago [75]. In our paper [59], we have worked out the case𝑚 = 4
along the same lines. For each specific choice of𝑚, the problem
can be solved in the same way, but the cost of computations grows
quickly with𝑚.

For square arrays, i.e., for𝑚 = 𝑛, the problem becomes much
more difficult. The sequence obtained in this case is called the
gerrymander sequence. It is known [45] that this sequence is not
D-finite.



Homework: Let 𝑎𝑛 be the number of ways to tile an array of size
3×𝑛 with an arbitrary number of dimers and exactly one monomer,
like this:

︸                               ︷︷                               ︸
𝑛

Show that (𝑎𝑛) is D-finite and find a recurrence.

3.2 Hardinian Arrays
Another counting problem, which we considered together with
Dougherty-Bliss [36], also led to some residue extraction, albeit in
a somewhat different way. This problem came up when the method
of “guessing with little data” proposed together with Koutschan at
ISSAC’22 [57] was systematically applied to the OEIS [58, 82].

We are counting again ways to divide
arrays into connected regions. The original
specification of how this is done exactly is a
bit cryptic, but it turns out to be equivalent
to something that can be approached by a
classical theorem from combinatorics. For
simplicity, let us consider square arrays 𝑛 ×
𝑛 only, and let 𝑟 ≥ 1 be fixed. Then the problem boils down to
counting how many ways there are to draw 𝑛 − 𝑟 − 1 paths starting
from the left side of the array to the top, in such a way that no
two paths intersect each other. An example for 𝑛 = 7 and 𝑟 = 1 is
given on the right. We write 𝐻𝑟 (𝑛) for the number of such tuples
of paths.

For a single path from the 𝑢th row to the 𝑣th column, it is easy
to see that there are

(𝑢+𝑣
𝑢

)
options (if rows and columns are indexed

starting from zero).
According to a theorem of Gessel and Viennot [68, Theorem

10.13.1], if we pick two sets 𝐴, 𝐵 of 𝑛 vertices in a graph and let 𝑎𝑖, 𝑗
be the number of paths from the 𝑖th vertex in 𝐴 to the 𝑗th vertex
in 𝐵, then the number of ways to pick paths from every vertex in 𝐴
to some vertex in 𝐵 such that no two paths intersect is exactly the
determinant det((𝑎𝑖, 𝑗 )).

Therefore, if we write Δ(𝑛) 𝑗
𝑖
for the determinant of the matrix

obtained from ((
(𝑢+𝑣
𝑢

)
))𝑛−1
𝑢,𝑣=0 by deleting the 𝑖th row and the 𝑗th

column, then

𝐻1 (𝑛) =
𝑛−2∑︁
𝑖=0

𝑛−2∑︁
𝑗=0

Δ(𝑛 − 1) 𝑗
𝑖
.

There are several ways to show that this is equal to 1
3 (4

𝑛−1 − 1)
for every 𝑛 ≥ 1, see [36] for four different proofs. In particular,
the sequence is D-finite. It can further be shown that Δ(𝑛) 𝑗

𝑖
=∑𝑛−1

ℓ=0
(𝑖
ℓ

) ( 𝑗
ℓ

)
.

For 𝑟 ≥ 2, we can argue in a similar way, but things become more
messy, because there are more options for the start points and the
end points. Anyhow, if for pairwise distinct 𝑖1, . . . , 𝑖𝑟 and pairwise
distinct 𝑗1, . . . , 𝑗𝑟 , we denote by Δ(𝑛) 𝑗1,..., 𝑗𝑟

𝑖1,...,𝑖𝑟
the determinant of the

matrix obtained from ((
(𝑢+𝑣
𝑢

)
))𝑛−1
𝑢,𝑣=0 by deleting the rows 𝑖1, . . . , 𝑖𝑟

and the columns 𝑗1, . . . , 𝑗𝑟 , then we have

𝐻𝑟 (𝑛) =
∑︁

0≤𝑖1<· · ·<𝑖𝑟<𝑛−1
0≤ 𝑗1<· · ·< 𝑗𝑟<𝑛−1

Δ(𝑛 − 1) 𝑗1,..., 𝑗𝑟
𝑖1,...,𝑖𝑟

.

According to a theorem of Jacobi on determinants, we have

Δ(𝑛) 𝑗1,..., 𝑗𝑟
𝑖1,...,𝑖𝑟

=

��������
Δ(𝑛) 𝑗1

𝑖1
· · · Δ(𝑛) 𝑗𝑟

𝑖1
.
.
.

. . .
.
.
.

Δ(𝑛) 𝑗1
𝑖𝑟

· · · Δ(𝑛) 𝑗𝑟
𝑖𝑟

�������� .
For any fixed 𝑟 , this means that Δ(𝑛) 𝑗1,..., 𝑗𝑟

𝑖1,...,𝑖𝑟
is a certain polynomial

expression of D-finite things, and therefore, by D-finite closure prop-
erties, again D-finite. As summation also preserves D-finiteness,
we see that 𝐻𝑟 (𝑛) is D-finite with respect to 𝑛 for every fixed 𝑟 ≥ 1.

This proves in particular that 𝐻2 (𝑛) is D-finite, as conjectured
in [58]. But the conjecture said more. Not only was it conjectured
that a recurrence exists, but it was claimed that the sequence sat-
isfies an very specific recurrence (explicitly stated in [58], but too
lengthy to be reproduced here).

To prove that the conjectured recurrence for 𝑟 = 2 is correct, we
need to compute a recurrence for

𝐻2 (𝑛) =
∑︁
𝑖1,𝑖2

∑︁
𝑗1, 𝑗2

�����Δ(𝑛 − 1) 𝑗1
𝑖1

Δ(𝑛 − 1) 𝑗2
𝑖1

Δ(𝑛 − 1) 𝑗1
𝑖2

Δ(𝑛 − 1) 𝑗2
𝑖2

����� ,
which, by expanding everything out, leads to twowhopping six-fold
sums:

𝑆1 (𝑛) =
∑︁
𝑖1≥0

∑︁
𝑖2>𝑖1

∑︁
𝑗1≥0

∑︁
𝑗2> 𝑗1

𝑛∑︁
𝑢=0

𝑛∑︁
𝑣=0

(
𝑢

𝑖1

) (
𝑢

𝑗1

) (
𝑣

𝑖2

) (
𝑣

𝑗2

)
=

𝑛∑︁
𝑢=0

𝑛∑︁
𝑣=0

(∑︁
𝑖1≥0

∑︁
𝑖2>𝑖1

(
𝑢

𝑖1

) (
𝑣

𝑖2

)
︸                ︷︷                ︸

=:𝑠 (𝑢,𝑣)

) (∑︁
𝑗1≥0

∑︁
𝑗2> 𝑗1

(
𝑢

𝑗1

) (
𝑣

𝑗2

)
︸                 ︷︷                 ︸

=𝑠 (𝑢,𝑣)

)
and

𝑆2 (𝑛) =
∑︁
𝑖1≥0

∑︁
𝑖2>𝑖1

∑︁
𝑗1≥0

∑︁
𝑗2> 𝑗1

𝑛∑︁
𝑢=0

𝑛∑︁
𝑣=0

(
𝑢

𝑖1

) (
𝑢

𝑗2

) (
𝑣

𝑖2

) (
𝑣

𝑗1

)
=

𝑛∑︁
𝑢=0

𝑛∑︁
𝑣=0

(∑︁
𝑖1≥0

∑︁
𝑖2>𝑖1

(
𝑢

𝑖1

) (
𝑣

𝑖2

)
︸                ︷︷                ︸

=𝑠 (𝑢,𝑣)

) (∑︁
𝑗1≥0

∑︁
𝑗2> 𝑗1

(
𝑣

𝑗1

) (
𝑢

𝑗2

)
︸                 ︷︷                 ︸

=𝑠 (𝑣,𝑢 )

)
.

This is discouraging at first glance, but things become a bit nicer if
we rephrase them in terms of generating functions. Noting that

∞∑︁
𝑢=0

∞∑︁
𝑣=0

𝑠 (𝑢, 𝑣)𝑥𝑢𝑦𝑣 = 𝑦

(1 − 𝑥 − 𝑦) (1 − 2𝑦) ,

the generating functions for 𝑠 (𝑢, 𝑣)2 and 𝑠 (𝑢, 𝑣)𝑠 (𝑣,𝑢) can be ex-
pressed as Hadamard products:

𝑦

(1 − 𝑥 − 𝑦) (1 − 2𝑦) ⊙ 𝑦

(1 − 𝑥 − 𝑦) (1 − 2𝑦) ,

𝑦

(1 − 𝑥 − 𝑦) (1 − 2𝑦) ⊙ 𝑥

(1 − 𝑥 − 𝑦) (1 − 2𝑥) .

Hadamard products in turn can be rephrased as residues, because
𝑎(𝑥) ⊙ 𝑏 (𝑥) = [𝑦−1] 1𝑦𝑎(𝑥)𝑏 (𝑦) for any two series 𝑎, 𝑏, so these can
be computed with creative telescoping.



Next, summing 𝑢 from 0 to 𝑛 and 𝑣 from 0 to 𝑚 amount to
multiplying the resulting series by 1

(1−𝑥 ) (1−𝑦) , which is not a big
deal. But then we have to pick out from these bivariate series the
terms 𝑥𝑛𝑦𝑚 where 𝑛 and𝑚 are equal. This can again be rephrased
as a residue computation, because the diagonal of a bivariate series
𝑎(𝑥,𝑦) is equal to [𝑦−1] 1𝑦𝑎(𝑥)𝑏 (𝑦/𝑥).

Using Koutschan’s Mathematica implementation [62, 63], we
were able to carry out these computations and confirm the conjec-
tured recurrence.

Homework: Show that Δ(𝑛) := det((
(𝑢+𝑣
𝑣

)
))𝑛
𝑢,𝑣=0 = 1 for all 𝑛.

4 WHAT’S NEXT?
Thanks to the joint effort of many contributors, the computational
ecosystem for D-finite functions has evolved to a robust and reliable
machinery with can easily solve lots of problems that years ago
would have been considered intractable. The topic of D-finiteness
still provides some interesting research questions. For example,
the detection of positivity of D-finite sequences is not sufficiently
understood. See [50] for some recent progress on this matter. Still,
for the main problems, we have satisfactory algorithmic solutions.
It is time to move forward.

We can go in two directions: towards smaller classes of functions,
with the hope that more efficient algorithms become available, or
towards larger classes of functions, with the hope to cover certain
functions that fail to be D-finite. Both directions are worthwhile,
andwe believe that in the coming years, wewill see some interesting
developments in each direction.

Going towards smaller classes, a class of functions that is not
fully understood is the class of power series that can be written
as the diagonal of a rational power series in several variables. It is
known that all these series are D-finite, and but not every D-finite
series belongs to this class. On the other hand, every algebraic
function can be viewed as the diagonal of a rational function, but
not every diagonal of a rational function is algebraic. The diagonals
therefore form a proper intermediate class between algebraic and
D-finite functions.

Going towards larger classes, a class that deserves more attention
is the class of D-algebraic functions. These are functions 𝑓 for
which there is a nonzero polynomial in several variables such that
𝑝 (𝑓 , 𝑓 ′, 𝑓 ′′, . . . ) = 0. Clearly, every D-finite function is D-algebraic
but not vice versa. Various applications naturally lead to D-algebraic
functions that are not D-finite. There are also algorithms for certain
tasks (cf. [5, 60] and the references given there), but it seems that
more work is needed for this class.

algebraic diagonals D-finite D-algebraic
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