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Enumeration of lattice walks
Permutation patterns
Determinant evaluations
Graph counting

Analysis of algorithms
Program verification
Statistical mechanics
Particle physics

Special functions
Analytic number theory
Arithmetic number theory

Experimental mathematics

Numerical engineering
Probability theory
Knot theory
Computational algebra
Biology

Coding theory

Control theory
Cryptography
Statistics

Spaceflight

Sociology

Simulation
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Fact: If f(x,t) is D-finite, then there exist
e an operator P(t,D¢), nonzero and free of x, and
e an operator Q(x,t, Dy, D¢)
such that
(P—D.Q)(f) =0.
“telescoper"—j L“certificate"

P(x 'f) =0
In particular, [x "f is D-finite.

There are tons of ISSAC papers on how to compute such P, Q.
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Do we really need this?
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Computational challenge for you (and your computer)
1 message

Doron Zeilberger <doronzeil@gmail.com= Wed, May 4, 2022 at 3:43 PM
To: Manuel Kauers <manuel@kauers.de>
Cc: George Spahn <gs828@math.rutgers.edu>, Neil Sloane <njasloane@gmail.com>

Dear Manuel,

Hope you, Martina, and epsilon are doing well!

Can you (and your computers) meet the following challenge, in the
secret url:https://sites.math.rutgers.edu/~zeilberg/EM22/C27.pdf

https://sites.math.rutgers.edu/~zeilberg/ChessChallenge.txt

If you do, | pledge to donate $100 to the OEIS in your honor.
Also, if you can do it systematically, this may lead to a joint paper
with my student who can do other boards.

Best wishes,
Doron




Math640.04.2022

Gerrymandering (2), cont.
T(k, d) = no. of ways to dissect a k X k square board A A348456,
into d rook-connected regions of size k*2/ d.

2 3 4 5 6 7 8

o

N O U W N
u

2 1

0 0 0 0
70° 117 0 0 g ... leis
0 0 0 4096 0 ... lags
80518 264500 442791 0 451206 ... lasg
0 0 0 0 0 .. lag

8 |1 (™ 0 70 0 . lai

* Most wanted: T(8,2) = no. of ways to cut chessboard into 2 rook-connected regions of area 32

£
==
=]

Ignore colors of chessboard squares; rotations, reflections count as different; regions need not have same shape.

oL

3l

>

How large will T(8,2) be, roughly? How would you program it?

How would you parallelize it?

Paul Zimmermann et al. in 2020 solved one of the RSA Challenge Problem,
It took them 2700 core years. How does T(8,2) compare?




Math640.04.2022
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m (fix)

n (varying)
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Want:

an =

number of ways to split an m x n board
into two connected regions
of exactly the same size
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Want: a(t) =
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with exactly k yellow cells
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Want: a(t) =
an ==
Detour:

Ank =

ant™ where

number of ways to split an m x n board
into two connected regions
of exactly the same size

= Qnnm/2

number of ways to split an m x n board
into (at most) two connected regions,
with exactly k yellow cells
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= Qnnm/2

Want: a(t) = ant™ where
number of ways to split an m x n board
an = into two connected regions
of exactly the same size
Detour: a(x,t) = an’kxktTL where
number of ways to split an m x n board
ank =| into (at most) two connected regions,
with exactly k yellow cells

22



Key observation:
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Key observation:

So we are done if we can find a(x,t).
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Let A be the adjacency matrix of this graph.

The (i,j)-entry of A™ is the number of paths of length n from the
ith to the jth vertex.

Let Vinit, Vfinal be vectors indicating legitimate starting and ending
vertices.

Then VinitA™Vfinal is the total number of arrays with (at most) two
regions.

(Vinit A" Vfinal )t = Vinit( Antn> Viinal = Vinit (T — At)Vfinal

This is a(1,t). It is a rational function in t.
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Each edge in the graph corresponds to adding a certain column to
the array.

Each such column has a specific number of yellow cells.

In A, replace each 1 by x¥, where k is the number of yellow cells in
the respective column.

Then (l(X,t) :Vinit(<I - At)iH"ﬁnal-

This is a rational function in x and t.

29
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We were able to construct the rational functions a(x,t) for
m=1,...,7.
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For m = 1,2,3,4, we were able to obtain a(x) by performing [x ']
on a(x,t).
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We were able to construct the rational functions a(x,t) for
m=1,...,7.

For m = 1,2,3,4, we were able to obtain a(x) by performing [x ']
on a(x,t).

Challenge: Find a differential equation for a(x) for some m > 5.
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The number of ways to dissect an m X n board into two connected
regions of equal size:

12 3 4 5 6 7 8
110 1 0 1 0 1 0 1
211 2 3 4 5 6 7 8
310 3 0 19 0 85 0 355
411 4 19 70 245 856 2967 10164
5/0 5 0 245 0 8171 0 277969
6|1 6 8 856 8171 80518 806423 8059419
710 7 0 2967 0 806423 0 240009288
811 8

355 10164 277969 8059419 240009288 7157114189
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The number of ways to dissect an m X n board into two connected
regions of equal size:

12 3 4 5 6 7 8
110 1 0 1 0 1 0 1
211 2 3 4 5 6 7 8
310 3 0 19 0 85 0 355
411 4 19 70 245 856 2967 10164
5/0 5 0 245 0 8171 0 277969
6|1 6 8 856 8171 80518 806423 8059419
710 7 0 2967 0 806423 0 240009288
811 8 355 10164 277969 8059419 240009288 7157114189

Guttmann and Jensen showed that the diagonal is not D-finite.
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Homework: Let

an =

number of tilings of a 3 x n board
with dimers and exactly one monomer
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Homework: Let

number of tilings of a 3 x n board

an=| .., .
" with dimers and exactly one monomer

Show that (a;,) is D-finite and find a recurrence.
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9% A253217 - OEIS x|+

< C @ oeis.org/A253217

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
2'3(?558 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane

[ H Search | Hius
(Grestings from The On-Line Encyclopedia of Integer y

A253217 Number of n X n nonnegative integer arrays with upper left 0 and lower right its king-move
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Number of n X n nonnegative integer arrays with upper left 0
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every value within 2 of its king move distance from the
upper left and every value increasing by 0 or 1 with every
step right, diagonally SE or down.

38



19, because:
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H;(n,n) begins as follows:

0,0,1,19,268,3568,47698, 649712, 9023385, 127419681, .. .
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(201600Mn7 + 49420803 + 53078112n7 + 327661728n° +
1280700480m° + 3285342016n* + 55288283521 + 588344710412 +
3591093120n + 957662208)a(n) + (—970200n° — 24199560n3 —
26481074417 — 1667830872n° — 6659340648n° — 17470825688+ —
30096410912n3 — 32804461872n2 — 20514211488n —
5603970816)a(n + 1) + (589050n7 + 14827590n3 + 16375665617 +
10408955641° 4 4194035058n° + 11101344742n* + 19289250308n3 +
2119877605612 + 13360158000n + 3676219776)a(n + 2) + (294525n7 +
731929518 + 7982857817 + 5013354721n° + 1997003589n° +
5229549731n* + 899711063413 4 9799013608n2 + 6125859120n +
1673566848)a(n + 3) + (—121275n7 — 305329518 — 33716268n" —
214212552n° — 862421763n° — 2280190003n* — 3956305720n3 —
4340670060n2 — 2730542400n — 749859264)a(n + 4) + (6300n? +
163890n8 + 186366617 + 12150660n° + 50023284n° + 134779202n* +

23752733813 + 26389516412 + 1676436480 + 46381248)a(n + 5) = 0
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Let's prove this.
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Let's prove this.

But first, let's consider the case r = 1.
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Let's prove this.
But first, let's consider the case r = 1.

Or maybe let's even start with r = 0.
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1 for all n, k.

HO (Tl, k)
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Hi(n,n) =7
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Hi(n,n) =7
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Hi(n,n) =7
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H;(n,n) is the number of non-crossing lattice path
tuples (Pq,...,Pn_1) where each path P; starts somewhere
on the left and ends somewhere at the top.
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H,(n,n) is the number of non-crossing lattice path
tuples (Pq,...,Pn_.) where each path P; starts somewhere
on the left and ends somewhere at the top.
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Theorem (Lindstrom-Gessel-Viennot). In a directed graph
G =(V,E), let
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Theorem (Lindstrom-Gessel-Viennot). In a directed graph

G=(VE), let
® S1,...,Sqr € V be a choice of “starting vertices”

® €,...,enr €V be a choice of “ending vertices"

e ai; be the number of paths from s; to ¢

46



Theorem (Lindstrom-Gessel-Viennot). In a directed graph

G=(VE), let
® S1,...,Sqr € V be a choice of “starting vertices”

® €,...,enr €V be a choice of “ending vertices"

e ai; be the number of paths from s; to ¢

Then:

number of non-crossing path tuples _
f = det((ai;))i5-
rom (S1,...,8n_r) to (e1,...,en_r) .
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\#paths from u to v‘
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Homework: Show that
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Homework: Show that

. det(((ui_\))))uv =1
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Homework: Show that

. det((<u:v>))uv =1

1

-5 ()()
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Homework: Show that

o det(( <u : ") DL, =

=509

1
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2 is not an 5 is not an
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HT(TI, Tl) - § A(Tl - 1)11,___’@
0<iy < <ir<n—1
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— j])"')jT

HT(TI, Tl) - § A(Tl - 1)11,___’@
0<iy < <ir<n—1
051 < <jr<n—1

Is this D-finite?
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Jacobi's determinant identity implies
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Jacobi's determinant identity implies

An—1 - Am-1l
A(n_ -])):],...,]:r — . .

1 yeenylr
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j1
1r

This is D-finite in . for every fixed T and i1,...,1r,j1y .-+, )r-
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Jacobi's determinant identity implies

An—1 - Am-1l
Aln—Tiw =] . :
A(n—]))il A(n—]))i:
This is D-finite in . for every fixed T and i1,...,1r,j1y .-+, )r-
Therefore, H Z Z Aln ]" ’Jl: is D-finite.

Uyeensbe J1oeensjr

53



(201600Mn7 + 49420803 + 53078112n7 + 327661728n° +
1280700480m° + 3285342016n* + 55288283521 + 588344710412 +
3591093120n + 957662208)a(n) + (—970200n° — 24199560n3 —
26481074417 — 1667830872n° — 6659340648n° — 17470825688+ —
30096410912n3 — 32804461872n2 — 20514211488n —
5603970816)a(n + 1) + (589050n7 + 14827590n3 + 16375665617 +
10408955641° 4 4194035058n° + 11101344742n* + 19289250308n3 +
2119877605612 + 13360158000n + 3676219776)a(n + 2) + (294525n7 +
731929518 + 7982857817 + 5013354721n° + 1997003589n° +
5229549731n* + 899711063413 4 9799013608n2 + 6125859120n +
1673566848)a(n + 3) + (—121275n7 — 305329518 — 33716268n" —
214212552n° — 862421763n° — 2280190003n* — 3956305720n3 —
4340670060n2 — 2730542400n — 749859264)a(n + 4) + (6300n? +
163890n8 + 186366617 + 12150660n° + 50023284n° + 134779202n* +

23752733813 + 26389516412 + 1676436480 + 46381248)a(n + 5) = 0
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Hy(n,n) = S1(n) — Sa(n), where
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Hy(n,n) = S1(n) — Sa(n), where

-2 (22 GEDEE G)6)

u=0 v=0 >“i;>01ir>1i; j1>072>1
=:s(u,v) =s(u,v)
n o n
v=X 3 (2T ()EDEZEG)E)
u=0 v=0 “i;>01i,>1i; j12072>41

=S (LL,V) =S (V)u)



Hy(n,n) = S1(n) — Sa(n), where

s(u,v)s(v,u)
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s(u,v) x"y”
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(1—x—y)(1—-2y)

s(u,v)x'y’ =
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s(u,v) xty¥ = 0—x—y)(1—2y)

fx,y) ==
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Altogether,

Hy(m)x™ =
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Altogether,

diagonal

=5y

=T e XY
(3% g SrX,Y)
ety ] Xy
- X ]T[Y Iy vf (YX))
Hadamard

product
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Altogether,

N 1 T T O Y
Ha ) _[HT]]U—)“U)OX L
1

diagonal —[X_]}T[Y ]XYf(Xy 3) (Y, X)>

Hadamard
product

From this expression we can compute a recurrence for Hy(n).
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Altogether,

1 (x‘vl]fxy (X, Y
s Y e g Y10

1
diagonal —[X_]}T[Y ]XYf(Xy I‘\J() (Y, X)>

Hadamard

product

From this expression we can compute a recurrence for Hy(n).

This proves the conjecture.
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n—-2 n-2 n-2 n—-2 n-2 n+2

_ 1)i12,3
Z A(n 1 )11 s12513

11=01=11+11i3=124+1j1=0j2=j1+1j3=j2+1



+1i3=i+1j;

For this case, we only have a guessed recurrence.

1))

j15j2503
11,12,13
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What's next?
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Papers related to D-finiteness at this year's ISSAC:

e Louis Gaillard: A unified approach for degree bound
estimates of linear differential operators

e Shaoshi Chen, Manuel Kauers, Christoph Koutschan,
Xiuyun Li, Rong-Hua Wang and Yisen Wang:
Non-minimality of minimal telescopers explained by residues

e Manuel Kauers and Raphael Pages: Bounds for
D-Algebraic Closure Properties

e Alaa Ibrahim: Positivity Proofs for Linear Recurrences with
Several Dominant Eigenvalues

e Jérémy Berthomieu, Romain Lebreton and Kevin Tran:
Quasi-Linear Guessing of Minimal Lexicographic Grobner
Bases of Ideals of C-Relations of Random Bi-Indexed
Sequences
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