A SHAPE LEMMA FOR IDEALS OF DIFFERENTIAL OPERATORS

Manuel Kauers · Institute for Algebra · JKU

Joint work with Christoph Koutschan (RICAM) and Thibaut Verron (formerly JKU)

Usually, such an ideal has a basis of the form

$$\{p(x), y-q(x)\}.$$

Usually, such an ideal has a basis of the form

$$\{p(x), y-q(x)\}.$$

Incidentally, this is a Gröbner basis for a lex order with y > x.

Usually, such an ideal has a basis of the form

$$\{p(x), y-q(x)\}.$$

Incidentally, this is a Gröbner basis for a lex order with y > x.

What is an unusual situation?

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

I is said to be in normal position (w.r.t. x) if

$$\forall (x_1, y_1), (x_2, y_2) \in V(I) : x_1 = x_2 \Rightarrow y_1 = y_2.$$

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

I is said to be in normal position (w.r.t. x) if

$$\forall (x_1, y_1), (x_2, y_2) \in V(I) : x_1 = x_2 \Rightarrow y_1 = y_2.$$

Equivalently, $\dim_K K[x, y]/I = \deg p$.

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

I is said to be in normal position (w.r.t. x) if

$$\forall (x_1, y_1), (x_2, y_2) \in V(I) : x_1 = x_2 \Rightarrow y_1 = y_2.$$

Equivalently, $\dim_K K[x, y]/I = \deg p$.

Equivalently, $K[x, y]/I \cong K[x]/\langle p \rangle$ as K-algebras.

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

I is said to be in normal position (w.r.t. x) if

$$\forall (x_1, y_1), (x_2, y_2) \in V(I) : x_1 = x_2 \Rightarrow y_1 = y_2.$$

Equivalently, $\dim_K K[x, y]/I = \deg p$.

Equivalently, $K[x,y]/I \cong K[x]/\langle p \rangle$ as K-algebras.

Equivalently, $\exists q \in K[x] : I = \langle p, y - q \rangle$.

Let $p \in K[x]$ be such that $\langle p \rangle = I \cap K[x, y]$.

I is said to be in normal position (w.r.t. x) if

$$\forall (x_1, y_1), (x_2, y_2) \in V(I) : x_1 = x_2 \Rightarrow y_1 = y_2.$$

Equivalently, $\dim_K K[x, y]/I = \deg p$.

Equivalently, $K[x,y]/I \cong K[x]/\langle p \rangle$ as K-algebras.

Equivalently,
$$\exists \ q \in K[x] : I = \langle p, y - q \rangle$$
.

"shape lemma" —

Fact: Unless the field K is very small, there is always a $c \in K$ such that the linear transformation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

brings I into normal position.

Martin Kreuzer Lorenzo Robbiano

Computational Commutative Algebra 1

Let F be a $K[D_x, D_y]$ -module.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider ann $(f) = \big\{\, L \in K[D_x,D_y] : L \cdot f = 0\,\big\}.$

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $\mathsf{ann}(f) = \big\{\, L \in K[D_x, D_y] : L \cdot f = 0 \,\big\}.$

This is a left ideal of $K[D_x, D_y]$.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $ann(f) = \{ L \in K[D_x, D_y] : L \cdot f = 0 \}$.

This is a left ideal of $K[D_x, D_y]$.

f is called D-finite if ann(f) has dimension zero.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $ann(f) = \{ L \in K[D_x, D_y] : L \cdot f = 0 \}$.

This is a left ideal of $K[D_x, D_y]$.

f is called D-finite if ann(f) has dimension zero.

This means that $\dim_K K[D_x, D_y]/\operatorname{ann}(f) < \infty$.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $ann(f) = \{ L \in K[D_x, D_y] : L \cdot f = 0 \}$.

This is a left ideal of $K[D_x, D_y]$.

f is called D-finite if ann(f) has dimension zero.

This means that $\dim_K K[D_x, D_u] / \operatorname{ann}(f) < \infty$.

For $I \subseteq K[D_x, D_y]$, consider $V(I) = \{ f \in F : L \cdot f = 0 \}$.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $ann(f) = \{ L \in K[D_x, D_y] : L \cdot f = 0 \}$.

This is a left ideal of $K[D_x, D_y]$.

f is called D-finite if ann(f) has dimension zero.

This means that $\dim_K K[D_x,D_y]/\operatorname{ann}(f)<\infty$.

For $I \subseteq K[D_x, D_y]$, consider $V(I) = \{ f \in F : L \cdot f = 0 \}$.

This is a C-vector space.

Let F be a $K[D_x, D_y]$ -module.

For $f \in F$, consider $ann(f) = \{ L \in K[D_x, D_y] : L \cdot f = 0 \}$.

This is a left ideal of $K[D_x, D_y]$.

f is called D-finite if ann(f) has dimension zero.

This means that $dim_K K[D_x, D_y]/ann(f) < \infty$.

For $I \subseteq K[D_x, D_y]$, consider $V(I) = \{ f \in F : L \cdot f = 0 \}$.

This is a C-vector space.

If F is sufficiently large, $\text{dim}_K K[D_x,D_y]/I = \text{dim}_C V(I)$.

Dictionary

 $\begin{array}{c} K[x,y] \\ \text{polynomials} \\ \text{points} \ \in \bar{K}^2 \\ \text{ideal} \\ \text{zero set } V(I) \subseteq \bar{K}^2 \end{array}$

dimension zero

 $K[D_x,D_y]$ operators $\text{functions } \in \mathsf{F}$ left ideal $\text{solution set } V(I) \subseteq \mathsf{F}$ dimension zero

Dictionary

K[x, y]	$K[D_x, D_y]$
polynomials	operators
$points\ \in \bar{K}^2$	$functions\ \in F$
ideal	left ideal
zero set $V(I)\subseteq \bar{K}^2$	solution set $V(I) \subseteq F$
dimension zero	dimension zero
radical	???
normal position	???
shape lemma	???

Usually, such an ideal has a basis of the form

$$\{P(D_x), D_y - Q(D_x)\}.$$

Usually, such an ideal has a basis of the form

$$\{P(D_x), D_y - Q(D_x)\}.$$

Incidentally, this is a Gröbner basis for a lex order with $D_y > D_{x\cdot y}$

Usually, such an ideal has a basis of the form

$$\{P(D_x), D_y - Q(D_x)\}.$$

Incidentally, this is a Gröbner basis for a lex order with $D_{u} > D_{x}$.

Such bases are needed by modern creative telescoping algorithms.

Usually, such an ideal has a basis of the form

$$\{P(D_x), D_y - Q(D_x)\}.$$

Incidentally, this is a Gröbner basis for a lex order with $D_y > D_x$.

Such bases are needed by modern creative telescoping algorithms.

What is an unusual situation?

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F.$

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

We say that I is in normal position (w.r.t. x) if

 $\{b_1,\dots,b_r\}$ is linearly independent over C((y)).

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

We say that I is in normal position (w.r.t. x) if

 $\{b_1, \ldots, b_r\}$ is linearly independent over C((y)).

Equivalently, $\dim_{\mathbb{C}} V(I) = \dim_{\mathbb{C}((y))} \mathbb{C}((y)) \otimes_{\mathbb{C}} V(I)$

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F$.

We say that I is in normal position (w.r.t. x) if

 $\{b_1,\ldots,b_r\}$ is linearly independent over C((y)).

Equivalently, $\dim_C V(I) = \dim_{C((y))} C((y)) \otimes_C V(I)$ Equivalently,

$$\mathsf{wr}(b_1, \dots, b_r) := \begin{vmatrix} b_1 & b_2 & \cdots & b_r \\ D_x \cdot b_1 & D_x \cdot b_2 & \cdots & D_x \cdot b_r \\ \vdots & \vdots & \ddots & \vdots \\ D_x^{r-1} \cdot b_1 & D_x^{r-1} \cdot b_2 & \cdots & D_x^{r-1} \cdot b_r \end{vmatrix} \neq 0$$

Q

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

I is in normal position (w.r.t. x) ...

 \iff dim_K K[D_x, D_y]/I = ord P

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

$$\iff$$
 dim_K K[D_x, D_y]/I = ord P

$$\iff$$
 $K[D_x, D_y]/I \cong K[D_x]/\langle P \rangle$ as $K[D_x]$ -modules.

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

$$\iff$$
 dim_K K[D_x, D_y]/I = ord P

$$\iff$$
 $K[D_x, D_y]/I \cong K[D_x]/\langle P \rangle$ as $K[D_x]$ -modules.

$$\iff \exists \ Q \in K[D_x] : I = \langle P, D_y - Q \rangle.$$

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

Let $P \in K[D_x]$ be such that $\langle P \rangle = I \cap K[D_x]$.

$$\iff$$
 dim_K K[D_x, D_y]/I = ord P

$$\iff$$
 $K[D_x, D_y]/I \cong K[D_x]/\langle P \rangle$ as $K[D_x]$ -modules.

$$\iff \exists \ Q \in K[D_x] : I = \langle P, D_y - Q \rangle.$$

$$I = \langle (D_x-1)(D_x-2), (D_x-1)(D_y-1), (D_x-2)(D_y-1) \rangle$$
 is **not** in normal position.

$$I = \langle (D_x-1)(D_x-2), (D_x-1)(D_y-1), (D_x-2)(D_y-1) \rangle$$
 is **not** in normal position.

$$V(I) = \mathsf{span}_C(\underbrace{e^x e^y, e^{2x} e^y, e^x e^{2y}}_{\text{linearly independent over } C})$$

$$\mathbf{not} \text{ linearly independent over } C((y))$$

$$I=\langle (D_x-1)(D_x-2), (D_x-1)(D_y-1), (D_x-2)(D_y-1)\rangle$$
 is **not** in normal position.

$$V(I) = \mathsf{span}_C(\underbrace{e^x e^y, e^{2x} e^y, e^x e^{2y}}_{\text{linearly independent over } C})$$

$$\mathbf{not} \text{ linearly independent over } C((y))$$

$$I=\langle (D_y-1)(D_y-2),(D_x-3)(D_y-1),D_x^2-3D_x-2D_y+4\rangle$$
 is in normal position.

$$I = \langle (D_x-1)(D_x-2), (D_x-1)(D_y-1), (D_x-2)(D_y-1) \rangle$$
 is **not** in normal position.

$$V(I) = \text{span}_{C}(\underbrace{e^{x}e^{y}, e^{2x}e^{y}, e^{x}e^{2y}}_{\text{linearly independent over } C})$$

$$\text{\textbf{not linearly independent over } C((y))$$

$$I = \langle (D_y - 1)(D_y - 2), (D_x - 3)(D_y - 1), D_x^2 - 3D_x - 2D_y + 4 \rangle$$
 is in normal position.

$$V(I) = \mathsf{span}_C(\underbrace{e^x e^y, e^{2x} e^y, e^{3x} e^{2y}})$$
 linearly independent over C linearly independent over $C((y))$

$$I = \langle (x-1)(x-2), (x-1)(y-1), (x-2)(y-1) \rangle$$
 is **not** in normal position.

$$V(I) = \{(1,1), (2,1), (1,2)\}$$

$$I = \langle (y-1)(y-2), (x-3)(y-1), x^2 - 3x - 2y + 4 \rangle$$
 is in normal position.

$$V(I) = \{(1,1), (2,1), (3,2)\}$$

Dictionary

$K[D_x, D_y]$
operators
$functions\ \in F$
left ideal
solution set $V(I) \subseteq F$
dimension zero
???
???
???

Dictionary

$K[D_x, D_y]$
operators
$functions\ \in F$
left ideal
solution set $V(I) \subseteq F$
dimension zero
???
✓
✓

$$f(x, y + cx)$$

$$D_x \cdot f(x, y + cx)$$

$$D_x \cdot f(x, y + cx) = f_1(x, y + cx) + cf_2(x, y + cx)$$

$$\begin{split} D_x \cdot f(x,y+cx) &= f_1(x,y+cx) + cf_2(x,y+cx) \\ D_y \cdot f(x,y+cx) &= f_2(x,y+cx) \end{split}$$

$$(D_x - cD_y) \cdot f(x, y + cx) = f_1(x, y + cx)$$

$$D_y \cdot f(x, y + cx) = f_2(x, y + cx)$$

$$(D_x - cD_y) \cdot f(x, y + cx) = f_1(x, y + cx)$$
$$D_y \cdot f(x, y + cx) = f_2(x, y + cx)$$

Question: Can every ideal $I \subseteq C(x,y)[D_x,D_y]$ of dimension zero be brought into normal position by a linear change of variables $D_x^{\text{new}} = D_x^{\text{old}} + cD_u^{\text{old}}$ with some $c \in C$?

$$(D_x - cD_y) \cdot f(x, y + cx) = f_1(x, y + cx)$$
$$D_y \cdot f(x, y + cx) = f_2(x, y + cx)$$

Question: Can every ideal $I \subseteq C(x,y)[D_x,D_y]$ of dimension zero be brought into normal position by a linear change of variables $D_x^{\text{new}} = D_x^{\text{old}} + cD_y^{\text{old}}$ with some $c \in C$?

Answer: No.

$$(D_x - cD_y) \cdot f(x, y + cx) = f_1(x, y + cx)$$

$$D_y \cdot f(x, y + cx) = f_2(x, y + cx)$$

Question: Can every ideal $I \subseteq C(x,y)[D_x,D_y]$ of dimension zero be brought into normal position by a linear change of variables $D_x^{\mathsf{new}} = D_x^{\mathsf{old}} + c D_y^{\mathsf{old}}$ with some $c \in C$?

Answer: No.

Example: $V(I) = \operatorname{span}_{C}(e^{x}, xe^{x}, ye^{x})$

$$(D_x - cD_y) \cdot f(x, y + cx) = f_1(x, y + cx)$$
$$D_y \cdot f(x, y + cx) = f_2(x, y + cx)$$

Question: Can every ideal $I \subseteq C(x,y)[D_x,D_y]$ of dimension zero be brought into normal position by a linear change of variables $D_x^{\mathsf{new}} = D_x^{\mathsf{old}} + c D_y^{\mathsf{old}}$ with some $c \in C$?

Answer: No.

Example: $V(I) = \operatorname{span}_{\mathbb{C}}(e^x, xe^x, ye^x) = \operatorname{span}_{\mathbb{C}}(e^x, xe^x, (y + cx)e^x)$

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F.$

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F.$

We say that I is a radical ideal if b_1, \ldots, b_r are linearly independent over C(x, y).

Let $\{b_1, \ldots, b_r\}$ be a C-vector space basis of $V(I) \subseteq F$.

We say that I is a radical ideal if b_1, \ldots, b_r are linearly independent over C(x, y).

Recall: I is in normal position if $b_1, ..., b_r$ are linearly independent over C((y)).

Let $\{b_1,\ldots,b_r\}$ be a C-vector space basis of $V(I)\subseteq F$.

We say that I is a radical ideal if b_1, \ldots, b_r are linearly independent over C(x, y).

Recall: I is in normal position if $b_1, ..., b_r$ are linearly independent over C((y)).

V(I)	radical?	normal position?
e^x, xe^x, ye^x	no	no
e^x, xe^x	no	yes
$e^x, e^y e^x$	yes	no
e^x, e^y	yes	yes

Fact: If I is radical, then there is always a $c \in C$ such that the linear transformation (x', y') = (x, y + cx) brings I into normal position.

Fact: If I is radical, then there is always a $c \in C$ such that the linear transformation (x', y') = (x, y + cx) brings I into normal position.

Dictionary

K[x, y]	$K[D_x, D_y]$
polynomials	operators
points $\in \bar{K}^2$	$functions\ \in F$
ideal	left ideal
zero set $V(I)\subseteq \bar{K}^2$	$solution \; set \; V(I) \subseteq F$
dimension zero	dimension zero
radical	???
normal position	\checkmark
shape lemma	√

Dictionary

K[x,y]	$K[D_x, D_y]$
polynomials	operators
points $\in \bar{K}^2$	$functions\ \in F$
ideal	left ideal
zero set $V(I)\subseteq \bar{K}^2$	$solution \; set \; V(I) \subseteq F$
dimension zero	dimension zero
radical	\checkmark
normal position	\checkmark
shape lemma	√