
SEPARATING VARIABLES
IN POLYNOMIAL IDEALS

Manuel Kauers · Institute for Algebra · JKU

Joint work with Manfred Buchacher and Gleb Pogudin



Given an ideal I ⊆ K[x, y], find I ∩ K[x].

This is an ideal of K[x]. It can be computed by Gröbner bases.

Given an ideal I ⊆ K[x, y], find I ∩ K[x] + K[y].

This is an algebra. Want: generators!

p(x) − q(y)︸ ︷︷ ︸
∈I

⊙ f(x) − g(y)︸ ︷︷ ︸
∈I

:= p(x)f(x) − q(y)g(y)︸ ︷︷ ︸
∈I(

p(x) − q(y)
)
f(x) + q(y)

(
f(x) − g(y)

)
∈ I
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Given an ideal I ⊆ K[x, y], find I ∩ K[x] + K[y].

This is an algebra. Want: generators!

p(x) − q(y)︸ ︷︷ ︸
∈I

⊙ f(x) − g(y)︸ ︷︷ ︸
∈I

:= p(x)f(x) − q(y)g(y)︸ ︷︷ ︸
∈I(

p(x) − q(y)
)
f(x) + q(y)

(
f(x) − g(y)

)
∈ I

1



Given an ideal I ⊆ K[x, y], find I ∩ K[x].

This is an ideal of K[x]. It can be computed by Gröbner bases.
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Given an ideal I ⊆ K[x, y], find I ∩ K[x] + K[y].

This is an algebra.

Want: generators!

p(x) − q(y)︸ ︷︷ ︸
∈I

⊙ f(x) − g(y)︸ ︷︷ ︸
∈I

:= p(x)f(x) − q(y)g(y)︸ ︷︷ ︸
∈I(

p(x) − q(y)
)
f(x) + q(y)

(
f(x) − g(y)

)
∈ I

1



Given an ideal I ⊆ K[x, y], find I ∩ K[x].

This is an ideal of K[x]. It can be computed by Gröbner bases.
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Why?

Because it’s useful for intersecting algebras.

K[x+ y, xy] ∩ K[x2 + y2, x− y] = ?

Consider the ideal

I = ⟨u1 − (x+ y), u2 − xy, v1 − (x2 + y2), v2 − (x− y)⟩
∩ K[u1, u2, v1, v2].

Then compute generators of the algebra

I ∩ K[u1, u2] + K[v1, v2]

Generators of this algebra translate to generators of the intersection.
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Why?

Because it’s useful for solving functional equations.

f ∈ K[z][[t]], g ∈ K[z−1][[t]]

I = {p ∈ K[x, y] : p(f, g) = 0 }

Suppose you want to eliminate z.

Idea: find an element of I ∩ K[x] + K[y].

K[z][[t]] ∋ p(f) = q(g) ∈ K[z−1][[t]]

Both sides belong to K[z][[t]] ∩ K[z−1][[t]] = K[[t]].
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Definition. Let

I ⊆ K[x1, . . . , xn, y1, . . . , ym].

Let

A(I) = {
(
p
q

)
∈ K[x1, . . . , xn]× K[y1, . . . , ym] : p− q ∈ I }

We call A(I) the algebra of separated polynomials for I.

This is an algebra.

Task.
Given ideal generators of I, compute algebra generators of A(I).
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Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables

ISSAC’20

new
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dim I = 0

⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

x

y
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dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

For all
p ∈ I ∩ K[x] and q ∈ I ∩ K[y]

we have (
p
0

)
∈ A(I) and

(
0
q

)
∈ A(I).

For all u, v ∈ K[x, y] we have(
u
v

)
∈ A(I) ⇐⇒ (rem(u,p)

rem(v,q)

)
∈ A(I)

It therefore suffices to search for u ∈ K[x] with deg(u) < deg(p)
and v ∈ K[y] with deg(v) < deg(q).
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dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Ansatz

u = u0 + u1x+ · · ·+ un−1x
n−1

v = v0 + v1y+ · · ·+ vm−1y
m−1

with undetermined coefficients.

(
u
v

)
∈ A(I) ⇐⇒ u− v ∈ I ⇐⇒ red(u− v,Gb(I)) = 0

This leads to a K-linear system of equations for the undetermined
coefficients of u and v.
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dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



dim I = 0 ⇐⇒ codimK I < ∞ ⇐⇒ I ∩ K[x] ̸= {0} ̸= I ∩ K[y]

Theorem. If I ∩ K[x] = ⟨p⟩ ̸= {0} and I ∩ K[y] = ⟨q⟩ ̸= {0} then
A(I) is generated by

•
(
p
0

)
,
(
xp
0

)
, . . . ,

(
xn−1p

0

)
, (where n = deg(p))

•
(
0
q

)
,
(
0
yq

)
, . . . ,

(
0

ym−1q

)
, (where m = deg(q))

• and basis vectors of the solution space of the above linear
system.

In particular, A(I) is finitely generated.

Moreover, codimKA(I) < ∞ and we can find a W with

W ⊕A(I) = K[x]× K[y].

The theorem extends naturally to the case of more variables.

5



Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables

6



Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables

6



(x− y)(

x2 + xy+ y2

) = x3 − y3

In a sense, that’s all that can happen.
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Let’s first focus on homogeneous polynomials.

x

y

By homogeneous, we mean that there is an ω ≥ 0 such that i+ωj

has the same value for all i, j such that p contains a term xiyj.
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Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then

• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

•

Such an n can be found algorithmically.

9



Note: If p ∈ K[x, y] is such that A(⟨p⟩) is nontrivial, then
• p must be square free.

• p must contain a term in x only and a term in y only.

• p | xn − αym for some n,m ∈ N and some α ∈ K.

• In fact, we must have n/m = degx(p)/ degy(p).

• Setting y to 1 must yield a univariate
polynomial in x for which the quotient
of any two roots is a root of unity.

• A generator of A(⟨p⟩) is obtained
from the smallest n such that every
quotient is an nth root of unity.

• Such an n can be found algorithmically.

9



Conclusion.

• For homogeneous polynomials p, we can decide if A(⟨p⟩) is
nontrivial.

• In this case, we can compute a generator. In particular,
A(⟨p⟩) is simple.
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What about inhomogeneous polynomials?

x

y

Note: If A(⟨p⟩) is nontrivial, then so is A(⟨lp↑
leading

homogeneous
part

(p)⟩).

Clearly, this condition is not sufficient.

A degree bound would be good.
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Given p ∈ K[x, y] and d ∈ N, we can easily find all elements of

⟨p⟩ ∩ K[x] + K[y]

whose (weighted) degree is at most d.
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Given p ∈ K[x, y] and d ∈ N, we can easily find all elements of

⟨p⟩ ∩ K[x] + K[y]

whose (weighted) degree is at most d.

Ansatz

(q0,0 + q1,0x+ q0,1y+ · · · )× p

!
∈ K[x] + K[y]

with undetermined coefficients.

Force the coefficient of all unwanted terms to zero.

Solve the resulting K-linear system.

How to choose d if we don’t want to miss anything?
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Theorem. Let p ∈ K[x, y] be such that A(⟨p⟩) is nontrivial.

Let d be such that A(⟨lp(p)⟩) has a generator of degree d.

Then A(⟨p⟩) also has a generator of degree d.

Conclusion.

• For arbitrary polynomials p ∈ K[x, y], we can decide if A(⟨p⟩)
is nontrivial.

• In this case, we can compute a generator. In particular,
A(⟨p⟩) is simple (unless p is univariate).
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Examples.

• A(⟨x2 + xy+ y2⟩) = K[
(
x3

y3

)
]

• A(⟨x4 + x2y+ y2⟩) = K[
(
x6

y3

)
]

• A(⟨x4 + 5x2y+ 25y2⟩) = K[
(

x6

125y3

)
]

• A(⟨(x+ 1)4 + 5(x+ 1)2y+ 25y2⟩) = K[
((x+1)6

125y3

)
]
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Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables
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I0 ∩ I1 =

I ⊆ K[x, y]

A(I0 ∩ I1) = A(I0) ∩A(I1)

•
•

•

•

•

•

•

•
•

•

•

•

•

•

Recall:

• A(I1) = K[a] for some a ∈ K[x]× K[y] that we can compute.

• codimKA(I0) < ∞.
We can find a subspace W of K[x]× K[y] such that

A(I0)⊕W = K[x]× K[y].
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Elements of A(I0) ∩A(I1) are

• polynomials in the generator a of A(I1)

• whose W-component is zero.

Let ϕ : K[x]× K[y] → K[x]× K[y] be the projection on W.

Ansatz: p = p0 + p1a+ · · ·+ pda
d

Forcing ϕ(p)
!
= 0 gives dimW linear equations.

We will find a nontrivial solution if d ≥ dimW.

Then p(a) ∈ A(I0) ∩A(I1).
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If p(a) is in A(I0) ∩A(I1), then so are p(a)2, p(a)3, p(a)4, . . .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • •• • • • • • • •• • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • •

To find another element, we won’t need terms ai with deg p | i.

Suppose we find another polynomial q with q(a) ∈ A(I0) ∩A(I1).

We can then exclude all terms ai with i ∈ N deg p+ N degq.

This cannot continue forever.
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Fact: If d1, . . . , dn ∈ N are such that gcd(d1, . . . , dn) = 1, then

N \ (Nd1 + · · ·+ Ndn)

is finite.

Its maximal element is called the Frobenius number of d1, . . . , dn.

There are ways to compute this number.

Therefore:

• A(I) is finitely generated for every ideal I ⊆ K[x, y]

• We can compute a finite list of generators
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Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables
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" In general, A(I) may not be finitely generated.

21



" In general, A(I) may not be finitely generated.

Example. For

I = ⟨x1 − y1, x3y1 − x2 − y1y2, x23 − y1 − 2x3y2 + y2
2⟩

⊆ C[x1, x2, x3, y1, y2]

we have A(I) ∼= C[t21, t31, t2] ∩ C[t21, t2 − t1] ⊆ C[t1, t2].

It is known (though not obvious) that this algebra is not finitely
generated.

Consequently, there is no algorithm which for arbitrary I computes
a finite set of generators.
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" In general, A(I) may not be finitely generated.

Another example. Consider I = ⟨x1x2⟩ ⊆ K[x1, x2, y].

Clearly, A(I) = x1x2K[x1, x2].

Exercise: show that this is not a finitely generated algebra.
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What can we say about ideals of dimension zero?

This works in the same way as described earlier.

In particular, A(I) is finitely generated in this case.

What can we say about principal ideals?

Perhaps it is possible to generalize the arguments from before.

Alternatively, we can use the earlier results as a lemma.
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Idea: Translate the multivariate problem to a bivariate problem.

Writing X for x1, . . . , xn and Y for y1, . . . , ym, consider the map

ϕ : K[X, Y] → K(X, Y)[s, t]

which maps every xi to s xi and every yj to t yj.

Given an ideal I ⊆ K[X, Y], how is

A(I) ⊆ K[X]× K[Y]

related with

A(ϕ(I)) ⊆ K(X, Y)[s]× K(X, Y)[t] ?

23
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Theorem.

• Let p ∈ K[X, Y] \ (K[X] ∪ K[Y]) and I = ⟨p⟩ ⊆ K[X, Y].

• Let P = ϕ(p) and Ī = ⟨P⟩ ⊆ K(X, Y)[s, t].

• Suppose that p(0) = 0.

• Suppose that A(Ī) is nontrivial and let
(
F
G

)
be a generator.

• Suppose that F,G have no denominator in K[X, Y].

• Suppose that F−G has no factor in K[X, Y].

• Suppose that F|s=0 = G|t=0.

Then A(I) is nontrivial if and only if F ∈ K[X][s] and G ∈ K[Y][t].

In this case, (F|s=1, G|t=1) is a generator of A(I).
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• Suppose that F−G has no factor in K[X, Y].

• Suppose that F|s=0 = G|t=0.

Then A(I) is nontrivial if and only if F ∈ K[X][s] and G ∈ K[Y][t].

In this case, (F|s=1, G|t=1) is a generator of A(I).
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• Suppose that A(Ī) is nontrivial and let
(
F
G

)
be a generator.

• Suppose that F,G have no denominator in K[X, Y].

• Suppose that F−G has no factor in K[X, Y].

• Suppose that F|s=0 = G|t=0.

Then A(I) is nontrivial if and only if F ∈ K[X][s] and G ∈ K[Y][t].

In this case, (F|s=1, G|t=1) is a generator of A(I).

24



Theorem.

• Let p ∈ K[X, Y] \ (K[X] ∪ K[Y]) and I = ⟨p⟩ ⊆ K[X, Y].
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• Suppose that A(Ī) is nontrivial and let
(
F
G

)
be a generator.

• Suppose that F,G have no denominator in K[X, Y].

• Suppose that F−G has no factor in K[X, Y].

• Suppose that F|s=0 = G|t=0.

Then A(I) is nontrivial if and only if F ∈ K[X][s] and G ∈ K[Y][t].

In this case, (F|s=1, G|t=1) is a generator of A(I).

24



Theorem.

• Let p ∈ K[X, Y] \ (K[X] ∪ K[Y]) and I = ⟨p⟩ ⊆ K[X, Y].
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Conclusion.

• A(⟨p⟩) is simple for every p ∈ K[X, Y] \ (K[X] ∪ K[Y]).

• Given p, we can compute a generator for A(⟨p⟩).

Moreover:

• If I ⊆ K[X, Y] can be written as I = I0 ∩ I1 for some
I0 ⊆ K[X, Y] of dimension zero and some principal ideal
I1 ⊆ K[X, Y], then A(I) is finitely generated and we can
compute a list of generators.
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What can we do with arbitrary ideals I of K[X, Y]?

Note:

• A(I) may not be finitely generated, but A(ϕ(I)) always is.

• We can compute some generators B1, . . . , Bk of A(ϕ(I)).

• ϕ maps every element of A(I) to an element of A(ϕ(I)).

• Every such element is a polynomial in B1, . . . , Bk.

• Therefore, it suffices to find elements of K(X, Y)[B1, . . . , Bk]
that become elements of A(I) after setting s = t = 1.
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Fact: Given a basis of I and some elements U1, . . . , Uℓ of
A(ϕ(I)), we can compute a basis of the K-vector space of all the
elements of A(I) that are obtained from a K(X, Y)-linear
combination of U1, . . . , Uℓ by setting s = t = 1.

For d = 1, 2, . . . in turn, apply this algorithm to all power products
of B1, . . . , Bk of degree at most d.

This will enumerate a set of generators of A(I).
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Ideals of dimension zero

Principal ideals in two variables

Arbitrary ideals in two variables

More than two variables
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I am looking for new Ph.D. students. If you know anybody who
might be interested, please point them to me. Thank you.

29


