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ABSTRACT
We provide bounds on the size of polynomial differential equations

obtained by executing closure properties for D-algebraic functions.

While it is easy to obtain bounds on the order of these equations, it

requires some more work to derive bounds on their degree. Here

we give bounds that apply under some technical condition about

the defining differential equations.
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1 INTRODUCTION
D-finite functions have been a prominent topic in computer algebra

for many years. They are defined as solutions of linear differential

equations with polynomial coefficients. Such functions appear fre-

quently in many applications, and efficient algorithms are available

for answering all sorts of questions about them [17].

But not every function of interest belongs to the class of D-finite

functions. The tangent, the exponential generating function for

Bernoulli numbers, the ordinary generating function for partition

numbers, the Weierstraß-℘ function, Painleve transcendents, and

Jacobi 𝜃 -functions are prominent examples of functions that are

not D-finite.

However, these functions still belong to the class of D-algebraic

functions. For a function 𝑓 to be D-algebraic means that there is

a polynomial 𝑃 such that 𝑃 (𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟 ) ) = 0, i.e., the defining

differential equation for 𝑓 may be nonlinear.
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D-algebraic functions have recently attracted increased interest

in the context of combinatorics. For example, the exponential gen-

erating function for labeled trees was shown to be D-algebraic [5].

Also restricted lattice walks [3], Eulerian orientations [7], colored

planar maps [2], and permutation patterns [10] lead to D-algebraic

functions that are not D-finite.

At the same time, D-algebraic functions are also interesting from

the perspective of computer algebra. A specific D-algebraic function

is uniquely determined by a differential equation which it satisfies

and some finitely many initial terms of its series expansion. Denef

and Lipshitz [14, 15] give an algorithm for checking whether two

D-algebraic functions given in this way are equal. More recent work

in this direction is due to van der Hoeven [25].

Based on the classical theory of differential algebra [18, 21], a

constructive elimination theory has been developed, see, e.g., [6, 8,

9, 20, 22, 23] and the references therein. One consequence of this

theory is that the class of D-algebraic functions is closed under

addition, multiplication, division, and composition, and some other

operations. Manssour et al. [1] recently proposed new algorithms

for executing such closure properties. Given defining differential

equations for two D-algebraic functions 𝑓 and 𝑔, these algorithms

compute defining differential equations for 𝑓 + 𝑔, 𝑓 · 𝑔, 𝑓 /𝑔, 𝑓 ◦ 𝑔,
etc.

It is not difficult to see why the class of D-algebraic functions

is closed under these operations if we assume that the functions

and their derivatives can be identified with elements of a field. If 𝑓

satisfies a polynomial differential equation 𝑃 (𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟 ) ) = 0,

then 𝑓 (𝑟 ) is algebraic over the field generated by 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟−1) ,
so this field has a transcendence degree of (at most) 𝑟 . Note that

this field is closed under differentiation. If 𝑔 is another D-algebraic

function satisfying a differential equation of order 𝑠 , so that the

field generated by 𝑔 and its derivatives has transcendence degree

(at most) 𝑠 , then there is a field of transcendence degree (at most)

𝑟 + 𝑠 containing, say, the sum ℎ = 𝑓 + 𝑔 and all its derivatives.

This implies that ℎ,ℎ′, . . . , ℎ (𝑟+𝑠 ) are algebraically dependent, and

therefore that ℎ satisfies an equation of order at most 𝑟 + 𝑠 .
Besides confirming the closure under addition, this argument

suggests an algorithm for finding differential equations of sums,

products, etc. of given D-algebraic functions, and it provides bounds

for the orders of these equations. All this is not too different from

closure properties for D-finite functions. The main difference is

that nonlinear elimination theory has to be employed in place of

linear algebra.

As far as D-finite functions are concerned, not only bounds on

the orders of the resulting equations are known but we also have

bounds on the degrees of the polynomial coefficients [16, 17]. The

combination of order and degree gives a more realistic idea of how
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big an equation is. The purpose of the present paper is to provide

analogous results for D-algebraic functions.

More precisely, rather than obtaining bounds on the size of the

coefficients, we derive bounds on the total degree of the polynomi-

als 𝑃 . Our bounds apply under the assumption that certain ideals

are sufficiently generic. The bounds are quite large. Although better

bounds are available for more specific situations (see, e.g., [19]), we

believe that for the generic case this is not due to pessimistic over-

estimation but an indication that closure properties for D-algebraic

functions can indeed lead to rather large equations.

This may be an explanation why for some of the D-algebraic

functions that have recently come up in combinatorics, we do not

explicitly know their defining equations even though they could in

principle be obtained from rather simple constituents by applying

closure properties. Perhaps they are simply too big.

For D-finite functions, it has been pointed out that a slight in-

crease in order can allow for a drastically smaller degree. This

observation has led to the concept of order-degree curves [4, 11,

12, 16, 17]. As we shall see, there is a similar phenomenon in the

nonlinear case.

2 DIMENSIONS
Throughout this paper, if 𝑅 is a commutative ring and 𝑃1, . . . , 𝑃𝑛 are

elements of 𝑅 wewill denote by ⟨𝑃1, . . . , 𝑃𝑛⟩ the ideal 𝑃1𝑅+· · ·+𝑃𝑛𝑅
generated by 𝑃1, . . . , 𝑃𝑛 in 𝑅.

We recall some facts about Hilbert series, Hilbert polynomi-

als and dimensions of algebraic varieties that will be used later.

Throughout this section let 𝐾 be a field and 𝑅 = 𝐾 [𝑠, 𝑥1, . . . , 𝑥𝑛].

Definition 1. Let 𝐼 be a homogeneous ideal of 𝑅. For 𝑖 ∈ N, let 𝑅𝑖
be the 𝐾-vector space of all homogeneous polynomials of degree 𝑖

(together with zero), and let 𝐼𝑖 = 𝐼 ∩ 𝑅𝑖 .
(1) The function 𝐻𝐹𝐼 : N→ N, 𝐻𝐹𝐼 (𝑖) = dim𝐾 (𝑅𝑖/𝐼𝑖 ) is called

the Hilbert function of 𝐼 .

(2) The generating series

𝐻𝑆𝐼 (𝑡) :=
∞∑︁
𝑖=0

𝐻𝐹𝐼 (𝑖)𝑡𝑖 ∈ Z[[𝑡]]

is called the Hilbert series of 𝐼 .

Proposition 2. [13, §9.3] For every homogeneous ideal 𝐼 of 𝑅
there exists a polynomial 𝐻𝑃𝐼 ∈ Q[𝑡] such that 𝐻𝑃𝐼 (𝑖) = 𝐻𝐹𝐼 (𝑖) for
all sufficiently large 𝑖 ∈ N.

Definition 3. Let 𝐼 be a homogeneous ideal of 𝑅.

(1) The polynomial 𝐻𝑃𝐼 from Prop. 2 is called the Hilbert poly-
nomial of 𝐼 .

(2) The (Hilbert) dimension of 𝐼 is defined as dim 𝐼 := deg(𝐻𝑃𝐼 ).

Definition 4. We say that a chain of prime ideals𝔭0 ⊊ 𝔭1 ⊊ · · · ⊊
𝔭𝑛 has length 𝑛. If 𝐼 is an ideal of𝐾 [𝑥1, . . . , 𝑥𝑛], the Krull dimension

of 𝐼 , denoted kdim(𝐼 ), is the maximum of the lengths of the chains

of prime ideals containing 𝐼 .

If 𝐼 is an ideal in 𝐾 [𝑥1, . . . , 𝑥𝑛] then its Krull dimension is also

the Hilbert dimension of its homogenization in 𝑅. Conversely, the

Hilbert dimension of a homogeneous ideal is one less than its Krull

dimension. In particular if 𝐼 is a homogeneous prime ideal in 𝑅, then

its Hilbert dimension is one less than the transcendence degree

of Frac (𝑅/𝐼 ) over 𝐾 . If 𝐼 is homogeneous but not prime, then its

Hilbert dimension is the maximum Hilbert dimension of the prime

ideals that contain it.

Proposition 5. Let 𝐼 be a homogeneous ideal of 𝑅 and let 𝑃 ∈ 𝑅
be a homogeneous polynomial of degree 𝑑 . Then

(dim 𝐼 ) − 1 ≤ dim(𝐼 + 𝑃𝑅) ≤ dim 𝐼 .

Furthermore if 𝑃 is not a zero divisor in 𝑅/𝐼 then

𝐻𝑆𝐼+⟨𝑃 ⟩ (𝑡) = (1 − 𝑡𝑑 )𝐻𝑆𝐼 (𝑡).
In particular, dim(𝐼 + ⟨𝑃⟩) = (dim 𝐼 ) − 1.

Proof. A proof that (dim 𝐼 ) − 1 ≤ dim(𝐼 + ⟨𝑃⟩) ≤ dim 𝐼 can be

found in [13, section 9.4 Theorem 3]. For all 𝑖 ∈ N, let 𝑅𝑖 ⊆ 𝑅 and

𝐼𝑖 ⊆ 𝐼 be as defined in Definition 1. Consider the map𝑚𝑖 : 𝑅𝑖/𝐼𝑖 →
𝑅𝑖+𝑑/𝐼𝑖+𝑑 ,𝑚𝑖 (𝑄) = 𝑃𝑄 . If 𝑃 is not a zero divisor in 𝑅/𝐼 , then𝑚𝑖 is
injective, so

dim im𝑚𝑖 = dim(𝑅𝑖/𝐼𝑖 ) = 𝐻𝐹𝐼 (𝑖)
and

dim coker𝑚𝑖 = dim(𝑅𝑖+𝑑/𝐼𝑖+𝑑 )/im𝑚𝑖
= dim𝑅𝑖+𝑑/(𝐼𝑖+𝑑 + 𝑃𝐼𝑖 )
= 𝐻𝐹𝐼+⟨𝑃 ⟩ (𝑖 + 𝑑).

It follows that

𝐻𝐹𝐼 (𝑖 + 𝑑) = dim𝑅𝑖+𝑑/𝐼𝑖+𝑑
= dim im𝑚𝑖 + dim coker𝑚𝑖

= 𝐻𝐹𝐼 (𝑖) + 𝐻𝐹𝐼+⟨𝑃 ⟩ (𝑖 + 𝑑)
for every 𝑖 . This implies the claim about 𝐻𝑆𝐼+⟨𝑃 ⟩ .

For sufficiently large 𝑖 , we have 𝐻𝐹𝐼 (𝑖) = 𝐻𝑃𝐼 (𝑖), thus
𝐻𝑃𝐼+⟨𝑃 ⟩ (𝑖) = 𝐻𝑃𝐼 (𝑖) − 𝐻𝑃𝐼 (𝑖 − 𝑑),

hence 𝐻𝑃𝐼+⟨𝑃 ⟩ is a polynomial of degree exactly dim 𝐼 − 1.

This proposition implies that a homogeneous ideal generated by

𝑟 elements in 𝐾 [𝑠, 𝑥1, . . . , 𝑥𝑛] is of dimension at least 𝑛 − 𝑟 . If we
have an equality, the corresponding projective variety is called a

complete intersection.

Definition 6. Let (𝑃1, . . . , 𝑃𝑘 ) be a tuple of homogeneous poly-

nomials in 𝑅.

(1) (𝑃1, . . . , 𝑃𝑘 ) is called a complete intersection if 𝑃1, . . . , 𝑃𝑘 gen-

erate an ideal of (Hilbert) dimension 𝑛 − 𝑘 .
(2) (𝑃1, . . . , 𝑃𝑘 ) is called a regular sequence if 𝑃𝑖+1 is not a zero

divisor in 𝑅/⟨𝑃1, . . . , 𝑃𝑖 ⟩ for any 1 ≤ 𝑖 < 𝑘 .

It should be noted that according to this definition, if (𝑃1, . . . , 𝑃𝑘 )
is a complete intersection, then the projective variety corresponding

to the ideal ⟨𝑃1, . . . , 𝑃𝑘 ⟩ is a complete intersection. However, the

converse is not true: the ideal ⟨𝑃1, . . . , 𝑃𝑘 ⟩ might be of dimension

strictly greater than 𝑛 − 𝑘 and nevertheless admit a smaller basis.

Proposition 7. Let (𝑃1, . . . , 𝑃𝑘 ) be a regular sequence of homoge-
neous polynomials in 𝑅, and let 𝑑1, . . . , 𝑑𝑘 be their respective degrees.
Then

𝐻𝑆⟨𝑃1,...,𝑃𝑟 ⟩ (𝑡) =
(1 − 𝑡𝑑1 ) · · · (1 − 𝑡𝑑𝑘 )

(1 − 𝑡)𝑛
and dim⟨𝑃1, . . . , 𝑃𝑘 ⟩ = 𝑛 − 𝑘 .



Proof. The proof is by induction on 𝑘 . If 𝑘 = 0 then 𝐻𝐹𝑅 (𝑖) is
the number of monomials of degree 𝑖 which is

(𝑛+𝑖
𝑛

)
. Thus𝐻𝑆𝑅 (𝑡) =

(1 − 𝑡)−𝑛 . For the induction step, apply Proposition 5.

Thus we can precisely know the Hilbert function of an ideal

generated by a regular sequence, which will be useful in the later

sections. It is obvious that regular sequences are complete inter-

sections. The following proposition shows that this is in fact an

equivalence.

Proposition 8. For a tuple (𝑃1, . . . , 𝑃𝑘 ) of homogeneous polyno-
mials in 𝑅, the following properties are equivalent:

(1) (𝑃1, . . . , 𝑃𝑘 ) is a complete intersection
(2) (𝑃1, . . . , 𝑃𝑖 ) is a complete intersection for every 𝑖 = 1, . . . , 𝑘 .
(3) For every 𝑖 ∈ {1, . . . , 𝑘}, any minimal prime ideal containing

⟨𝑃1, . . . , 𝑃𝑖 ⟩ is of dimension 𝑛 − 𝑖 .
(4) (𝑃1, . . . , 𝑃𝑘 ) is a regular sequence.

Proof. Proposition 7 shows that (4) ⇒ (1).
We show (1) ⇒ (2) by descending induction on 𝑖 . If the tuple

(𝑃1, . . . , 𝑃𝑖+1) is a complete intersection then dim⟨𝑃1, . . . , 𝑃𝑖+1⟩ =
𝑛 − 𝑖 − 1.

dim⟨𝑃1, . . . , 𝑃𝑖+1⟩ ≥ dim⟨𝑃1, . . . , 𝑃𝑖 ⟩ − 1.

Thus dim⟨𝑃1, . . . , 𝑃𝑖 ⟩ ≤ 𝑛 − 𝑖 and since the ideal is generated by

only 𝑖 elements this is an equality.

We now show that (2) ⇒ (3) by induction on 𝑖 . For 𝑖 = 0 this

is obvious. Suppose that every minimal prime ideal containing

⟨𝑃1, . . . , 𝑃𝑖 ⟩ is of dimension 𝑛 − 𝑖 . Let 𝔭 be a minimal prime ideal

containing ⟨𝑃1, . . . , 𝑃𝑖+1⟩. Then dim𝔭 ≤ dim⟨𝑃1, . . . , 𝑃𝑖+1⟩ = 𝑛−𝑖−1.
By induction hypothesis this means that 𝔭 is not a minimal ideal

containing ⟨𝑃1, . . . , 𝑃𝑖 ⟩ so there exists 𝔮 such that ⟨𝑃1, . . . , 𝑃𝑖 ⟩ ⊂ 𝔮 ⊂
𝔭. Thus 𝔭 is a minimal prime ideal containing 𝔮 + 𝑃𝑖+1𝑅. We know

from [24, Theorem 1.23] that this implies that dim𝔭 ≥ dim𝔮 − 1 =

𝑛 − 𝑖 − 1.

Let us now suppose that (3) is true and show that (𝑃1, . . . , 𝑃𝑟 ) is
a regular sequence. Suppose that we have shown that (𝑃1, . . . , 𝑃𝑖 )
is a regular sequence and show that 𝑃𝑖+1 is not a zero divisor in

𝑅/⟨𝑃1, . . . , 𝑃𝑖 ⟩. But 𝑃𝑖+1 can only be such a zero divisor if 𝑃𝑖+1 be-
longs to some minimal prime ideal 𝔭 containing ⟨𝑃1, . . . , 𝑃𝑖 ⟩. But
then dim⟨𝑃1, . . . , 𝑃𝑖+1⟩ ≥ dim𝔭 = 𝑛 − 𝑖 by (3). This cannot be the
case as dim⟨𝑃1, . . . , 𝑃𝑖+1⟩ = 𝑛 − 𝑖 − 1.

3 SETTING
Let 𝐾 be a differential field. This means that the field 𝐾 is equipped

with a map 𝐷 : 𝐾 → 𝐾 satisfying 𝐷 (𝑎 + 𝑏) = 𝐷 (𝑎) + 𝐷 (𝑏) and
𝐷 (𝑎𝑏) = 𝐷 (𝑎)𝑏 + 𝑎𝐷 (𝑏) for all 𝑎, 𝑏 ∈ 𝐾 . Such a map is called a

derivation on 𝐾 . We will also use the notations 𝑎′, 𝑎′′, 𝑎′′′, and 𝑎 (𝑘 )

instead of 𝐷 (𝑎), 𝐷2 (𝑎), 𝐷3 (𝑎), and 𝐷𝑘 (𝑎), respectively. An element

𝑐 of 𝐾 is called a constant if 𝑐′ = 0. We denote by 𝐶 ⊆ 𝐾 the subset

of all constants of 𝐾 . This set is actually a subfield of 𝐾 .

Typical choices for our considerations are 𝐾 = Q(𝑥) with 𝑥 ′ = 1

or 𝐾 = Q. In both cases, we have 𝐶 = Q.
We shall consider functions 𝑓1, . . . , 𝑓𝑛 that belong to a certain

field 𝐹 that is closed under differentiation and contains (an iso-

morphic copy of) 𝐾 . It does not matter where the functions are

defined, but it does matter that we can view them as elements of a

differential field.

For every 𝑟1, . . . , 𝑟𝑛 ∈ N, consider the polynomial ring 𝑅𝑟1,...,𝑟𝑛
whose coefficient field is 𝐾 and which has 𝑟1 + · · · + 𝑟𝑛 +𝑛 variables

that we denote by

𝑦1, 𝑦
′
1
, . . . . . . . . . , 𝑦

(𝑟1 )
1

,

𝑦2, 𝑦
′
2
, . . . . . . . . . . , 𝑦

(𝑟2 )
2

,

.

.

.

𝑦𝑛, 𝑦
′
𝑛, . . . . . . . , 𝑦

(𝑟𝑛 )
𝑛 .

The naming of the variables is chosen such as to suggest a way to

differentiate polynomials: The derivative of an element of 𝑅𝑟1,...,𝑟𝑛
is defined as the element of 𝑅𝑟1+1,...,𝑟𝑛+1 obtained by differentiating

according to the usual rules for differentiation, the derivation of 𝐾 ,

and the rules (𝑦 ( 𝑗 )
𝑖

)′ = 𝑦 ( 𝑗+1)
𝑖

.

We have 𝑅𝑟1,...,𝑟𝑛 ⊆ 𝑅𝑟 ′
1
,...,𝑟 ′𝑛 whenever 𝑟𝑖 ≤ 𝑟 ′𝑖 for all 𝑖 . The order

of an element 𝑃 of 𝑅𝑟1,...,𝑟𝑛 with respect to 𝑦𝑖 is the smallest 𝑘 such

that 𝑃 does not contain any of the variables 𝑦
(𝑙 )
𝑖

for 𝑙 > 𝑘 . It is

denoted by ord𝑖 (𝑃). Note that if 𝑃 is independent from 𝑦𝑖 and its

derivative we find ord𝑖 (𝑃) = 0. This specific point may be open to

debate, but will not matter in the rest of this paper. The order of

𝑃 is the smallest 𝑘 such that 𝑃 is contained in 𝑅𝑘,𝑘,...,𝑘 . Note that

ord(𝑃) = max
𝑛
𝑖=1

ord𝑖 (𝑃).
Recall that 𝐹 is a differential field extension of 𝐾 which contains

the 𝑓𝑖 . There exists a unique ring homomorphism 𝜙 : 𝑅𝑟1,...,𝑟𝑛 →
𝐹 which maps 𝑦𝑖 to 𝑓𝑖 and 𝐾 to itself such that 𝜙 (𝑃 ′) = 𝜙 (𝑃)′
for every 𝑃 ∈ 𝑅𝑟1−1,...,𝑟𝑛−1. Its kernel is the ideal of all algebraic
relations among 𝑓1, . . . , 𝑓𝑛 and their derivatives up to respective

orders 𝑟1, . . . , 𝑟𝑛 . If there is just one function (𝑛 = 1), then for this

function to be D-algebraic means that the kernel is nonzero for

sufficiently large 𝑟1. Its elements amount to differential equations

satisfied by the function.

If there are several functions, we assume that for some 𝑟1, . . . , 𝑟𝑛
we know (generators of) an ideal 𝐼 of 𝑅𝑟1,...,𝑟𝑛 that is contained

in ker𝜙 . Typically we will not know if 𝐼 = ker𝜙 , but we shall

assume that 𝐼 is sufficiently large to guarantee that the functions

under consideration all are D-algebraic. This is the essence of part 2

of the following definition.

Definition 9. (1) If 𝐼 is an ideal of 𝑅𝑟1,...,𝑟𝑛 , then we write 𝐼 ′

for the ideal of 𝑅𝑟1+1,...,𝑟𝑛+1 generated by the elements of 𝐼

and their first derivatives.

(2) An ideal 𝐼 of 𝑅𝑟1,...,𝑟𝑛 is called D-algebraic with respect to 𝑦𝑙
if there exists an𝑚 ∈ N such that

𝐼 (𝑚) ∩ 𝐾 [𝑦𝑙 , 𝑦′𝑙 , . . . , 𝑦
(𝑟𝑙+𝑚)
𝑙

] ≠ {0}.

(3) An ideal 𝐼 of 𝑅𝑟1,...,𝑟𝑛 is called D-algebraic if it is D-algebraic
with respect to all variables.

If an ideal 𝐼 is D-algebraic with respect to𝑦𝑙 , then the elements of

the elimination ideal 𝐼 (𝑚) ∩𝐾 [𝑦𝑙 , 𝑦′𝑙 , . . . , 𝑦
(𝑟𝑙+𝑚)
𝑙

] amount to differ-

ential equations satisfied by 𝑓𝑙 . In particular, an ideal is D-algebraic

if and only if all coordinates of all solutions (in all sufficiently large

differential field extensions of 𝐾 ) are D-algebraic.

For 𝑟1 = · · · = 𝑟𝑛 = ∞, we recover classical notions from the

theory of differential algebra. In this case, 𝑅𝑟1,...,𝑟𝑛 is the differential

ring of differential polynomials, 𝜙 is a differential homomorphism,



an ideal 𝐼 of 𝑅𝑟1,...,𝑟𝑛 that is closed under differentiation is a differen-

tial ideal, and an ideal is D-algebraic (with respect to all variables)

if and only if its differential dimension is zero. However, we will

mostly need to operate with the finite 𝑟1, . . . , 𝑟𝑛 .

We will sometimes prefer to work with homogeneous polynomi-

als. We then use 𝑠 as homogenization variable and write 𝑅ℎ𝑟1,...,𝑟𝑛

for the polynomial ring over 𝐾 whose variables are 𝑠 and 𝑦
( 𝑗 )
𝑖

for

𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , 𝑟𝑖 . For a polynomial 𝑃 ∈ 𝑅𝑟1,...,𝑟𝑛 , we

write ℎ(𝑃) ∈ 𝑅ℎ𝑟1,...,𝑟𝑛 for its homogenization with 𝑠 as homogeniza-

tion variable, and for an ideal 𝐼 of 𝑅𝑟1,...,𝑟𝑛 we write ℎ(𝐼 ) for the
ideal of 𝑅ℎ𝑟1,...,𝑟𝑛 generated by all ℎ(𝑃) with 𝑃 ∈ 𝐼 . Note that we

have ℎ(𝐼 ′) = ℎ(𝐼 )′, i.e., the homogenization variable behaves like a

constant.

Definition 10. Let 𝑃1, . . . , 𝑃𝑛 ∈ 𝑅𝑟1,...,𝑟𝑛 and let 𝑟 =
∑𝑛
𝑖=1 𝑟𝑖 .

(1) Let 𝜌 ≥ 0. The tuple (𝑃1, . . . , 𝑃𝑛) is called D-regular at order
𝜌 if the tuple (ℎ(𝑃 𝑗 ) (𝑘 ) )1≤ 𝑗≤𝑛,0≤𝑘≤𝜌 is a complete intersec-

tion.

(2) The tuple (𝑃1, . . . , 𝑃𝑛) is called D-regular with respect to 𝑦𝑙
if it is D-regular at order 𝑟 − 𝑟𝑙 .

4 DEGREE BOUNDS IN COMPLETE
INTERSECTIONS

We consider a tuple (𝑃1, . . . , 𝑃𝑛) of elements of 𝑅𝑟1,...,𝑟𝑛 , where the

𝑟𝑖 are chosen as small as possible, and let 𝐼 = ⟨𝑃1, . . . , 𝑃𝑛⟩ be the
ideal they generate. We assume that this ideal is D-algebraic in the

sense of Def. 9.

Note that 𝐼 might not be D-algebraic even if (ℎ(𝑃1), . . . , ℎ(𝑃𝑛))
is a complete intersection. For example, for

𝑃1 = 𝑦
′′
1
− 2𝑦1𝑦

′
1
,

𝑃2 = (𝑦′
1
− 𝑦2

1
)𝑦′2

2
− 𝑦′′

1
(𝑦′

1
− 𝑦2

1
)𝑦2

we have that (ℎ(𝑃1), ℎ(𝑃2)) is a complete intersection, but one can

check that for any 𝑐 ∈ 𝐶 , (𝑐 − 𝑥)−1 is a solution of 𝑃1, but also of

𝑦′
1
− 𝑦2

1
. Therefore, 𝑃2 ((𝑐 − 𝑥)−1, 𝑦2) = 0 regardless of 𝑦2.

The goal of this section is to determine bounds on the degree of

a nonzero element in 𝐼 (𝑚) ∩𝐾 [𝑦𝑖 , 𝑦′𝑖 , . . . ]. Note that it is in general

not obvious for which𝑚 this is true, even if bounds on the order of

the solutions are known.

Example 11. Consider the system defined by 𝑃1 = 𝑦1𝑦′′
1
−𝑦′2

1
and

𝑃2 = (𝑦2 − 𝑦1)2 + (𝑦′
2
− 𝑦′

1
)4. If (𝑓1, 𝑓2) is a solution of (𝑃1, 𝑃2) then

𝑓2 is actually the sum of two D-algebraic function, 𝑓1 and 𝑓 , where 𝑓
is a solution of 𝑦2 +𝑦′4 = 0. This is how the example was presented in
[1, Example 4.2]. Thus 𝑓2 lies in a differential field extension of Q of
transcendence degree 3 and is thus solution of a D-algebraic equation
of order 3. However, the ideal ⟨𝑃1, 𝑃2⟩ (2) does not have a non trivial
intersection with Q[𝑦2, 𝑦′

2
, . . . ], as was stated in [1].

A closer look at the solutions of the differential equations reveals
that they can, in this example, be written in closed form. The solutions
of 𝑦2 + 𝑦′4 are 0 and polynomials of the form

1

4

(−1)𝑘𝑖𝑥2 + 𝑎𝑥 + (−1)𝑘+1𝑖𝑎2

with 𝑘 ∈ {0, 1}, 𝑎 ∈ 𝐶 and 𝑖2 = −1. All of those solutions satisfy the
equation (−1)𝑘𝑖𝑦′2 +𝑦 = 0 of order 1 and of degree 2 rather than only
an equation of degree 4. Likewise, the solutions of 𝑃1 are exponential

functions of the form 𝜆 exp(𝑐𝑥) (𝜆, 𝑐 ∈ 𝐶) and satisfy an equation of
order and degree 1.

If we were to fix 𝑘 and 𝑐 and take 𝑄1 = 𝑦′
1
− 𝑐𝑦1 and 𝑄2 =

(−1)𝑘𝑖 (𝑦′
2
− 𝑦′

1
)2 + (𝑦2 − 𝑦1) instead of 𝑃1 and 𝑃2 and 𝐽 = ⟨𝑄1, 𝑄2⟩

instead of 𝐼 , we find that 𝐽 ′ ∩ C[𝑦2, 𝑦′
2
, 𝑦′′

2
] ≠ {0}.

Theorem 12. Let 𝑃1, . . . , 𝑃𝑛 ∈ 𝑅𝑟1,...,𝑟𝑛 and let 𝑙 ∈ {1, . . . , 𝑛}.
Suppose that 𝑟𝑖 = max

𝑛
𝑗=1

ord𝑖 (𝑃 𝑗 ) for all 𝑖 ∈ {1, . . . , 𝑛}. In addition,
we assume that for each 𝑖 , at least one the 𝑃 𝑗 is not independent from
𝑦𝑖 or its derivatives. Let 𝑑 :=

∏𝑛
𝑗=1 deg 𝑃 𝑗 .

Let 𝑟min =
∑𝑛
𝑖=1 𝑟𝑖 , 𝑟 ≥ 𝑟min (𝑃1, . . . , 𝑃𝑛) is D-regular at order

𝑟 − 𝑟𝑙 . Then the elimination ideal

⟨𝑃1, . . . , 𝑃𝑛⟩ (𝑟−𝑟𝑙 ) ∩ 𝐾 [𝑦𝑙 , 𝑦′𝑙 , . . . ]
contains a nonzero element of order 𝑟 and degree 𝑘 as soon as 𝑘 >

(𝑟 + 1) (𝑑1+(𝑟min−𝑟𝑙 )/(𝑟−𝑟min+1) − 1).

Proof. First note that for any non constant polynomial 𝑃 ∈
𝑅𝑟1,...,𝑟𝑛 we have deg(𝑃 ′) = deg(𝑃). For each 𝑖 ∈ {1, . . . , 𝑛} we set
𝑑𝑖 = deg 𝑃𝑖 . Let 𝐼 := ℎ(⟨𝑃1, . . . , 𝑃𝑛⟩) ⊂ 𝑅ℎ𝑟1,...,𝑟𝑛 .

We know from Proposition 7 that

𝐻𝑆
𝐼 (𝑟−𝑟𝑙 ) (𝑡) =

∏𝑛
𝑖=1 (1 − 𝑡𝑑𝑖 )𝑟−𝑟𝑙+1

(1 − 𝑡)𝑟min+𝑛 (𝑟−𝑟𝑙+1)

= (1 − 𝑡)−𝑟min

𝑛∏
𝑖=1

(1 + 𝑡 + · · · + 𝑡𝑑𝑖−1)𝑟−𝑟𝑙+1 .

We claim for any sequence of stricly positive integers (𝑢𝑛)𝑛∈N∗ ∈
(N∗)N∗

, if we write

(1 − 𝑡)−𝑟min

𝑛∏
𝑖=1

(1 + 𝑡 + · · · + 𝑡𝑢𝑖−1) =
∞∑︁
𝑘=0

𝑎𝑛,𝑘𝑡
𝑘

then 𝑎𝑛,𝑘 ≤
(𝑟min+𝑘

𝑘

) ∏𝑛
𝑖=1 𝑢𝑖 . This is obviously true for 𝑛 = 0. Then

if the result is true for 𝑛 then

(1−𝑡)−𝑟min

𝑛+1∏
𝑖=1

(1+𝑡 + · · · +𝑡𝑢𝑖−1) = (1+𝑡 + · · · +𝑡𝑢𝑛+1−1)
∞∑︁
𝑘=0

𝑎𝑛,𝑘𝑡
𝑘

Thus

𝑎𝑘,𝑛+1 =
𝑢𝑛+1−1∑︁
𝑗=0

𝑎𝑘− 𝑗,𝑛

≤ ©­«
𝑛∏
𝑗=0

𝑢 𝑗
ª®¬
𝑢𝑛+1−1∑︁
𝑖=0

(
𝑟min + 𝑘 − 𝑗

𝑘 − 𝑗

)
≤ 𝑢𝑛+1 ©­«

𝑛∏
𝑗=0

𝑢 𝑗
ª®¬
(
𝑟min + 𝑘

𝑘

)
which proves the statement by induction on 𝑛. It follows that

𝐻𝐹
𝐼 (𝑟−𝑟𝑙 ) (𝑘) ≤ 𝑑

𝑟−𝑟𝑙+1
(
𝑟min + 𝑘

𝑘

)
.

The space 𝑉𝑘 ⊆ 𝐾 [𝑠,𝑦𝑙 , . . . , 𝑦
(𝑟 )
𝑙

] of homogeneous polynomials of

degree 𝑘 has dimension

(𝑟+1+𝑘
𝑘

)
over 𝐾 . By the definition of the

Hilbert polynomial, its image in

𝑅ℎ𝑟+𝑟1,...,𝑟+𝑟𝑛/𝐼
(𝑟−𝑟𝑙 )



under the natural morphism is a vector space of dimension at most

𝑑𝑟−𝑟𝑙+1
(𝑟min+𝑘

𝑘

)
.

If 𝑘 > (1 + 𝑟 ) (𝑑1+(𝑟min−𝑟𝑙 )/(𝑟−𝑟min+1) − 1) then we have

1+𝑟−𝑟min∏
𝑖=1

𝑟min + 𝑖 + 𝑘
𝑟min + 𝑖

>

(
1 + 𝑘

𝑟 + 1

)
1+𝑟−𝑟min

≥ 𝑑𝑟−𝑟𝑙+1

and so

(𝑟+1+𝑘
𝑟+1

)
> 𝐻𝑃

𝐼 (𝑟−𝑟𝑙 ) (𝑘). This means that𝑉𝑘 contains nonzero

polynomials that are mapped to zero. By setting 𝑠 = 1, any such

element translates into a nonzero element of

⟨𝑃1, . . . , 𝑃𝑛⟩ (𝑟−𝑟𝑙 ) ∩ 𝐾 [𝑦𝑙 , 𝑦′𝑙 , . . . ]

of the announced order and degree.

In view of the exponential size of the bound of Theorem 12, we

were not able to check experimentally how tight it is. The required

computations were too large. However, to at least get some idea,

we carried out some experiments for a similar, though different

problem. Given 𝑛 + 1 polynomials 𝑃0, . . . , 𝑃𝑛 in 𝐾 [𝑥1, . . . , 𝑥𝑛] of
degree 𝑑 , it is clear that they must be algebraically dependent.

What is the typical degree of their algebraic relation? A calculation

similar to the proof of Theorem 12 shows that there is an algebraic

relation of total degree𝑘 as soon as
(𝑛+1+𝑘
𝑛+1

)
>

(𝑛+𝑘𝑑
𝑛

)
. This is true for

𝑘 ≥ (𝑛+1) (𝑑𝑛−1). However, experiments suggest that an algebraic

relation already exists for 𝑘 ≥ 𝑑𝑛 . We do not know the reason for

this discrepancy, but it suggests that bound of Theorem 12 perhaps

also overshoots by a factor of 𝑟 + 1.

The hypothesis that the family (𝑃1, . . . , 𝑃𝑛) is D-regular (for any
variable) is not trivial in general, even if the ideal ⟨𝑃1, . . . , 𝑃𝑛⟩ is
D-algebraic (with respect to any variable), as shown in Example 11.

Outside of the differential context, a generic family of polynomials

is a complete intersection, similarly to generic intersections of

hyperplanes. The family of polynomials considered here however

is not random as it is composed of the successive derivative of given

differential polynomials. Nevertheless, experiments conducted on

random operators of small orders and degrees seem to indicate that

this hypothesis is often satisfied.

Theorem 12 also shows that, in the case of complete intersection,

going to a higher derivative order may provide equations of smaller

degrees. This phenomenon is well-known in the case of linear

differential operators [11] and here finds its nonlinear counterpart.

Two things should be noted however. The first is that unlike in

the linear case, the “order-degree curve” that we obtain here is

increasing for big enough 𝑟 . This is an artifact of the approximations

used during the proof of the theorem. The second is that, unlike

for linear differential operators, the size of a polynomial does not

linearly depend on its order and its degree. It would therefore be

more relevant to compare how the total number of monomials

depends on the order. We have conducted tests for a few values of

𝑑 , 𝑟𝑙 and 𝑟𝑚𝑖𝑛 , whose results are presented in Figure 1. The graphs

in Figure 1 show the evolution along 𝑟 − 𝑟min of the number of

monomials of degree 𝑘 in𝐾 [𝑠,𝑦𝑙 , 𝑦′𝑙 , . . . , 𝑦
𝑟+𝑟𝑙
𝑙

] for the smallest 𝑘 for

which this number is strictly bigger than 𝑑𝑟−𝑟𝑙+1
(𝑟min+𝑘

𝑘

)
, at which

point we can ensure the existence of a nontrivial element in the

intersection ideal. Those tests suggest that the number of possible

monomials drops significantly for the first few values of 𝑟 > 𝑟min. It

should be noted that the number of monomials presented here only
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Figure 1: order-number of monomials curves

results from comparing the number of equations and the number of

variables in the linear system considered in the proof of Theorem 12.

It was not obtained by actually solving these linear systems, for

they are too big to handle, so these curves may overshoot.

5 COROLLARIES ON DEGREE BOUNDS FOR
ALGEBRAIC OPERATIONS

Proposition 13. Let 𝑓1, . . . , 𝑓𝑛 be D-algebraic functions, as well
as 𝑃1, . . . , 𝑃𝑛 ∈ 𝑅𝑟1,...,𝑟𝑛 such that 𝑃𝑖 ∈ 𝐾 [𝑦𝑖 , 𝑦′𝑖 , . . . , 𝑦

(𝑟𝑖 )
𝑖

] for all
𝑖 ∈ {1, . . . , 𝑛} and 𝑄 ∈ 𝑅𝑟1,...,𝑟𝑛 . We note 𝑟min :=

∑𝑛
𝑖=1 𝑟𝑖 and 𝑑 :=∏𝑛

𝑖=1 deg(𝑃𝑖 ). Let 𝑟 ≥ 𝑟min and assume that

• 𝑃𝑖 (𝑓𝑖 ) = 0 for all 𝑖 ∈ {1, . . . , 𝑛}.
• 𝑃𝑖 is D-regular at order 𝑟 for all 𝑖 ∈ {1, . . . , 𝑛}.

Then 𝑄 (𝑓1, . . . , 𝑓𝑛) is solution of a D-algebraic equation of order 𝑟
and of degree 𝑘 or less, as soon as

𝑘 > (𝑟 + 1) ((deg(𝑄)𝑑)1+𝑟min/(𝑟−𝑟min+1) − 1) .

Proof. It is enough to show that the family (𝑃1, . . . , 𝑃𝑛, 𝑧 −
𝑄 (𝑦1, . . . , 𝑦𝑛)) ∈ 𝑅𝑟1,...,𝑟𝑛 [𝑧] is D-regular at order 𝑟 .

Let 𝐼 := ⟨𝑃1, . . . , 𝑃𝑛, 𝑧 − 𝑄 (𝑦1, . . . , 𝑦𝑛)⟩ ⊂ 𝑅𝑟1,...,𝑟𝑛 [𝑧] and 𝐼1 :=

⟨𝑃1, . . . , 𝑃𝑛⟩ ⊂ 𝑅𝑟1,...,𝑟𝑛 . We know that dimℎ(𝐼 ) (𝑟 ) = kdim(𝐼 (𝑟 ) ).
There is a natural morphism

𝑅𝑟1+𝑟,...,𝑟𝑛+𝑟 /𝐼
(𝑟 )
1

→ 𝑅𝑟1+𝑟,...,𝑟𝑛+𝑟 [𝑧, 𝑧′, . . . , 𝑧 (𝑟 ) ]/𝐼 (𝑟 ) .

This morphism is surjective. Indeed,

(𝑧 −𝑄 (𝑦1, . . . , 𝑦𝑛)) (𝑘 ) = 𝑧 (𝑘 ) −𝑄 (𝑦1, . . . , 𝑦𝑛) (𝑘 )

for all 𝑘 ≤ 𝑟 . By successive euclidean divisions, it follows that any

element of 𝑅𝑟1+𝑟,...,𝑟𝑛+𝑟 [𝑧, 𝑧′, . . . , 𝑧 (𝑟 ) ]/𝐼 (𝑟 ) can be represented by

an element of 𝑅𝑟1+𝑟,...,𝑟𝑛+𝑟 . It follows that

kdim(𝐼 (𝑟 ) ) ≤ kdim(𝐼 (𝑟 )
1

).

But we also have

𝑅𝑟1,...,𝑟𝑛/𝐼1 ≃ 𝐾 [𝑦1, . . . , 𝑦 (𝑟1+𝑟 )
1

]/⟨𝑃1⟩ (𝑟 )

⊗𝐾 𝐾 [𝑦2, . . . , 𝑦 (𝑟2+𝑟 )
2

]/⟨𝑃2⟩ (𝑟 )

.

.

.

⊗𝐾 𝐾 [𝑦𝑛, . . . , 𝑦 (𝑟𝑛+𝑟 )𝑛 ]/⟨𝑃𝑛⟩ (𝑟 ) .



Thus we have

kdim(𝐼1) =
𝑛∑︁
𝑖=1

kdim(⟨𝑃 (𝑟 )
𝑖

⟩) =
𝑛∑︁
𝑖=1

dimℎ(⟨𝑃𝑖 ⟩) (𝑟 ) =
𝑛∑︁
𝑖=1

𝑟𝑖 = 𝑟min .

Thus dimℎ(𝐼 ) (𝑟 ) ≤ 𝑟min and since it cannot be lower than this, the

family (𝑃1, . . . , 𝑃𝑛, 𝑧 − 𝑄 (𝑦1, . . . , 𝑦𝑛)) is D-regular at order 𝑟 . We

can now apply Theorem 12.

Proposition 13 covers in particular the case of the addition and

multiplication of D-algebraic functions. The incorporation of divi-

sions requires stronger hypothesis.

Proposition 14. Let 𝑓1, . . . , 𝑓𝑛 be D-algebraic functions, as well
as 𝑃1, . . . , 𝑃𝑛 ∈ 𝑅𝑟1,...,𝑟𝑛 such that 𝑃𝑖 ∈ 𝐾 [𝑦𝑖 , 𝑦′𝑖 , . . . , 𝑦

(𝑟𝑖 )
𝑖

] for all
𝑖 ∈ {1, . . . , 𝑛} and 𝑄𝑛, 𝑄𝑑 ∈ 𝑅𝑟1,...,𝑟𝑛 . We note 𝑟min :=

∑𝑛
𝑖=1 𝑟𝑖 and

𝑑 :=
∏𝑛
𝑖=1 deg(𝑃𝑖 ). Let 𝑟 ≥ 𝑟min and assume that

• 𝑃𝑖 (𝑓𝑖 ) = 0 for all 𝑖 ∈ {1, . . . , 𝑛}.
• The family (𝑃1, . . . , 𝑃𝑛, 𝑄𝑑𝑧 −𝑄𝑛) is D-regular at order 𝑟 .

Then𝑄𝑛 (𝑓1, . . . , 𝑓𝑛)/𝑄𝑑 (𝑓1, . . . , 𝑓𝑛) is solution of a D-algebraic equa-
tion of order 𝑟 and of degree 𝑘 or less as soon as

𝑘 > (𝑟 + 1) ((max(deg(𝑄𝑛), deg(𝑄𝑑 ))𝑑)1+𝑟min/(𝑟−𝑟min+1) − 1) .

Proof. This is a direct consequence of Theorem 12

6 BOUNDS FOR THE COMPOSITION OF
D-ALGEBRAIC FUNCTIONS

When D-algebraic functions are indeed functions (for example

meromorphic functions), rather than abstract elements of a dif-

ferential field, one might be tempted to consider the composition

operation. Another setting in which the composition operation is

sometimes well defined is that of power series.

It is known [1] that in both cases, the composition of two D-

algebraic functions is itself D-algebraic when this composition is

well defined. However, it is not completely clear how to define the

composition of two elements of an abstract differential field. From

an algebraic standpoint we want the composition on the right by a

given function to preserve algebraic relations. This means that if

𝑓1,0, . . . 𝑓1,𝑛, 𝑓2 are “functions” such that the compositions 𝑓1,𝑖 ◦ 𝑓2 are
well defined for all 𝑖 , for any algebraic relations 𝑃 (𝑓1,0, . . . , 𝑓1,𝑛) = 0

we must have 𝑃 (𝑓1,0 ◦ 𝑓2, . . . , 𝑓1,𝑛 ◦ 𝑓2) = 0. Another way of saying

this is that there would be a ring homomorphism

𝐾 [𝑓1,0, . . . , 𝑓1,𝑛] → 𝐾 [𝑓1,0 ◦ 𝑓2, . . . , 𝑓1,𝑛 ◦ 𝑓2] .
If we want to define the composition of a function 𝑓1 with 𝑓2,

this must in particular apply to the successive derivatives of 𝑓1,

𝑓1,𝑖 = 𝑓
(𝑖 )
1

for all 𝑖 ∈ N. From a differential standpoint we want

the composition to satisfy the usual derivation rule (𝑓 (𝑖 )
1

◦ 𝑓2)′ =
𝑓 ′
2
·
(
𝑓
(𝑖+1)
1

◦ 𝑓2
)
. Following these ideas we propose the following

definition.

Definition 15. Let 𝐹 be a differential field extension of 𝐾 , 𝑓1, 𝑓2 ∈
𝐹 . An element ℎ in some differential field extension 𝐸 of 𝐹 is called

a composition of 𝑓1 with 𝑓2 if there exists a family (ℎ𝑖 )𝑖∈N ∈ 𝐸N
satisfying

• ℎ0 = ℎ
• ℎ′

𝑖
= 𝑓 ′

2
ℎ𝑖+1 for all 𝑖 ∈ N.

• There exists a (algebraic) homomorphism 𝐾 [𝑓1, 𝑓 ′
1
. . . ] → 𝐸

which maps 𝑓
(𝑖 )
1

to ℎ𝑖 for all 𝑖 ∈ N.

The ℎ𝑖 represent the functions 𝑓
(𝑖 )
1

◦ 𝑓2. It should be noted that

according to this definition, if ℎ0 is a composition of 𝑓1 with 𝑓2,

then ℎ𝑖 is also a composition of 𝑓
(𝑖 )
1

with 𝑓2 according to the same

definition.

Proposition 16. Let 𝑓1, 𝑓2 be two D-algebraic functions and 𝑃𝑖 ∈
𝐾 [𝑦𝑖 , 𝑦′𝑖 , . . . , 𝑦

(𝑟𝑖 )
𝑖

] for 𝑖 ∈ {1, 2} such that
• 𝑃𝑖 (𝑓𝑖 ) = 0 for 𝑖 ∈ {1, 2}.
• (𝑃1) (resp. (𝑃2)) is D-regular at order 𝑟2 (resp. (𝑟1)).

We note 𝑑𝑖 = deg(𝑃𝑖 ) for 𝑖 ∈ {1, 2}. Then any composition of 𝑓1 with
𝑓2 is a solution of a D-algebraic equation of order 𝑟1 +𝑟2 and of degree
smaller than 𝑘 as soon as

𝑘 > (𝑟1 + 𝑟2 + 1) ((𝑟1 + 𝑟2 + 1)!𝑑𝑟2
1
𝑑
𝑟1
2
− 1) .

Furthermore, this equation does not depend on the choice of the com-
position.

Proof. Let ℎ ∈ 𝐸 be a composition of 𝑓1 with 𝑓2 and let (ℎ𝑖 )𝑖∈N
be as in Definition 15. We claim that

(ℎ0, ℎ1, . . . , ℎ𝑟1+𝑟2 , 𝑓2, 𝑓 ′2 , . . . , 𝑓
(𝑟1+𝑟2 )
2

, ℎ, ℎ′, . . . , ℎ (𝑟1+𝑟2 ) )
is a solution of

(i) 𝑃
( 𝑗 )
1

(𝑦1, 𝑦′
1
, . . . , 𝑦

(𝑟1+𝑟2 )
1

) for all 𝑗 ≤ 𝑟2
(ii) 𝑃

( 𝑗 )
2

(𝑦2, 𝑦′
2
, . . . , 𝑦

(𝑟1+𝑟2 )
2

) for all 𝑗 ≤ 𝑟1
(iii) 𝑑 𝑗 (𝑧−𝑦1) for all 𝑗 ≤ 𝑟1+𝑟2, with𝑑 being the derivation on the

ring 𝐾 [(𝑦 (𝑖 )
1

)𝑖∈N, (𝑦 (𝑖 )
2

)𝑖∈N, (𝑧 (𝑖 ) )𝑖∈N] given by 𝑑 (𝑦 (𝑙 )
1

) =

𝑦′
2
𝑦
(𝑙+1)
1

, and the usual derivation on 𝑦
(𝑙 )
2

and 𝑧 (𝑙 ) for all 𝑙

all of them seen as polynomials in

𝐾 [𝑦1, . . . , 𝑦 (𝑟1+𝑟2 )
1

,

𝑦2, . . . , 𝑦
(𝑟1+𝑟2 )
2

,

𝑧, . . . , 𝑧 (𝑟1+𝑟2 ) ] .
(𝑖𝑖) is obvious by hypothesis on 𝑃2. All the polynomials in (𝑖) are
vanishing operators for 𝑓1. But since there exists a field morphism

which sends 𝑓
(𝑖 )
1

to ℎ𝑖 , the ℎ𝑖 must be roots of those polynomials

too. Finally we know that ℎ−ℎ0 = 0. Differentiating this expression

gives that ℎ′ − ℎ′
0
= ℎ′ − 𝑓 ′

2
ℎ1 = 0, which is to say that we find a

root of 𝑑 (𝑧 − 𝑦1). By induction we get the result.

It must be noted that 𝑑𝑖 (𝑧 − 𝑦1) is always of the form 𝑧 (𝑖 ) −
𝑄𝑖 (𝑦1, . . . , 𝑦 (𝑟1+𝑟2 )

1
, 𝑦2, . . . , 𝑦

(𝑟1+𝑟2 )
2

) with deg(𝑄𝑖 ) = 𝑖 + 1. Follow-

ing the same line of reasoning as in the proof of Proposition 13,

we show that this family of polynomials, once homogenised, is a

complete intersection. Let 𝐼 be the ideal generated by this family of

polynomials. Then as we did in the proof of Theorem 12, we can

show that 𝐻𝐹ℎ (𝐼 ) (𝑘) ≤ (𝑟1 + 𝑟2 + 1)!𝑑𝑟2
1
𝑑
𝑟1
2

(𝑟1+𝑟2+𝑘
𝑟1+𝑟2

)
. We consider

the natural morphism 𝜑 which maps elements of

𝐾 [𝑠, 𝑧, 𝑧′, . . . , 𝑧 (𝑟1+𝑟2 ) ]
to their equivalence class in 𝑅ℎ𝑟1+𝑟2,𝑟1+𝑟2,𝑟1+𝑟2/𝐼 . The map 𝜑 maps

the space of homogeneous polynomials of degree 𝑘 , which is of

dimension

(𝑟1+𝑟2+1+𝑘
𝑟1+𝑟2+1

)
onto a space of dimension 𝐻𝐹𝐼 (𝑘). We can

check that for 𝑘 ≥ (𝑟1+𝑟2+1) ((𝑟1+𝑟2+1)!𝑑𝑟2
1
𝑑
𝑟1
2
−1) the restriction



of 𝜑 to the space of homogeneous polynomials of degree 𝑘 must

have a non trivial element in its kernel.

Thus 𝐼 ∩ 𝐾 [𝑧, 𝑧′, . . . , 𝑧 (𝑟1+𝑟2 ) ] has a nonzero element of degree

at most 𝑘 which is a vanishing operator for any composition of 𝑓1
with 𝑓2.

7 VARIABLE ELIMINATION IN SPECIAL CASES
In some special cases, it is possible to loosen the hypothesis on

our system of equations so that we don’t need to use complete

intersections hypothesis. Some functions are easy enough to ma-

nipulate and we can ensure the existence of operators satisfying

the complete intersection property. In addition, we can here make

use of resultants instead of the analysis conducted in Theorem 12.

We first consider the case of the elimination of algebraic func-

tions. To be precise we consider an algebraic function 𝑔 over 𝐶 (𝑥),
where𝐶 is the constant field, and a D-algebraic function 𝑓 satisfying

an equation

𝑃 (𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟 ) ) = 0

with coefficients in 𝐶 (𝑥) [𝑔], and we want to recover an equation

in 𝐶 [𝑥] [𝑦,𝑦′, . . . , 𝑦 (𝑟 ) ]. We are interested in both the total degree

of the resulting equation in the variables 𝑦,𝑦′, . . . , 𝑦 (𝑟 ) as well as
its degree in 𝑥 .

Proposition 17. Let 𝑔 be an algebraic function over 𝐶 (𝑥) and let
𝑄𝑔 ∈ 𝐶 [𝑥,𝑦1] be the minimal primitive polynomial of 𝑔 over 𝐶 (𝑥).
Let 𝑓 be a D-algebraic function over 𝐶 (𝑥) [𝑔] and

𝑃 ∈ 𝐶 [𝑥,𝑦1, 𝑦2, 𝑦′2, . . . , 𝑦
(𝑟 )
2

]

be such that 𝑃 (𝑥,𝑔, 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟 ) ) = 0. In addition, we suppose that
𝑄𝑔 ∤ 𝑃 . Then 𝑅 = Res𝑦1 (𝑃,𝑄𝑔) ∈ 𝐶 [𝑥,𝑦2, . . . , 𝑦

(𝑟 )
2

] is a D-algebraic
equation for 𝑓 . Let 𝑑𝑥 , 𝑑𝑦1 , 𝑑𝑦2 and 𝑑 denote the degree in 𝑥 , de-

gree in 𝑦1, total degree in 𝑦2, 𝑦′
2
, . . . , 𝑦

(𝑟 )
2

and total degree functions
respectively. Then

(1) 𝑑𝑦2 (𝑅) ≤ 𝑑𝑦1 (𝑄𝑔)𝑑𝑦2 (𝑃)
(2) 𝑑𝑥 (𝑅) ≤ 𝑑𝑥 (𝑃)𝑑𝑦1 (𝑄𝑔) + 𝑑𝑦1 (𝑃)𝑑𝑥 (𝑄𝑔)
(3) 𝑑 (𝑅) ≤ 𝑑 (𝑃)𝑑𝑦1 (𝑄𝑔) + 𝑑𝑦1 (𝑃)𝑑 (𝑄𝑔)

Proof. Since 𝑄𝑔 ∤ 𝑃 and 𝑄𝑔 is irreducible, 𝑃 and 𝑄𝑔 can have

no common factor, which implies that 𝑄 ≠ 0. Furthermore,

(𝑥, 𝑔, 𝑓 , . . . , 𝑓 (𝑟 ) )
is a root of both 𝑃 and 𝑄𝑔 , which implies that 𝑅(𝑥, 𝑓 , . . . , 𝑓 (𝑟 ) ) = 0.

The degree bounds directly come from the fact that 𝑅 is the deter-

minant of a Sylvester matrix with coefficients in 𝐶 [𝑥,𝑦2, . . . , 𝑦 (𝑟 )
2

].
The first 𝑑𝑦1 (𝑄𝑔) columns of this matrix are the coefficients of 𝑃

while the 𝑑𝑦1 (𝑃) last coefficients are the coefficients of 𝑄𝑔 (which,

in particular, are of total degree 0 in 𝑦2, . . . , 𝑦
(𝑟 )
2

), which yields the

result.

We now turn to the elimination of hyperexponential functions.

Proposition 18. Let 𝑔 be a hyperexponential function over 𝐶 (𝑥)
and let 𝑔

′

𝑔 = 𝑢
𝑣 , with 𝑢, 𝑣 ∈ 𝐶 [𝑥] coprime. Let 𝑓 be a D-algebraic

function over 𝐶 (𝑥,𝑔) and let 𝑃 ∈ 𝐶 [𝑥,𝑦1, 𝑦2, 𝑦′
2
, . . . , 𝑦

(𝑟 )
2

] be a poly-
nomial which is primitive in 𝑦 (𝑟 ) and separable as an element of
𝐶 (𝑥,𝑦1, 𝑦2, . . . , 𝑦 (𝑟−1)

2
) [𝑦 (𝑛)

2
], such that 𝑃 (𝑥, 𝑔, 𝑓 , . . . , 𝑓 (𝑟 ) ) = 0. We

suppose that 𝑃 is not independent of 𝑦1 so that there is something to
do. Let 𝑑𝑥 , 𝑑𝑦1 , 𝑑𝑦2 and 𝑑 denote the degree in 𝑥 , degree in𝑦1, total de-

gree in 𝑦2, 𝑦′
2
, . . . , 𝑦

(𝑟+1)
2

and total degree functions respectively. Then

there exists 𝑄 ∈ 𝐶 [𝑥,𝑦2, . . . , 𝑦 (𝑟+1)
2

] such that 𝑄 (𝑥, 𝑓 , . . . , 𝑓 (𝑟 ) ) = 0

and

(1) 𝑑𝑦2 (𝑄) ≤ 2𝑑𝑦1 (𝑃)𝑑𝑦2 (𝑃)
(2) 𝑑𝑥 (𝑄) ≤ 𝑑𝑦1 (𝑃) (2𝑑𝑥 (𝑃) +max(𝑑𝑥 (𝑢), 𝑑𝑥 (𝑣)))
(3) 𝑑 (𝑄) ≤ 𝑑𝑦1 (𝑃) (2𝑑 (𝑃) +max(𝑑𝑥 (𝑢), 𝑑𝑥 (𝑣)))

Proof. The polynomial 𝑃 ′ belongs in𝐶 [𝑥,𝑦1, 𝑦′
1
, 𝑦2, . . . , 𝑦

(𝑟+1)
2

]
of degree 1 in 𝑦′

2
and 𝑃 ′ (𝑥, 𝑔, 𝑔′, 𝑓 , . . . , 𝑓 (𝑟+1) ) = 0. Since 𝑔′ = 𝑔𝑢𝑣

we can set

𝑃1 = 𝑣𝑃
′ (𝑥,𝑦1, 𝑦1

𝑢

𝑣
,𝑦2, . . . , 𝑦

(𝑟+1)
2

) ∈ 𝐶 [𝑥,𝑦1, 𝑦2, . . . , 𝑦 (𝑟+1)
2

]

and have 𝑃1 (𝑥,𝑔, 𝑓 , . . . , 𝑓 (𝑟+1) ) = 0. We set 𝑄 = Res𝑦1 (𝑃, 𝑃1) and
claim that 𝑄 ≠ 0. Indeed if that was the case then 𝑃 and 𝑃1 would

share an irreducible factor 𝑞 ∈ 𝐶 [𝑥,𝑦1, 𝑦2, . . . , 𝑦 (𝑟 )
2

], and since 𝑃

is primitive in 𝑦 (𝑟 ) , 𝑞 can not be independent of 𝑦
(𝑟 )
2

. Since 𝑃1 =

(𝑣𝜕
𝑦
(𝑟 )
2

𝑃)𝑦 (𝑟+1)
2

+ 𝑅(𝑥,𝑦1, 𝑦2, . . . , 𝑦 (𝑟 )
2

) it follows that 𝑞 must be a

common factor of both 𝑃 and 𝑣𝜕
𝑦
(𝑟 )
2

𝑃 which is impossible since 𝑃

is separable as an element of 𝐶 (𝑥,𝑦1, 𝑦2, . . . , 𝑦 (𝑟−1)
2

) [𝑦 (𝑛)
2

]. Thus
𝑄 ≠ 0 and

𝑄 (𝑥, 𝑓 , . . . , 𝑓 (𝑟+1) ) = 0

since (𝑥, 𝑔, 𝑓 , . . . , 𝑓 (𝑟+1) ) is a common root to both 𝑃 and 𝑃1.

Once again, the degree bounds come from the fact that 𝑄 is

the determinant of a Sylvester matrix of size 2𝑑𝑦1 (𝑃). The first

𝑑𝑦1 (𝑃1) = 𝑑𝑦1 (𝑃) columns are composed of the coefficients of 𝑃

while the last 𝑑𝑦1 (𝑃) columns contain the coefficients of 𝑃1.

Any D-algebraic function 𝑓 over 𝐾 (𝑥) is a solution of a D-

algebraic equation satisfying the hypothesis of Proposition 18. In-

deed if 𝑃 is an equation of order 𝑟 for 𝑓 then its squarefree part is

also an equation for 𝑓 . Furthermore the 𝑔𝑐𝑑 of its coefficients as

a polynomial in 𝑦 (𝑟 ) is either an equation for 𝑓 , in which case we

apply the same analysis on it, or we can divide 𝑃 by it and get a

primitive equation for 𝑓 . All of those operations provide polyno-

mials of smaller degrees than 𝑃 . Thus the degree bound given in

Proposition 18 must always be true, even if 𝑃 does not satisfy the

hypothesis of the proposition. However the resultant formula used

in the proof might give zero in this case.

We have seen how to go from equations over an algebraic func-

tion field, or over the field generated by a hyperexponential function,

to an equation with polynomial coefficients. We end this section

by considering the elimination of the 𝑥 variable as well. We as-

sume that 𝐾 = 𝐶 (𝑥) where 𝐶 is a field of characteristic 0. If 𝑓 is a

D-algebraic function over 𝐾 , we know that 𝑓 is also D-algebraic

over 𝐶 . How can one recover a D-algebraic equation over 𝐶 for 𝑓

from an equation over 𝐶 (𝑥)?

Proposition 19. Let 𝑓 be a D-algebraic function over 𝐾 = 𝐶 (𝑥)
and let 𝑃 ∈ 𝐶 [𝑥,𝑦,𝑦′, . . . , 𝑦 (𝑟 ) ] be a polynomial which is primitive
in 𝑦 (𝑟 ) and separable as an element of 𝐶 (𝑥,𝑦,𝑦′, . . . , 𝑦 (𝑟−1) ) [𝑦 (𝑛) ],
such that 𝑃 (𝑓 ) = 0. Let 𝑑𝑥 be the degree of 𝑃 as a polynomial in the
variable 𝑥 and 𝑑 be its total degree as an element of𝐶 (𝑥) [𝑦, . . . , 𝑦 (𝑟 ) ].



Then 𝑓 satisfies a D-algebraic equation of order 𝑟 + 1 and of de-
gree at most 2𝑑𝑥𝑑 which is either 𝑃 ′ if 𝑃 ′ is independent from 𝑥 , or
Res𝑥 (𝑃, 𝑃 ′) otherwise.

Proof. If 𝑃 ′ is independent from 𝑥 then there is nothing to

prove. Otherwise we claim that Res𝑥 (𝑃, 𝑃 ′) is not 0. Indeed, if such
was the case then 𝑃 and 𝑃 ′ would have a common irreducible

factor 𝑞(𝑥,𝑦,𝑦′, . . . , 𝑦 (𝑟+1) ). But since 𝑃 is only a polynomial in

𝐶 [𝑥,𝑦, . . . , 𝑦 (𝑟 ) ] that must also be the case of 𝑞. Furthermore, since

𝑃 is primitive, 𝑞 is not independent from 𝑦 (𝑛) . Since

𝑃 ′ = 𝑦 (𝑟+1) 𝜕𝑦 (𝑟 ) 𝑃 + 𝑅(𝑥,𝑦, . . . , 𝑦 (𝑛) ),

for some 𝑅 ∈ 𝐾 [𝑥,𝑦, . . . , 𝑦 (𝑟 ) ], 𝑞 is a factor of 𝑃 and 𝜕𝑦 (𝑟 ) 𝑃 which

can not be the case since 𝑃 is supposed separable in 𝑦 (𝑟 ) . Then
(𝑥, 𝑓 , . . . , 𝑓 (𝑟+1) ) is a root of both 𝑃 and 𝑃 ′ so 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑟+1)

must be a root of Res𝑥 (𝑃, 𝑃 ′). The bound comes from the fact that

Res𝑥 (𝑃, 𝑃 ′) is the determinant of a square matrix of size 2𝑑𝑥 with

coefficients of degree at most 𝑑 in 𝐶 [𝑦,𝑦′, . . . , 𝑦 (𝑟+1) ].
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