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Definition:

• An operator P = c0 + c1Sn + · · ·+ crS
r
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for fn,k if
P · fn,k = ∆kgn,k

for some gn,k.

• An operator P = c0 + c1Sn + · · ·+ crS
r
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Usually,

P is a telescoper for fn,k⇐⇒ P is an annihilator for
∑
k

fn,k

but sometimes, “̸⇒”. This is well understood.

and sometimes, “̸⇐”. This is strange.
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Example: fn,k = (−1)k
(
2n+ 1

k

)2

• (8n+ 8) + (2n+ 3)Sn is a telescoper of minimal order for fn,k.

• 1 is an annihilator of minimal order for∑
k

fn,k = 0.
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Example: f(x, y) =
1

y4 + xy2 + 1

• 3+ 12xDx + (4x2 − 16)D2
x is a telescoper of minimal order

for f(x, y).

• (2x+ 4)Dx + 1 is an annihilator of minimal order for∫∞
−∞f(x, y)dy =

π√
x+ 2

.
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• f . . . a hypergeometric term

• An,k = C(n, k)[Sn, Sk] . . . algebra of bivariate operators

• An = C(n)[Sn] . . . algebra of univariate operators

• Ω := An,k · f . . . viewed as An-module

• ∆kΩ . . . is an An-submodule of Ω (!)

• M := Ω/∆kΩ

Note:

P is a telescoper for f ∈ Ω ⇐⇒ P annihilates f̄ ∈ M
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Observation 1: Suppose that N is a submodule of M.

• 0

NN

M

• f̄

R •
LN1 N2

f̄ •

• •
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Observation 1: Suppose that N is a submodule of M.

• 0

N

N

M
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L

N1 N2
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• •

If R is the minimal order operator that maps f̄ into N, then every
telescoper of f must be a left multiple of R.
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Observation 2: Suppose that M = N1 ⊕N2.
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Observation 2: Suppose that M = N1 ⊕N2.

• 0
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M
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L
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If Ri are minimal order operators annihilating the components πi(f̄)
of f̄ in Ni, then the minimal order telescoper of f is lclm(R1, R2).
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Observation 3: Suppose that N is a submodule of M.
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Observation 3: Suppose that N is a submodule of M.
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If for every h ∈ Ω with h̄ ∈ N we have
∑

kh = 0, then R annihilates∑
kf, though it need not be a telescoper of f.
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Submodules explain the structure of telescopers.

But what explains the submodules?
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Example: f(x, y) =
1

y4 + xy2 + 1

• (4x2 − 16)D2
x + 12xDx + 3 is a telescoper of minimal order

for f(x, y).

• (2x+ 4)Dx + 1 is an annihilator of minimal order for∫∞
−∞f(x, y)dy =

π√
x+ 2

.
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Hermite reduction: f = g ′ + p
q with q square free and deg p < degq.

Every element of the C(x)[Dx]-module

M = C(x, y) / DyC(x, y)

has a representative of the form p
q . “residual form”

Nonzero residual forms are obstructions to integration.

To kill an element of M, we must eliminate all its residues.
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1

y4 + xy2 + 1
has four poles α,−α,β,−β.

Let rα, r−α, rβ, r−β be the residues there.

Re

Im

•α

•−α

•β

•−β
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We do not need to annihilate rα and rβ.

It suffices to annihilate rα + rβ.

f y2f

α rα rβ
β rβ rα

(1− y2)f has residues of opposite sign inside the relevant contour.

(1+ y2)f has two identical residues inside the relevant contour.
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M

f •

N1

1
2(1− y2)f •

N1

1
2(1− y2)f •

N2

• 1
2(1+ y2)f

N2

• 1
2(1+ y2)f

• 0

14



M

f •

N1

1
2(1− y2)f •

N1

1
2(1− y2)f •

N2

• 1
2(1+ y2)f

N2

• 1
2(1+ y2)f

• 0

14



∑

15



Abramov-Petkovšek reduction:

deluxe:

f = ∆kg+ h

↑

lots ofeven more“residual

restrictions

form”

Every element of the C(n)[Sn]-module

M = C(n, k)f / ∆kC(n, k)f

has a representative which is a residual form.

Nonzero residual forms are obstructions to summation.

To kill an element f̄ of M, we must eliminate the residual form of f.

16



Abramov-Petkovšek reduction:
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:

deluxe:

f = ∆kg+ h↑

lots of

even more

“residual

restrictions

form”

Every element of the C(n)[Sn]-module

M = C(n, k)f / ∆kC(n, k)f

has a representative which is a residual form.

Nonzero residual forms are obstructions to summation.

To kill an element f̄ of M, we must eliminate the residual form of f.

16



Abramov-Petkovšek reduction
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Want:

• A C(n)[Sn]-submodule N of M consisting of the classes of ph

for all p from a finite dimensional C(n)-subspace of C(n, k).

Facts:

• Such a submodule N can always be found.

• Given f, we can compute R such that R · f̄ ∈ N.

(Complicated.)

This is useful as a preprocessor for computing telescopers.
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• 0

N

M

• f̄

R •

L
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Nicole’s theorem (1717):

• Let n ≥ 2.

• Let p ∈ C[x] with deg p ≤ n− 1.

• Let r0, . . . , rn be the residues of
p

x(x+ 1) · · · (x+ n)
.

• Then
n∑

k=0

rk = 0.

Idea: Use this to identify submodules of vanishing sums.
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Example: fn,k = (−1)k
(
n

k

)(
3k

n

)

Consider hn,k =
1

(3k− n+ 1)(3k− n+ 2)(3k− n+ 3)
fn,k.

The classes of all C(n)-multiples of hn,k form a
C(n)[Sn]-submodule N of M.

n∑
k=0

hn,k

x+ k
=

(−1)n+1

degree n − 3︷ ︸︸ ︷
(3x)(3x+ 1) · · · (3x+ n− 4)

x(x+ 1) · · · (x+ n)︸ ︷︷ ︸
degree n + 1

By Nicole,
∑
k

hn,k = 0.
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R = Sn + 3 maps f̄ into N, so it annihilates
∑

kfn,k.

• 0

N

M

f̄ •

R
•

P

The minimal telescoper P for fn,k has order 2.
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