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The square is a certain subset of the plane R?

A symmetry of the square is a bijective function f: R? — R?
which preserves the square

Symmetries form a group with composition

We may restrict ourselves to a subgroup of “easy”
symmetries, for example, linear transformations

Any such a subgroup splits the square into orbits

An orbit is a set of points which can be mapped to one
another by a symmetry
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e A symmetry of a set of bit strings is a bijection
{0, 11 — {0, 1}™ which maps the set to itself

Symmetries form a group with composition

We may restrict ourselves to a subgroup of “easy” symmetries,
for example, only permuting or flipping coordinates

Any such subgroup splits the set into orbits

An orbit is a set of bit strings which can be mapped to one
another by a symmetry
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Let = be a set of (unquantified) Boolean formulas, and ¢ € X.

A symmetry of ¢ is a bijection ¥ — X which maps ¢ to an
equivalent formula

Symmetries form a group with composition

We may restrict ourselves to a subgroup of “easy”
symmetries, for example, only permuting or flipping literals

Any such subgroup splits X into orbits

All formulas in the orbit containing ¢ are equivalent to ¢
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What is a symmetry breaker?

e Let G be a group of bijective functions {0, T}* — {0, 1}"
e A formula 1 € X is a (semantic) symmetry breaker for G if

Voe{0,1"3geG:Wlge =T

e Key fact: if G is a symmetry group of the solution set of
¢ € L and ¢ is a symmetry breaker for G then ¢ has a
solution if and only if ¢ /A has a solution.



syntactic semantic

5 orbit of Y ' {o, 1}

—

every 0 € {0, 1}™ is every orbit of {0, 1}"
a solution of at least one contains at least one
formula in the orbit of solution of
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How to construct a symmetry breaker?

e Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

e Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

b= A /\(/\ X =9g(xj)) = (xi < Q(Xi))>

gei i=1 j<i

e Observe that we use a “syntactic” group but a “semantic”
justification.
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Example
e Consider the formula d = (x Vy) A (yVz) A (zV x)

y Yy
e Consider the symmetry group G = {id, f \; , f Z 1
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Example

Consider the formula & = (x Vy) A (yVz) A (zVx)

Consider the symmetry group G = {id, f

P

y
\

z

)

y
4

X

-
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P =(x—>y) Ay — z)is a symmetry breaker for G

Instead of solving &, we can solve ¢ A1).
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What about QBF?
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= X1,X2 v X3, X4 = X5,X6.¢(X],X2,X3,X4,X5,X6)

Given a quantifier prefix P, we write S(P) for the corresponding set
of tree assignments.
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Syntactic symmetries

e bijectively map (unquantified) formulas to (unquantified)
formulas

e it is not necessary, but common, that literals are mapped to
literals

e must respect logical connectives:
f(d1 A\ d2) = f(d1) A f(d2), ete.

e must respect quantifier blocks: f(x;) must only contain
variables in the same block as x;

Semantic symmetries
e bijectively map tree assignments to tree assignments

e in principle no restrictions
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Sizes of syntactic symmetry groups for the 2017 QBFEval
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How many symmetries are there?

10512 A largest group has
6.36 - 1079 elements

10256 1

10128 1

1064 1
1 E!

Sizes of syntactic symmetry groups for the 2017 QBFEval
benchmark (PCNF track), computed using Saucy and GAP.
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Symmetry Breakers for QBF

Let P be a quantifier prefix

Let Gsyn be a group of isomorphisms £ — X respecting P
Let Ggem be a group of bijections S(P) — S(P)

P € L is a symmetry breaker for Gsyn and Ggem if

Vte S(P) = gsyneGsyn = gsemEGsem : [Pgsyn(lp)] (t) = T

Jsem
Key fact: If Gsyn is a syntactic symmetry group for P.¢p and
Gsem is a semantic symmetry group for P. and ¥ is a
symmetry breaker for Gsyn and Gsem, then P.¢ has a solution
in S(P) if and only if P.(¢p A1) does.

17
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Easy symmetries

What does permutation of variables mean semantically?

Ix1,% V X3, X4 3 X5,%6 1 P(X2,X71,X4,X3,X6,X5)

Unlike in SAT, there is no longer a 1:1 correspondence.
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e Let P= Q%1 Qnxn be a quantifier prefix
o Let Ggy, be a group of permutations of literals respecting P

o Let Gsem be the group of all bijective maps f: S(P) — S(P)
such that

VteS(P)VTef(t)Ige Geyn:g(t) €t

t f(t)

g(7) T

e Then Ggem is called the associated group for Ggyn.
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Let P = Qix1 - Qnxn be a quantifier prefix

Let Gsyn be a group of permutations of literals respecting P
Let Gsem be the associated group of Ggyp.

Then

n

aANA (/\ X = g(x)) = (xi < 9(&)))

gEGsyn i=1 j<i
=3

i=

is a symmetry breaker for Gsyn and Gsem.
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Let P = Qix1 - Qnxn be a quantifier prefix

Let Gsyn be a group of permutations of literals respecting P
Let Gsem be the associated group of Ggyp.

Then

n

aANA (/\ X = g(x)) = (xi < 9(&)))

gEGsyn i=1 j<i
=3

i

is a symmetry breaker for Gsyn and Gsem.

Observe that only Gy, appears in the formula. The group
Gsem is only used for the justification.
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Case study: the Kleine-Biining et al family

Solving times of DepQBF (in sec)

w/o SB with SB

n QRes LD QRes LD

10 0.3 0.5 0.4 0.4
20 160 0.5 0.4 0.4
40 | > 3600 0.5 0.4 0.4
80 | > 3600 0.7 0.4 0.4
160 | > 3600 2.2 0.5 0.4
320 | > 3600 12.3 0.6 0.5
640 | > 3600 36.8 1.0 0.8
1280 | > 3600 241.1 22.6 19.7
2560 | > 3600 | > 3600 | 215.7 | 155.2
5120 | > 3600 | > 3600 | 1873.2 | 1042.6
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Case study: the Kleine-Biining et al family

In fact, we can show that there
is a proof of size O(n)
when a symmetry breaker is added.

20
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What about the universal quantifiers?
The symmetry breaker above only affects variables bound by 3
We can handle variables bound by V using duality
A dual assignment for ® = P.¢ is an assignment for —®
As negation toggles quantifiers, the tree shapes are different

3 X1y X2 v ) = XS)X6-¢(XI)XZ) ) )XS)XG)

[

1

288
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e Write S3(P) = S(P) for the set of tree assignments for prefix P
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Write S3(P) = S(P) for the set of tree assignments for prefix P
Write Sy(P) for the dual tree assignments for prefix P

Let Ggyn be a group of isomorphisms X — X respecting P

Let G2, be a group of bijections Sy(P) — Sy(P)

P € L is a universal symmetry breaker for GY, and GY.,_ if

syn sem

Vte SV(P) 3 gsyneryn 3 gsemeGsvem : [P-gsyn N)ﬂ (t) = 1

Jsem
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Write S3(P) = S(P) for the set of tree assignments for prefix P
Write Sy(P) for the dual tree assignments for prefix P
Let Ggyn be a group of isomorphisms X — X respecting P

Let G2, be a group of bijections Sy(P) — Sy(P)
P € L is a universal symmetry breaker for GY, and GY.,_ if

syn sem

VteSy(P)3 gsyneryn = gsemeGsvem : [P-gsyn ()] (t) — 1

Jsem

Symmetry breakers as previously defined will now be called
existential symmetry breakers
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Write S3(P) = S(P) for the set of tree assignments for prefix P
Write Sy(P) for the dual tree assignments for prefix P

Let Ggyn be a group of isomorphisms X — X respecting P

Let G2, be a group of bijections Sy(P) — Sy(P)

P € L is a universal symmetry breaker for GY, and GY.,_ if

syn sem

v t E SV(P) El gSyneGZyn El gSemeG:/em : [P-gsyn (l'l)ﬂgsem(t) = J‘

Symmetry breakers as previously defined will now be called
existential symmetry breakers

e 1 is an existential symmetry breaker iff — is a universal

symmetry breaker (w.r.t. suitably chosen groups)
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Key fact:
e Let ® =P.¢p bea QBF
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Key fact:
e Let ® =P.¢p bea QBF
e Let G2 and G be two syntactic symmetry groups for @

syn syn

o Let G2

sem

o Let GY

sem

be a symmetry group for @ acting on S3(P)
be a symmetry group for ® acting on Sy(P)
e Let 5 € I be an existential symmetry breaker for G2,., G2

syn?’ sem
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Key fact:

Let ® = P.¢ be a QBF
Let G2, and GY . be two syntactic symmetry groups for ®

syn syn
Let GZ,,, be a symmetry group for @ acting on S3(P)

Let GZ,,, be a symmetry group for @ acting on Sy(P)

Let 13 € L be an existential symmetry breaker for Gsayn, G,
Let Py € Z be universal symmetry breaker for GY , GY

syn?’ sem
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Key fact:
e Let ® =P.¢p bea QBF

Let G2

syn

Let G2

sem

Let GV

sem

Let 5 € Z be an existential symmetry breaker for G2, , G2
Let Py € L be universal symmetry breaker for G

Then

and GY _ be two syntactic symmetry groups for @

syn

be a symmetry group for @ acting on S3(P)

be a symmetry group for ® acting on Sy(P)
syn’

v GV

syn?’ sem

P.¢p is true &< P.((d AP3) V Py) is true
& P.((d VPy) AP3) is true

sem
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Summary

e For QBF, unlike for SAT, syntactic and semantic symmetries
are not equivalent
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e The following formula is an existential symmetry breaker:

v=A /\ (/\ X =glx)) = (xi < Q(Xi))>

gEGsyn i=1 j<i
=3
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Summary

For QBF, unlike for SAT, syntactic and semantic symmetries
are not equivalent

For QBF, every syntactic symmetry gives rise to many
semantic symmetries

The following formula is an existential symmetry breaker:

n
v= A A (A =90 - (xi < glx))
geGsyn i=1 j<i
i=3
If V¥ is an existential symmetry breaker, then — is a universal
symmetry breaker
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Summary

For QBF, unlike for SAT, syntactic and semantic symmetries
are not equivalent

For QBF, every syntactic symmetry gives rise to many
semantic symmetries

The following formula is an existential symmetry breaker:

n
b= A A (Ax=90) > (xi < gx))
gEGsyn i=1 j<i

=3
If V¥ is an existential symmetry breaker, then — is a universal
symmetry breaker
Existential and universal symmetry breakers can be applied
simultaneously

s
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