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The sum S(n) = Z(—Uk( nk+ ) satisfies the recurrence
k

(Bn+8)S(n)+ (2n+3)S(n+1) =0.

Every solution of this recurrence is equal to

N (—4)m
2n+1)(™ 7%

for some constant «.

Since S(0) =0, it follows that S(n) = 0 for all n.
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Definition:
e An operator P =cp 4+ ¢Sy + - + ¢S], is called a telescoper
for frx if
P-fox=Axgn
for some g, ;.

e An operator P =cp + ¢1Sq + -+ - 4+ ¢;S}, is called an
annihilator for fox if
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Usually,

P is a telescoper for f;, i

&= P is an annihilator for frk

but sometimes, "% ". This is well understood.

and sometimes, “¢". This is strange.
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o (8n+8) + (2n + 3)S, is a telescoper of minimal order for f, .

e 1 is an annihilator of minimal order for

ok =0.
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1
Y+ xy? +1
e 34+ 12xD, + (4x* —16)D?2 is a telescoper of minimal order
for f(x,y).

Example: f(x,y) =

e (2x +4)Dy + 1 is an annihilator of minimal order for

f(X)U) = \/m
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Q= An,k -f
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o f . a hypergeometric term
o Ak = C(n,k)[Sn, Sil ... algebra of bivariate operators
e A, =C(n)[S4] ... algebra of univariate operators
e O:=Aq-f ... viewed as A-module
e ALO ... is an A-submodule of Q
o« M :=Q/AQ

Note

P is a telescoper for f € QO <= P annihilates f € M
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Observation 1: Suppose that N is a submodule of M.

If R is the minimal order operator that maps f into N, then every
telescoper of f must be a left multiple of R.
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Observation 2: Suppose that M = N7 @& Nj.

If R; are minimal order operators annihilating the components 7t;(f)
of f in Nj, then the minimal order telescoper of f is IcIm(Ry, R,).
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Observation 3: Suppose that N is a submodule of M.

If for every h € Q with h € N we have h = 0, then R annihilates
f, though it need not be a telescoper of f.
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But what explains the submodules?
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ABSTRACT

Elaborating on an approach recently proposed by Mark vanHogi,  Summand or integrand that have a particular form. I the case of

Such operators are obtained from annibilating operators of the

we contine to investigate why creative telescoping accasionally  Summation, suppose that we have

fils to find the minimal-order annibilating operator of a given (L-(5%-DQ) fnky=0 (y

definite sum or integral. We offer an explanation based on the

Pt i for some operator L that only involves n and the shift operator S,
but neither k nor the shift operator S, and another operator Q that

CCS CONCEPTS. may involve any of kS, 5. Summing the equation over all k

- Computing methodologies — Algebraic algorithms. =
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o (4x%— 16)D§ + 12xDy + 3 is a telescoper of minimal order
for f(x,y).

Example: f(x,y) =

e (2x +4)Dy + 1 is an annihilator of minimal order for

f(XaU) = m
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Hermite reduction: f =g’ + g with g square free and degp < degq.

Every element of the C(x)[Dy]-module
M = C(X)y) / Dy C(X)y)
has a representative of the form %. “residual form"

Nonzero residual forms are obstructions to integration.

To kill an element of M, we must eliminate all its residues.
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1
yr+xy? +1
Let To, T, Tp,T—p be the residues there.

has four poles o, —a, 3, —f3.

We do not need to annihilate ro and 4.

It suffices to annihilate Ty + 7p.

(1 —y?)f has residues of opposite sign inside the relevant contour.

(1 +y?)f has two identical residues inside the relevant contour.
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Abramov-Petkov$ek reduction:

f=Axg+h
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Abramov-Petkovsek reduction deluxe:
f=Axg+h
T

“residual
form”

Every element of the C(n)[S,]-module
M = C(n,k)f / A C(n, k)f

has a representative which is a residual form.

Nonzero residual forms are obstructions to summation.
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Abramov-Petkovsek reduction deluxe:
f=Axg+h
T

“residual
form”

Every element of the C(n)[S,]-module
M = C(n,k)f / A C(n, k)f

has a representative which is a residual form.
Nonzero residual forms are obstructions to summation.

To kill an element f of M, we must eliminate the residual form of f.
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\WELH
e A C(n)[Sn]-submodule N of M consisting of the classes of ph
for all p from a finite dimensional C(n)-subspace of C(n, k).
Facts:
e Such a submodule N can always be found.

e Given f, we can compute R such that R-f € N.
(Complicated.)

This is useful as a preprocessor for computing telescopers.
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Nicole’s theorem (1717):
o Letn > 2.
e Let p € Clx] with degp <n—1.
e Let 1p,...,T, be the residues of

n
e Then Z T = 0.
k=0

P

x(x+1)---(x+n)
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Nicole’s theorem (1717):
o letn > 2.

e Let p € Clx] with degp <n—1.
P

e Let 1p,...,T, be the residues of
n
o Then ) 7, =0.
k=0

Idea: Use this to identify submodules of vanishing sums.

x(x+1)---(x+n)
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3k
n

)
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Example: o, = (—1)* (Tl) <3k)
, U

1
Consider hy, y =

Bk—m+1)3Bk—m+2)3Bk—m+3

The classes of all C(n)-multiples of hyy form a
C(n)[Sn]-submodule N of M.

degree n — 3

ihn)k (=™ B3x)(B3x+1)---(3x+n—4)
k x(x+1)---(x+mn)

degree n + 1

By Nicole, hp =

] frk-
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R =S, 43 maps f into N, so it annihilates

frke
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R =S, 43 maps f into N, so it annihilates

The minimal telescoper P for f;, i has order 2.

T k-
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