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• The square is a certain subset of the plane R2

• A symmetry of the square is a bijective function f : R2 → R2
which preserves the square

• Symmetries form a group with composition

• We may restrict ourselves to a subgroup of “easy”
symmetries, for example, linear transformations

• Any such a subgroup splits the square into orbits

• An orbit is a set of points which can be mapped to one
another by a symmetry
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• A symmetry of a set of bit strings is a bijection
{0, 1}n → {0, 1}n which maps the set to itself

• Symmetries form a group with composition

• We may restrict ourselves to a subgroup of “easy” symmetries,
for example, only permuting or flipping coordinates

• Any such subgroup splits the set into orbits

• An orbit is a set of bit strings which can be mapped to one
another by a symmetry
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• Let Σ be a set of (unquantified) Boolean formulas, and ϕ ∈ Σ.

• A symmetry of ϕ is a bijection Σ→ Σ which maps ϕ to an
equivalent formula

• Symmetries form a group with composition

• We may restrict ourselves to a subgroup of “easy”
symmetries, for example, only permuting or flipping literals

• Any such subgroup splits Σ into orbits

• All formulas in the orbit containing ϕ are equivalent to ϕ
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What is a symmetry breaker?

• Let G be a group of Boolean isomorphisms Σ→ Σ

• A formula ψ ∈ Σ is a (syntactic) symmetry breaker for G if

∀ σ ∈ {0, 1}n ∃ g ∈ G : [g(ψ) ]σ = ⊤

• Key fact: if G is a symmetry group for ϕ ∈ Σ and ψ is a
symmetry breaker for G then ϕ has a solution if and only if
ϕ∧ψ has a solution.
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What is a symmetry breaker?

• Let G be a group of bijective functions {0, 1}n → {0, 1}n

• A formula ψ ∈ Σ is a (semantic) symmetry breaker for G if

∀ σ ∈ {0, 1}n ∃ g ∈ G : [ψ]g(σ) = ⊤

• Key fact: if G is a symmetry group of the solution set of
ϕ ∈ Σ and ψ is a symmetry breaker for G then ϕ has a
solution if and only if ϕ∧ψ has a solution.
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syntactic

Σ orbit of ψ

every σ ∈ {0, 1}n is
a solution of at least one
formula in the orbit of ψ

semantic

{0, 1}n

every orbit of {0, 1}n

contains at least one
solution of ψ
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For SAT, there is no difference if we restrict to “easy” symmetries.

φ( x1 , , , , x5 )x4x2 x3

0 101 0
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How to construct a symmetry breaker?

• Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

• Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

ψ =
∧
g∈G

n∧
i=1

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• Observe that we use a “syntactic” group but a “semantic”
justification.

11



How to construct a symmetry breaker?

• Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

• Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

ψ =
∧
g∈G

n∧
i=1

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• Observe that we use a “syntactic” group but a “semantic”
justification.

11



How to construct a symmetry breaker?

• Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

• Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

ψ =
∧
g∈G

(
(x1, . . . , xn) ≤ (g(x1), . . . , g(xn))

)

n∧
i=1

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• Observe that we use a “syntactic” group but a “semantic”
justification.

11



How to construct a symmetry breaker?

• Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

• Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

ψ =
∧
g∈G

n∧
i=1

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• Observe that we use a “syntactic” group but a “semantic”
justification.

11



How to construct a symmetry breaker?

• Idea: impose an order on the bit strings and take a formula
which kills all non-minimal elements of each orbit.

• Then the minimal elements of each orbit survive, and all we
need is at least one survivor per orbit.

ψ =
∧
g∈G

n∧
i=1

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• Observe that we use a “syntactic” group but a “semantic”
justification.

11



Example

• Consider the formula ϕ = (x∨ y)∧ (y∨ z)∧ (z∨ x)
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1

• ψ = (x→ y)∧ (y→ z) is a symmetry breaker for G

• Instead of solving ϕ, we can solve ϕ∧ψ.
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What about QBF?

13



∃ x1, x2 ∀ x3, x4 ∃ x5, x6.ϕ(x1, x2, x3, x4, x5, x6)

0

1

0 1

0

1

1

1

0

1

0

1

0

1

1

0

Given a quantifier prefix P, we write S(P) for the corresponding set
of tree assignments.
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Syntactic symmetries

• bijectively map (unquantified) formulas to (unquantified)
formulas

• it is not necessary, but common, that literals are mapped to
literals

• must respect logical connectives:
f(ϕ1 ∧ ϕ2) = f(ϕ1)∧ f(ϕ2), etc.

• must respect quantifier blocks: f(xi) must only contain
variables in the same block as xi

Semantic symmetries

• bijectively map tree assignments to tree assignments

• in principle no restrictions
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How many symmetries are there?

1

1064

10128

10256

10512

Sizes of syntactic symmetry groups for the 2017 QBFEval
benchmark (PCNF track), computed using Saucy and GAP.
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How many symmetries are there?

1

1064

10128

10256

10512

37% of the problems
have no symmetries at all

largest group has
6.36 · 10708 elements

Sizes of syntactic symmetry groups for the 2017 QBFEval
benchmark (PCNF track), computed using Saucy and GAP.
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Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)
• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)
• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)
• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)

• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)
• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Symmetry Breakers for QBF

• Let P be a quantifier prefix

• Let Gsyn be a group of isomorphisms Σ→ Σ respecting P

• Let Gsem be a group of bijections S(P) → S(P)
• ψ ∈ Σ is a symmetry breaker for Gsyn and Gsem if

∀ t ∈ S(P) ∃ gsyn∈Gsyn ∃ gsem∈Gsem : [P.gsyn(ψ) ]gsem(t) = ⊤

• Key fact: If Gsyn is a syntactic symmetry group for P.ϕ and
Gsem is a semantic symmetry group for P.ϕ and ψ is a
symmetry breaker for Gsyn and Gsem, then P.ϕ has a solution
in S(P) if and only if P.(ϕ∧ψ) does.

17



Easy symmetries

What does permutation of variables mean semantically?

∃ x1, x2 ∀ x3, x4 ∃ x5, x6 : φ( , , , , , )x3 x4 x5 x6x1 x2

0

1

0 1

0

1

1

1

0

1

0

1

0

1

1

0

Unlike in SAT, there is no longer a 1:1 correspondence.
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Easy symmetries

What does permutation of variables mean semantically?

∃ x1, x2 ∀ x3, x4 ∃ x5, x6 : φ( , , , , , )x2 x1 x4 x3 x5x6

1

1

0

1

0

1

0

1

0

1

0 1

0 1 0 1

Unlike in SAT, there is no longer a 1:1 correspondence.
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• Let P = Q1x1 · · ·Qnxn be a quantifier prefix

• Let Gsyn be a group of permutations of literals respecting P

• Let Gsem be the group of all bijective maps f : S(P) → S(P)
such that

∀ t ∈ S(P) ∀ τ ∈ f(t) ∃ g ∈ Gsyn : g(τ) ∈ t

t

g(τ)

f(t)

τ

• Then Gsem is called the associated group for Gsyn.

• Then

ψ =
∧

g∈Gsyn

n∧
i=1
Qi=∃

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

is a symmetry breaker for Gsyn and Gsem.

• Observe that only Gsyn appears in the formula. The group
Gsem is only used for the justification.
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• Observe that only Gsyn appears in the formula. The group
Gsem is only used for the justification.
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Case study: the Kleine-Büning et al family

Solving times of DepQBF (in sec)
w/o SB with SB

n QRes LD QRes LD

10 0.3 0.5 0.4 0.4

20 160 0.5 0.4 0.4

40 > 3600 0.5 0.4 0.4

80 > 3600 0.7 0.4 0.4

160 > 3600 2.2 0.5 0.4

320 > 3600 12.3 0.6 0.5

640 > 3600 36.8 1.0 0.8

1280 > 3600 241.1 22.6 19.7

2560 > 3600 > 3600 215.7 155.2

5120 > 3600 > 3600 1873.2 1042.6
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Case study: the Kleine-Büning et al family

In fact, we can show that there
is a proof of size O(n)

when a symmetry breaker is added.
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What about the universal quantifiers?

• The symmetry breaker above only affects variables bound by ∃
• We can handle variables bound by ∀ using duality

• A dual assignment for Φ = P.ϕ is an assignment for ¬Φ

• As negation toggles quantifiers, the tree shapes are different

∃ x1, x2 ∀ x3, x4 ∃ x5, x6.ϕ(x1, x2, x3, x4, x5, x6)
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• Write S∃(P) = S(P) for the set of tree assignments for prefix P

• Write S∀(P) for the dual tree assignments for prefix P

• Let G∀
syn be a group of isomorphisms Σ→ Σ respecting P

• Let G∀
sem be a group of bijections S∀(P) → S∀(P)

• ψ ∈ Σ is a universal symmetry breaker for G∀
syn and G∀

sem if

∀ t ∈ S∀(P) ∃ gsyn∈G∀
syn ∃ gsem∈G∀

sem : [P.gsyn(ψ)]gsem(t) = ⊥

• Symmetry breakers as previously defined will now be called
existential symmetry breakers

• ψ is an existential symmetry breaker iff ¬ψ is a universal
symmetry breaker (w.r.t. suitably chosen groups)
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Key fact:

• Let Φ = P.ϕ be a QBF

• Let G∃
syn and G∀

syn be two syntactic symmetry groups for Φ

• Let G∃
sem be a symmetry group for Φ acting on S∃(P)

• Let G∀
sem be a symmetry group for Φ acting on S∀(P)

• Let ψ∃ ∈ Σ be an existential symmetry breaker for G∃
syn, G

∃
sem

• Let ψ∀ ∈ Σ be universal symmetry breaker for G∀
syn, G

∀
sem

• Then

P.ϕ is true ⇐⇒ P.((ϕ∧ψ∃)∨ψ∀) is true⇐⇒ P.((ϕ∨ψ∀)∧ψ∃) is true
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Summary

• For QBF, unlike for SAT, syntactic and semantic symmetries
are not equivalent

• For QBF, every syntactic symmetry gives rise to many
semantic symmetries

• The following formula is an existential symmetry breaker:

ψ =
∧

g∈Gsyn

n∧
i=1
Qi=∃

(∧
j<i

(xj = g(xj)) → (xi ≤ g(xi))
)

• If ψ is an existential symmetry breaker, then ¬ψ is a universal
symmetry breaker

• Existential and universal symmetry breakers can be applied
simultaneously
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