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Let I C K[x,y] be a radical ideal of dimension zero.

Fact: Unless the field K is very small, there is always a ¢ € K such
that the linear transformation

)= 3 6)

brings I into normal position.
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Let F be a K[Dy, Dyl-module.

For f € F, consider ann(f) = { L € K[Dy,DyJ:L-f=0 }
This is a left ideal of K[Dy, DU].

f is called D-finite if ann(f) has dimension zero.

This means that dimg K[Dy, Dy]/ann(f) < oo.

For I C K[Dy, Dyl consider V(I) = {f € F:L-f=0}.
This is a C-vector space.

If F is sufficiently large, dimy K[Dy, Dy]/I = dimc V(I).
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Let I C C(x,y)[Dx, Dy] be a left ideal of dimension zero.
Let {by,..., b} be a C-vector space basis of V(I) C F.

We say that [ is a radical ideal if by,..., b, are linearly independent
over C(x,y).

Recall: T is in normal position if by,..., by are linearly independent
over C((y)).

V(I) radical? | normal position?
e*, xe*, ye*
e, xe* yes
e, eYeX yes
eX ey yes yes
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