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ABSTRACT

We provide bounds on the size of polynomial differential equations
obtained by executing closure properties for D-algebraic functions.
While it is easy to obtain bounds on the order of these equations, it
requires some more work to derive bounds on their degree. Here
we give bounds that apply under some technical condition about
the defining differential equations.
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1 INTRODUCTION

D-finite functions have been a prominent topic in computer algebra
for many years. They are defined as solutions of linear differential
equations with polynomial coefficients. Such functions appear fre-
quently in many applications, and efficient algorithms are available
for answering all sorts of questions about them [17].

But not every function of interest belongs to the class of D-finite
functions. The tangent, the exponential generating function for
Bernoulli numbers, the ordinary generating function for partition
numbers, the Weierstraf3-gp function, Painleve transcendents, and
Jacobi f-functions are prominent examples of functions that are
not D-finite.

However, these functions still belong to the class of D-algebraic
functions. For a function f to be D-algebraic means that there is
a polynomial P such that P(f, f/,..., f")) = 0, i.e., the defining
differential equation for f may be nonlinear.
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D-algebraic functions have recently attracted increased interest
in the context of combinatorics. For example, the exponential gen-
erating function for labeled trees was shown to be D-algebraic [5].
Also restricted lattice walks [3], Eulerian orientations [7], colored
planar maps [2], and permutation patterns [10] lead to D-algebraic
functions that are not D-finite.

At the same time, D-algebraic functions are also interesting from
the perspective of computer algebra. A specific D-algebraic function
is uniquely determined by a differential equation which it satisfies
and some finitely many initial terms of its series expansion. Denef
and Lipshitz [14, 15] give an algorithm for checking whether two
D-algebraic functions given in this way are equal. More recent work
in this direction is due to van der Hoeven [25].

Based on the classical theory of differential algebra [18, 21], a
constructive elimination theory has been developed, see, e.g., [6, 8,
9, 20, 22, 23] and the references therein. One consequence of this
theory is that the class of D-algebraic functions is closed under
addition, multiplication, division, and composition, and some other
operations. Manssour et al. [1] recently proposed new algorithms
for executing such closure properties. Given defining differential
equations for two D-algebraic functions f and g, these algorithms
compute defining differential equations for f +g, f - g, f/g, fog,
etc.

It is not difficult to see why the class of D-algebraic functions
is closed under these operations if we assume that the functions
and their derivatives can be identified with elements of a field. If f
satisfies a polynomial differential equation P(f, f/,..., ")) = 0,
then f(") is algebraic over the field generated by f, f’,..., f("~1),
so this field has a transcendence degree of (at most) r. Note that
this field is closed under differentiation. If g is another D-algebraic
function satisfying a differential equation of order s, so that the
field generated by g and its derivatives has transcendence degree
(at most) s, then there is a field of transcendence degree (at most)
r + s containing, say, the sum h = f + g and all its derivatives.
This implies that b, 1/, .. ., R(r+s) are algebraically dependent, and
therefore that h satisfies an equation of order at most r + s.

Besides confirming the closure under addition, this argument
suggests an algorithm for finding differential equations of sums,
products, etc. of given D-algebraic functions, and it provides bounds
for the orders of these equations. All this is not too different from
closure properties for D-finite functions. The main difference is
that nonlinear elimination theory has to be employed in place of
linear algebra.

As far as D-finite functions are concerned, not only bounds on
the orders of the resulting equations are known but we also have
bounds on the degrees of the polynomial coefficients [16, 17]. The
combination of order and degree gives a more realistic idea of how
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big an equation is. The purpose of the present paper is to provide
analogous results for D-algebraic functions.

More precisely, rather than obtaining bounds on the size of the
coeflicients, we derive bounds on the total degree of the polynomi-
als P. Our bounds apply under the assumption that certain ideals
are sufficiently generic. The bounds are quite large. Although better
bounds are available for more specific situations (see, e.g., [19]), we
believe that for the generic case this is not due to pessimistic over-
estimation but an indication that closure properties for D-algebraic
functions can indeed lead to rather large equations.

This may be an explanation why for some of the D-algebraic
functions that have recently come up in combinatorics, we do not
explicitly know their defining equations even though they could in
principle be obtained from rather simple constituents by applying
closure properties. Perhaps they are simply too big.

For D-finite functions, it has been pointed out that a slight in-
crease in order can allow for a drastically smaller degree. This
observation has led to the concept of order-degree curves [4, 11,
12, 16, 17]. As we shall see, there is a similar phenomenon in the
nonlinear case.

2 DIMENSIONS

Throughout this paper, if R is a commutative ring and Py, . . ., P, are
elements of R we will denote by (P, ..., P,) the ideal PiR+- - -+P,R
generated by Py,...,P, in R.

We recall some facts about Hilbert series, Hilbert polynomi-
als and dimensions of algebraic varieties that will be used later.
Throughout this section let K be a field and R = K[s, x1, . .., Xp]-

Definition 1. Let I be a homogeneous ideal of R. For i € N, let R;
be the K-vector space of all homogeneous polynomials of degree i
(together with zero), and let I; = I N R;.

(1) The function HF;: N — N, HF;(i) = dimg (R;/I;) is called

the Hilbert function of I.

(2) The generating series

HSp(t) = ZHF,(i)ti e Z[[t]]
i=0
is called the Hilbert series of I.

PrROPOSITION 2. [13, §9.3] For every homogeneous ideal I of R
there exists a polynomial HP; € Q[t] such that HP;(i) = HF;(i) for
all sufficiently large i € N.

Definition 3. Let I be a homogeneous ideal of R.
(1) The polynomial HP; from Prop. 2 is called the Hilbert poly-
nomial of 1.

(2) The (Hilbert) dimension of I is defined as dim I := deg(HPy).

Definition 4. We say that a chain of prime idealspg S p1 S -+ C
Pn haslength n. If I is an ideal of K[x1, . . ., x], the Krull dimension
of I, denoted kdim(I), is the maximum of the lengths of the chains
of prime ideals containing I.

If I is an ideal in K[x1, ..., x,] then its Krull dimension is also
the Hilbert dimension of its homogenization in R. Conversely, the
Hilbert dimension of a homogeneous ideal is one less than its Krull
dimension. In particular if I is a homogeneous prime ideal in R, then
its Hilbert dimension is one less than the transcendence degree

of Frac (R/I) over K. If I is homogeneous but not prime, then its
Hilbert dimension is the maximum Hilbert dimension of the prime
ideals that contain it.

PRrROPOSITION 5. Let I be a homogeneous ideal of R and let P € R
be a homogeneous polynomial of degree d. Then
(dimI) — 1 < dim(I + PR) < dimI.
Furthermore if P is not a zero divisor in R/I then
HSpy(py (1) = (1 t)HS (1)
In particular, dim(I + (P)) = (dimI) — 1.

ProOF. A proof that (dimI) — 1 < dim(I + (P)) < dim[ can be
found in [13, section 9.4 Theorem 3]. For all i € N, let R; C R and
I; C I be as defined in Definition 1. Consider the map m;: R;/I; —
Rivq/livq> mi(Q) = PQ.If P is not a zero divisor in R/I, then m; is
injective, so

dimimm; = dim(R;/I;) = HF;(i)
and
dim coker m; = dim(R;4q/Ij+q)/imm;
=dim Ry 4/ (ljq + PL)
= HFpypy(i+d).
It follows that
HF(i+d) = dimRiyq/Ij1g
= dim im m; + dim coker m;
= HF;(i) + HFI+<p> (i+d)
for every i. This implies the claim about HSp, (py.
For sufficiently large i, we have HF(i) = HP;(i), thus
HPpy(py (i) = HP[(i) — HP1(i — d),
hence HPp, (py is a polynomial of degree exactly dim/ - 1. m

This proposition implies that a homogeneous ideal generated by

r elements in K[s, x1, ..., x,] is of dimension at least n — r. If we

have an equality, the corresponding projective variety is called a
complete intersection.

Definition 6. Let (Py,. .., Py) be a tuple of homogeneous poly-
nomials in R.
(1) (P1,...,Py) is called a complete intersection if Py, . .., Py gen-
erate an ideal of (Hilbert) dimension n — k.
(2) (Py,...,Py) is called a regular sequence if P11 is not a zero
divisor in R/(Py,...,P;) forany 1 < i < k.

It should be noted that according to this definition, if (Ps, ..., P)
is a complete intersection, then the projective variety corresponding
to the ideal (P, ..., Pr) is a complete intersection. However, the
converse is not true: the ideal (Py, . .., Px) might be of dimension
strictly greater than n — k and nevertheless admit a smaller basis.

PROPOSITION 7. Let (Py,. .., Py) be a regular sequence of homoge-
neous polynomials in R, and let dy, . .., dj. be their respective degrees.
Then

(1= ). (1 = k)
HS(p, .py(t) = 1-tn

and dim(Py, ..., Py =n—k.




Proor. The proof is by induction on k. If k = 0 then HFR(i) is
the number of monomials of degree i which is (";{ "). Thus HSR(t) =
(1 —t)~". For the induction step, apply Proposition 5. m

Thus we can precisely know the Hilbert function of an ideal
generated by a regular sequence, which will be useful in the later
sections. It is obvious that regular sequences are complete inter-
sections. The following proposition shows that this is in fact an
equivalence.

PROPOSITION 8. For a tuple (Py, ..., Py) of homogeneous polyno-
mials in R, the following properties are equivalent:

(1) (Py,...,Py) is a complete intersection

(2) (Py,...,P;) is a complete intersection for everyi=1,... k.

(3) Foreveryi € {1,...,k}, any minimal prime ideal containing
(P1,...,P;) is of dimension n — i.

(4) (Py,...,Py) is a regular sequence.

PRrROOF. Proposition 7 shows that (4) = (1).

We show (1) = (2) by descending induction on i. If the tuple
(P, ..., Pi+1) is a complete intersection then dim(Py, ..., Pit1) =
n—i—1

dim(Py,..., Pit+1) = dim(Py,...,P;) — 1.

Thus dim(Py, ..., P;) < n —i and since the ideal is generated by
only i elements this is an equality.

We now show that (2) = (3) by induction on i. For i = 0 this
is obvious. Suppose that every minimal prime ideal containing
(Py,...,P;) is of dimension n — i. Let p be a minimal prime ideal
containing (Py, ..., Pi+1). Thendimp < dim(Ps,..., Pit1) = n—i—1.
By induction hypothesis this means that p is not a minimal ideal
containing (Py, ..., P;) so there exists q such that (P,...,P;) C q C
p. Thus p is a minimal prime ideal containing q + P;+1R. We know
from [24, Theorem 1.23] that this implies that dimp > dimgq -1 =
n—i—1.

Let us now suppose that (3) is true and show that (Py, ..., Py) is
a regular sequence. Suppose that we have shown that (Py,...,P;)
is a regular sequence and show that P;;; is not a zero divisor in
R/{Py,...,P;). But Piy1 can only be such a zero divisor if P;;1 be-
longs to some minimal prime ideal p containing (Py,...,P;). But
then dim(Py, ..., Pi4+1) > dimp = n — i by (3). This cannot be the
case asdim(Py,...,Piy1)=n—-i—1. =m

3 SETTING

Let K be a differential field. This means that the field K is equipped
with a map D: K — K satisfying D(a + b) = D(a) + D(b) and
D(ab) = D(a)b + aD(b) for all a,b € K. Such a map is called a
derivation on K. We will also use the notations a’, a’’, a’"’, and a¥)
instead of D(a), D?(a), D*(a), and D¥(a), respectively. An element
c of K is called a constant if ¢’ = 0. We denote by C C K the subset
of all constants of K. This set is actually a subfield of K.

Typical choices for our considerations are K = Q(x) with x” = 1
or K = Q. In both cases, we have C = Q.

We shall consider functions fj, ..., f, that belong to a certain
field F that is closed under differentiation and contains (an iso-
morphic copy of) K. It does not matter where the functions are
defined, but it does matter that we can view them as elements of a
differential field.

For every ri,...,ry € N, consider the polynomial ring Ry,
whose coefficient field is K and which has r; + - - - + r,, + n variables
that we denote by

YL Yo e 4,
T ,yém’
Yn; y;zs ....... R yflrn) )

The naming of the variables is chosen such as to suggest a way to
differentiate polynomials: The derivative of an element of Ry,,.. r,
is defined as the element of Ry 4+1,....r,,+1 obtained by differentiating
according to the usual rules for differentiation, the derivation of K,
and the rules (yl.(J))’ = yl.(JH).

We have Ry,,...r, C Ry 1, whenever r; < r] for all i. The order
of an element P of Ry, .., With respect to y; is the smallest k such
that P does not contain any of the variables yl.(l) for I > k. Itis
denoted by ord;(P). Note that if P is independent from y; and its
derivative we find ord;(P) = 0. This specific point may be open to
debate, but will not matter in the rest of this paper. The order of
P is the smallest k such that P is contained in Ry . . Note that
ord(P) = max]__ ord;(P).

Recall that F is a differential field extension of K which contains
the f;. There exists a unique ring homomorphism ¢: Ry ,, —
F which maps y; to f; and K to itself such that ¢$(P’) = ¢(P)’
for every P € Ry, _1,..r,—1. Its kernel is the ideal of all algebraic
relations among fi, ..., f, and their derivatives up to respective
orders rq, ..., ry. If there is just one function (n = 1), then for this
function to be D-algebraic means that the kernel is nonzero for
sufficiently large rq. Its elements amount to differential equations
satisfied by the function.

If there are several functions, we assume that for some rq,...,r,
we know (generators of) an ideal I of Ry, ,, that is contained
in ker ¢. Typically we will not know if I = ker ¢, but we shall
assume that I is sufficiently large to guarantee that the functions
under consideration all are D-algebraic. This is the essence of part 2
of the following definition.

Definition 9. (1) If I is an ideal of Ry, ,,, then we write I’
for the ideal of Ry 41,...r,+1 generated by the elements of I
and their first derivatives.

(2) Anideal I of Ry, is called D-algebraic with respect to y;
if there exists an m € N such that

1M A Klynyp-- - yl(rl+m)] + {0}.

(3) Anideal I of Ry, is called D-algebraic if it is D-algebraic
with respect to all variables.

If an ideal I is D-algebraic with respect to y;, then the elements of
the elimination ideal 1™ N K[y, Ypsoeos yl(rl+m)] amount to differ-
ential equations satisfied by f;. In particular, an ideal is D-algebraic
if and only if all coordinates of all solutions (in all sufficiently large
differential field extensions of K) are D-algebraic.

Forry =---
theory of differential algebra. In this case, Ry, . r, is the differential
ring of differential polynomials, ¢ is a differential homomorphism,

= rp = oo, we recover classical notions from the



anideal I of Ry, ., thatis closed under differentiation is a differen-
tial ideal, and an ideal is D-algebraic (with respect to all variables)
if and only if its differential dimension is zero. However, we will
mostly need to operate with the finite ry,. .., ry,.

We will sometimes prefer to work with homogeneous polynomi-
als. We then use s as homogenization variable and write Rﬁl’i__,rn

for the polynomial ring over K whose variables are s and yi(j ) for

i=1,...,nand j = 0,...,r;. For a polynomial P € R, , we

.....

write h(P) € thm’rn for its homogenization with s as homogeniza-
r, we write h(I) for the

.....

.....

have h(I’) = h(I)’, i.e., the homogenization variable behaves like a
constant.

Definition 10. Let Py,...,Py € Ry, andletr = 37 r;.

(1) Let p > 0. The tuple (Py, ..., Py) is called D-regular at order
tion. o

(2) The tuple (Py, ..., Pp) is called D-regular with respect to y;
if it is D-regular at order r — r;.

4 DEGREE BOUNDS IN COMPLETE
INTERSECTIONS

We consider a tuple (P, ..., P,) of elements of Ry, ., where the
r; are chosen as small as possible, and let I = (Py,..., P,) be the
ideal they generate. We assume that this ideal is D-algebraic in the
sense of Def. 9.

Note that I might not be D-algebraic even if (h(P1),..., h(Py))
is a complete intersection. For example, for

Py =y} - 2y1y},

Py = (y; — vy — vy (v — vD)y:
we have that (h(P;), h(P;)) is a complete intersection, but one can
check that for any ¢ € C, (¢ — x)_1 is a solution of P;, but also of

Y1 - y%. Therefore, P2 ((c — x) ™1, y2) = 0 regardless of y3.
The goal of this section is to determine bounds on the degree of

72
2

anonzero element in 1™ N K[y;, yj, ... ]. Note that it is in general
not obvious for which m this is true, even if bounds on the order of
the solutions are known.

ExamPLE 11. Consider the system defined by Py = y1y} —y}? and
Py =(y2 —y1)? + (yy - y{)4. If (A1, f2) is a solution of (P, P2) then
f is actually the sum of two D-algebraic function, fi and f, where f
is a solution of y? + y’* = 0. This is how the example was presented in
[1, Example 4.2]. Thus f, lies in a differential field extension of Q of
transcendence degree 3 and is thus solution of a D-algebraic equation
of order 3. However, the ideal (Pl,Pz)(z) does not have a non trivial
intersection with Q[yz, v, ... ], as was stated in [1].

A closer look at the solutions of the differential equations reveals
that they can, in this example, be written in closed form. The solutions
of y? + y’* are 0 and polynomials of the form

%(—1)kix2 +ax + (—1)k+1ia2
with k € {0,1}, a € C and i? = —1. All of those solutions satisfy the
equation (-Dkiy2+y =0 of order 1 and of degree 2 rather than only
an equation of degree 4. Likewise, the solutions of Py are exponential

functions of the form Aexp(cx) (A, ¢ € C) and satisfy an equation of
order and degree 1.

If we were to fix k and ¢ and take Q1 = y; — cy; and Qs =
(-DKi(yy —y})? + (y2 — y1) instead of Py and Py and J = (Q1, Q2)
instead of I, we find that J' N Clyz, v}, y5 ] # {0}.

THEOREM 12. Let Py,...,P, € Ry, and let]l € {1,...,n}.
Suppose that r; = max?:1 ord;(P;) foralli € {1,...,n}. In addition,
we assume that for each i, at least one the P; is not independent from
y; or its derivatives. Let d := ]—Ij?zl deg P;.

Let rmin = 20 ri, 1 2 Fin (P1,..., Py) is D-regular at order
r — r;. Then the elimination ideal

(Pr,...P)") N KlyLy), ...

contains a nonzero element of order r and degree k as soon as k >
(r + 1) (d¥* Umin=r0)/(r=rmin+1) _ 7).

Proor. First note that for any non constant polynomial P €
Ry,

,,,,,

,,,,,

We know from Proposition 7 that

l—[:_121 (1 _ tdi)r—r1+1

(1 — t) Fmin+n(r—ri+1)

HSI(r—rl) (t) =

n
= (=) [ (1 e gy
i=1

We claim for any sequence of stricly positive integers (up)pen+ €
(NN if we write

n 00
TR | TRV
i=1 k=0

then a,, j < (r‘“‘;:rk) ™ 1 ui. This is obviously true for n = 0. Then

if the result is true for n then

n+l )
(=7 [ [t a7 = (et ™) Y ay otk
i=1 k=0
Thus
Up+1—1
Ak,n+1 = Ak—jn

IN
—
3
<
<
. 3
g
|
-
- >
g
> =
|+
-,
~.
—~—

which proves the statement by induction on n. It follows that

Ymin + k)

HF - (k) < dr7r1+1( P

The space Vi C K[s,yy, ..., yl(r)] of homogeneous polynomials of
degree k has dimension (r"',l:k) over K. By the definition of the
Hilbert polynomial, its image in

Rh /I(V—Vl)

r+re,..., r+rn



under the natural morphism is a vector space of dimension at most
r—r+1 (Fmintk
drree (reitk).

Ifk > (1+r)(d"*min=r0)/(r=rmin*1) _ 1) then we have

147 —rmin

1+ — > drrl

Fmin + i +Kk
min >
r+1

1+r—rmin
Tmin +1 )

i=1

and so (rtﬂk) > HP(r-r (k). This means that Vj. contains nonzero

polynomials that are mapped to zero. By setting s = 1, any such
element translates into a nonzero element of

(P P N Ky y), . ]

of the announced order and degree. m

In view of the exponential size of the bound of Theorem 12, we
were not able to check experimentally how tight it is. The required
computations were too large. However, to at least get some idea,
we carried out some experiments for a similar, though different
problem. Given n + 1 polynomials Py, ..., P, in K[x1,...,x,] of
degree d, it is clear that they must be algebraically dependent.
What is the typical degree of their algebraic relation? A calculation
similar to the proof of Theorem 12 shows that there is an algebraic
relation of total degree k as soon as (";}:{k) > ("+nkd) . This is true for
k > (n+1)(d" —1). However, experiments suggest that an algebraic
relation already exists for k > d". We do not know the reason for
this discrepancy, but it suggests that bound of Theorem 12 perhaps
also overshoots by a factor of r + 1.

The hypothesis that the family (Py, ..., Pp) is D-regular (for any
variable) is not trivial in general, even if the ideal (Py,...,Pp) is
D-algebraic (with respect to any variable), as shown in Example 11.
Outside of the differential context, a generic family of polynomials
is a complete intersection, similarly to generic intersections of
hyperplanes. The family of polynomials considered here however
is not random as it is composed of the successive derivative of given
differential polynomials. Nevertheless, experiments conducted on
random operators of small orders and degrees seem to indicate that
this hypothesis is often satisfied.

Theorem 12 also shows that, in the case of complete intersection,
going to a higher derivative order may provide equations of smaller
degrees. This phenomenon is well-known in the case of linear
differential operators [11] and here finds its nonlinear counterpart.
Two things should be noted however. The first is that unlike in
the linear case, the “order-degree curve” that we obtain here is
increasing for big enough r. This is an artifact of the approximations
used during the proof of the theorem. The second is that, unlike
for linear differential operators, the size of a polynomial does not
linearly depend on its order and its degree. It would therefore be
more relevant to compare how the total number of monomials
depends on the order. We have conducted tests for a few values of
d, r; and rpip, whose results are presented in Figure 1. The graphs
in Figure 1 show the evolution along r — rpyi, of the number of
monomials of degree k in K [s, yj, y;, e ylr+r’] for the smallest k for

which this number is strictly bigger than d" "1 (rm‘]:+k), at which
point we can ensure the existence of a nontrivial element in the
intersection ideal. Those tests suggest that the number of possible
monomials drops significantly for the first few values of r > ryin. It
should be noted that the number of monomials presented here only

number of monomials
10%
10
101
1017
101°
101

10

109

T — Tmin

Figure 1: order-number of monomials curves

results from comparing the number of equations and the number of
variables in the linear system considered in the proof of Theorem 12.
It was not obtained by actually solving these linear systems, for
they are too big to handle, so these curves may overshoot.

5 COROLLARIES ON DEGREE BOUNDS FOR
ALGEBRAIC OPERATIONS
PrRoPOSITION 13. Let fi, ..., fn be D-algebraic functions, as well
as P1,...,Py € Ry, such that P;i € K[y, ylf,...,yl.(ri)] for all
ie{l,....n} and Q € Ry, r,. We note rpin = X ri andd =
", deg(P;). Letr > ryin and assume that
e Pi(fi)=0forallie {1,...,n}.
o P; is D-regular at orderr foralli € {1,...,n}.
Then Q(fi, ..., fn) is solution of a D-algebraic equation of order r
and of degree k or less, as soon as

k> (r+1)((deg(Q)) ! *mn/ (rrmntl) 1),

Proor. It is enough to show that the family (Py,...,Pp,z —
Q(1,...,Yn)) € Ry\,...r, [2] is D-regular at order r.

LetI :=(P1,....Pn,z—Q(y1,..-.Yn)) C Rp,..r [zl and I; :=
(P1,...,Pn) C Ry,..r,. We know that dimh(I)(") = kdim(1(").
There is a natural morphism

_,Z(r)]/l(r).

(r) ’
Rr1+r,..‘,rn+r/11 = Rejir, o[22,

This morphism is surjective. Indeed,

(z= Q1. yn) P =20 —0(ys, ..., yn) P

for all k < r. By successive euclidean divisions, it follows that any
element of Ry 4y, ro4rl2.2, ..., z(r)]/l(r) can be represented by
an element of Ry 4, r,+r. It follows that

kdim(I7") < kdim(1\").

But we also have

Reyy o/l = Klyn, .y "1 (P) )
®k Klyz, . 931 /(Py) ")
&k Klyn, -y ™1/ (Pa) .



Thus we have

Ti = I'min-

n n n
kdim(ly) = " kdim((P{")) = > dimh((Piy) ") =

i=1 i=1 i=1
Thus dim h(I )(r) < rmin and since it cannot be lower than this, the
family (P1,...,Pn,z — Q(y1,...,yn)) is D-regular at order r. We
can now apply Theorem 12. m

Proposition 13 covers in particular the case of the addition and
multiplication of D-algebraic functions. The incorporation of divi-
sions requires stronger hypothesis.

PROPOSITION 14. Let fi, ..., fn be D-algebraic functions, as well
as Pi,...,Py € Ry, such that P; € K[y, yl’.,...,yi(r")] for all
i€{L,....n} and On,Qq € Ry,,...r,. We note ryin == 20 r; and
d =[], deg(P;). Letr > ryin and assume that

o Pi(fi)=0forallie {1,...,n}.
o The family (P1, ..., Pn, Qqz — Qn) is D-regular at orderr.
Then Qn(fis---» fn)/Qa(fis- -, fn) is solution of a D-algebraic equa-

tion of order r and of degree k or less as soon as
k> (r+1)((max(deg(Qn), deg(Qg))d)mn/ 7 =min*1) _ 1),

Proor. This is a direct consequence of Theorem 12 =

6 BOUNDS FOR THE COMPOSITION OF
D-ALGEBRAIC FUNCTIONS

When D-algebraic functions are indeed functions (for example
meromorphic functions), rather than abstract elements of a dif-
ferential field, one might be tempted to consider the composition
operation. Another setting in which the composition operation is
sometimes well defined is that of power series.

It is known [1] that in both cases, the composition of two D-
algebraic functions is itself D-algebraic when this composition is
well defined. However, it is not completely clear how to define the
composition of two elements of an abstract differential field. From
an algebraic standpoint we want the composition on the right by a
given function to preserve algebraic relations. This means that if
1,0, - - - fin, f2 are “functions” such that the compositions fj ; o f; are
well defined for all i, for any algebraic relations P(fi, ..., fin) =0
we must have P(fio © f2,..., fin © f2) = 0. Another way of saying
this is that there would be a ring homomorphism

K10+ > finl = Kl fro© for. s fun o fol.
If we want to define the composition of a function f; with f,
this must in particular apply to the successive derivatives of fi,
fi = fl(l) for all i € N. From a differential standpoint we want

the composition to satisfy the usual derivation rule ( fl(i) ofz) =

£ ( fl(iH) ° fz) Following these ideas we propose the following
definition.

Definition 15. Let F be a differential field extension of K, fi, f> €
F. An element h in some differential field extension E of F is called
a composition of f; with f; if there exists a family (h;);en € EN
satisfying
° h() =h
o hl = flhis forallieN.

e There exists a (algebraic) homomorphism K[fi, f{ ...] = E
which maps fl(i) to h; foralli e N.

The h; represent the functions fl(i) o f7. It should be noted that
according to this definition, if hg is a composition of f; with f,

then h; is also a composition of fl(i) with f; according to the same
definition.

PROPOSITION 16. Let fi, fo be two D-algebraic functions and P; €

Klysy;, - .A,yi(r")] fori € {1,2} such that

e Pi(fi) =0 forie {1,2}.

o (P1) (resp. (P2)) is D-regular at order ry (resp. (r1)).
We note d; = deg(P;) fori € {1,2}. Then any composition of fi with
f> is a solution of a D-algebraic equation of order r1 +ry and of degree
smaller than k as soon as

k> (ri+ra+ 1) ((r +rg+ )d2dy! — 1),

Furthermore, this equation does not depend on the choice of the com-
position.

PRrOOF. Let h € E be a composition of fi with f> and let (h;);en
be as in Definition 15. We claim that
(hos byt o oo £ R RT2))
is a solution of
(@) Pl(])(yl,y{, . .,y{r”m) forall j < rp
(i) ng)(yg,yé, .. ,,y§r1+r2)) forall j < r
(iil) d/(z—y1) forall j < ry+ry, with d being the derivation on the
ring K[(y}")iex, (43 )icr (z)icn] given by d(y]

y;yilﬂ), and the usual derivation on yél) and z() for all |

Dy _

all of them seen as polynomials in

Kly1,..., yfrﬁm,

IR A
z,. ..,z(””Z)].

(ii) is obvious by hypothesis on Py. All the polynomials in (i) are
vanishing operators for fi. But since there exists a field morphism
which sends fl(') to h;, the h; must be roots of those polynomials
too. Finally we know that h—hy = 0. Differentiating this expression
gives that b — hy = b’ — fy hy = 0, which is to say that we find a
root of d(z — y1). By induction we get the result.

It must be noted that d’(z — y;) is always of the form z() -
Qi (y1, - ..,yir1+r2),y2, . ..,yér1+r2)) with deg(Q;) = i + 1. Follow-
ing the same line of reasoning as in the proof of Proposition 13,
we show that this family of polynomials, once homogenised, is a
complete intersection. Let I be the ideal generated by this family of
polynomials. Then as we did in the proof of Theorem 12, we can
show that HFy, () (k) < (r1 +r2 + 1)!d;2d£1 (rlrtfr:k). We consider
the natural morphism ¢ which maps elements of

K[s,z,7,.. .,z(r1+r2)]

to their equivalence class in Ri‘l +ry 141141, /1. The map ¢ maps

the space of homogeneous polynomials of degree k, which is of

dimension (rlrtffr:}jk) onto a space of dimension HFj(k). We can

check that fork > (ri+ra+1)((r1+ry+1) !d;2 d;l —1) the restriction



of ¢ to the space of homogeneous polynomials of degree k must
have a non trivial element in its kernel.

Thus I N K|z 2,.. .,z(r1+r2)] has a nonzero element of degree
at most k which is a vanishing operator for any composition of f;
with f,. m

7 VARIABLE ELIMINATION IN SPECIAL CASES

In some special cases, it is possible to loosen the hypothesis on
our system of equations so that we don’t need to use complete
intersections hypothesis. Some functions are easy enough to ma-
nipulate and we can ensure the existence of operators satisfying
the complete intersection property. In addition, we can here make
use of resultants instead of the analysis conducted in Theorem 12.

We first consider the case of the elimination of algebraic func-
tions. To be precise we consider an algebraic function g over C(x),
where C is the constant field, and a D-algebraic function f satisfying
an equation

P(fof,....fy=0

with coefficients in C(x)[g], and we want to recover an equation
in C[x][y,v/,...,y"")]. We are interested in both the total degree

of the resulting equation in the variables y, ¢/, ..
its degree in x.

.y as well as

PROPOSITION 17. Let g be an algebraic function over C(x) and let
Qg € Clx,y1] be the minimal primitive polynomial of g over C(x).
Let f be a D-algebraic function over C(x)|[g] and

P e Clx,y1,y2, yé, s l/z(r)]

be such that P(x, g, f, f’,.. .,f(r)) = 0. In addition, we suppose that
Qg 1 P. Then R = Resy, (P, Qy) € Clx, v, ..., yér)] is a D-algebraic
equation for f. Let dx, dy,, dy, and d denote the degree in x, de-
gree inyy, total degree inya, v, ... .,ygr) and total degree functions
respectively. Then

(1) dy, (R) < dy, (Qg)dy, (P)
(2) dx(R) < dx(P)dy, (Qg) +dy, (P)dx(Qy)
(3) d(R) < d(P)dy, (Qq) +dy, (P)d(Qg)

ProoF. Since Q4 1 P and Qy is irreducible, P and Q4 can have
no common factor, which implies that Q # 0. Furthermore,

(x.9.fren f)

is a root of both P and Qy, which implies that R(x, f,... ,f(r)) =0.
The degree bounds directly come from the fact that R is the deter-
minant of a Sylvester matrix with coefficients in C[x, yz, . . ., yér)].
The first dy, (Qg) columns of this matrix are the coefficients of P

while the dy, (P) last coefficients are the coefficients of Q, (which,

in particular, are of total degree 0 in s, .. ., yér)), which yields the
result. m

We now turn to the elimination of hyperexponential functions.

PROPOSITION 18. Let g be a hyperexponential function over C(x)
and let % = &, withu,v € C[x] coprime. Let f be a D-algebraic

.,yér)] be a poly-

nomial which is primitive in y") and separable as an element of
C(x,y1,y2, - ,.,yz(r_l))[ygn)], such that P(x, g, f, .. .,f(r)) =0. We

function over C(x,g) and let P € C[x,y1,y2, yé, ..

suppose that P is not independent of y; so that there is something to

do. Let dy., dyl, dy2 and d denote the degree in x, degree in y1, total de-

gree inyp, yé, o yérﬂ)

there exists Q € C[x,yz, ...
and

(1) dy, (Q) < 2dy, (P)dy,(P)
(2) dx(Q) < dy, (P)(2dx(P) + max(dyx(u), dx(v)))
(3) d(Q) < dy, (P)(2d(P) + max(dx (w), dx(0)))

and total degree functions respectively. Then
S such that Q(x, f, ..., f(7)) = 0

Proor. The polynomial P’ belongs in C[x, y1, 4, Y2, .- -, yz(rH)]

of degree 1in y; and P’'(x,9,9', f.. . fU+Dy = 0. Since ¢’ = g%
we can set
u
P = aP'(x,yl,ylz,yz, . ..,yér“)) € C[x, y1,y2, - ..,yérﬂ)]
and have Pi(x,g, f, .. .,f(r“)) = 0. We set Q = Resy, (P,P1) and
claim that Q # 0. Indeed if that was the case then P and P; would

share an irreducible factor g € C[x,y1, 132, .. .,yér)], and since P

is primitive in y(r), q can not be independent of y(r) . Since P; =

2
(vay(r)P)yéHl) + R(x,y1,Y2, - - .,ygr)) it follows that ¢ must be a
2

common factor of both P and oay(,) P which is impossible since P
2

is separable as an element of C(x,y1,ya, .. .,yér_l))[yz(n)]. Thus

Q #0and
Q. furre ) =0
since (x, g, f, .. .,f(r“)) is a common root to both P and P;.
Once again, the degree bounds come from the fact that Q is
the determinant of a Sylvester matrix of size 2dy, (P). The first
dy, (P1) = dy, (P) columns are composed of the coefficients of P
while the last dy, (P) columns contain the coefficients of ;. m

Any D-algebraic function f over K(x) is a solution of a D-
algebraic equation satisfying the hypothesis of Proposition 18. In-
deed if P is an equation of order r for f then its squarefree part is
also an equation for f. Furthermore the gcd of its coefficients as
a polynomial in y(’ ) is either an equation for f, in which case we
apply the same analysis on it, or we can divide P by it and get a
primitive equation for f. All of those operations provide polyno-
mials of smaller degrees than P. Thus the degree bound given in
Proposition 18 must always be true, even if P does not satisfy the
hypothesis of the proposition. However the resultant formula used
in the proof might give zero in this case.

We have seen how to go from equations over an algebraic func-
tion field, or over the field generated by a hyperexponential function,
to an equation with polynomial coefficients. We end this section
by considering the elimination of the x variable as well. We as-
sume that K = C(x) where C is a field of characteristic 0. If f is a
D-algebraic function over K, we know that f is also D-algebraic
over C. How can one recover a D-algebraic equation over C for f
from an equation over C(x)?

PRropOSITION 19. Let f be a D-algebraic function over K = C(x)
andletP € Clx,y, v/, ...,y")] be a polynomial which is primitive
iny") and separable as an element of C(x,y,y’, ...,y " D) [yM],
such that P(f) = 0. Let dy be the degree of P as a polynomial in the
variable x and d be its total degree as an element of C(x)[y, .. ., y(r) ].



Then f satisfies a D-algebraic equation of order r + 1 and of de-
gree at most 2dyd which is either P’ if P’ is independent from x, or
Resy (P, P’) otherwise.

Proor. If P’ is independent from x then there is nothing to
prove. Otherwise we claim that Resy (P, P’) is not 0. Indeed, if such
was the case then P and P’ would have a common irreducible
factor q(x,y,v/, ..., y(’+1)). But since P is only a polynomial in
Clx,y,..., y(r)] that must also be the case of q. Furthermore, since
P is primitive, q is not independent from y("). Since

P = y(’”)ay(,)P +R(x,y,..., y(")),

for some R € K[x,y,..., y(r)], q is a factor of P and 8y<r)P which

can not be the case since P is supposed separable in y('). Then
(x,f,...,f(”l)) is a root of both P and P’ so f,f’,...,f(”l)
must be a root of Resy (P, P’). The bound comes from the fact that
Resy (P, P’) is the determinant of a square matrix of size 2d, with
coefficients of degree at most d in C[y,v/,...,y"*)]. =
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