
Palestine Journal of Mathematics

Vol. ??(?)(20??) , 1–5 © Palestine Polytechnic University-PPU 20??

WHICH (SUB)DIRECT DECOMPOSITIONS ARE USEFUL?

Manuel Kauers and Günter Pilz

Communicated by Kent Neuerburg

MSC 2010 Classifications: Primary 13C05; Secondary 68W30 20M99.

Keywords and phrases: Chinese remainder theorem, polynomial interpolation, Discrete Fourier Transform.

Abstract Algebraists like decompositions. One goal is that one then can do parallel compu-
tations. Some decompositions are particularly useful, and we want to find out when a decom-
position is useful (for parallel computations). Other decompositions will also be useful, for the
theory and for our knowledge. We will go through some examples.

Instance 1: Vector spaces

Every math student knows: If KV is a finite dimensional vector space over a field K then

dim(KV) = n ⇐⇒ V ' Kn

How useful this is can be seen in the case when V is the vector space of all equivalence classes
of “arrows” in the 3D-space. Imagine how ugly it would be to determine things like linear
combinations.

So: V −→ Kn works by introducing coordinates—after choosing a basisB = (b1, b2, . . . , bn).
And V ←− Kn is done by the map (λ1, λ2, . . . , λn)→ λ1b1 + λ2b2 + . . .+ λnbn
Observe that this is not a “natural isomorphism” in the sense of category theory, because −→

and←− depend on the selection of a basis!

Instance 2: Integers

If we want to do parallel computations in Z, we will not succeed because (Z,+) is indecompos-
able. But we can do additions, subtractions, multiplications and taking powers in Zn, provided
that n is sufficiently large.

If n = pt1
1 . . . p

tr
r then Zn ' Z

p
t1
1
⊕ . . . ⊕ Zptr

r
by the map x → (x1, . . . , xr), where xi is the

residue class of x modulo ptii . We can do all computations with x, y, . . . in each component, and
we will end up with an element in Z

p
t1
1
⊕ . . .⊕ Zptr

r
.

How about the way back: Zn←−Zp
t1
1
⊕ . . .⊕ Zptr

r
? It is the Chinese Remainder Theorem!

And the nice thing: One only has to deal with integers which are < n̄ := max(pt1
1 , . . . , p

tr
r)!

So we want n̄ to be small, and n should be big. It is better to start with n̄. If we choose
n̄ = 50, for instance, we get the maximal n as n = 25 · 33 · 52 · 72 · 11 · 13 · · · 47 > 1021. For
computations on an actual computer, a more realistic choice is n̄ = 264, for which we get a
maximal n with n = 264340527 · · · 4294967291 > 104000000000000000000.

If we need to recover larger integers from homomorphic images, we may still get along
without increasing n̄ if we have some knowledge about the range in which the target integer
lives. For example, if we know that it is somewhere between 10000000000 and 10000002000,
then it suffices to choose some n̄ with n > 2000, because then, every equivalence class in Zn

contains exactly one integer in the range {10000000000, . . . , 10000002000}. In particular, we
do not need to restrict to nonnegative integers. If we know that we are looking for an integer x
with |x| < M , it suffices to choose n̄ such that n > 2M in order to recover x from its image in
Zn.

See [3] for a more detailed discussion.

2 Manuel Kauers and Günter Pilz

Instance 3: Polynomials

Most things which can be done in Z, can also be done in K[x]. Let K be again a field, and we
work in K[x]/(f), where f = pt1

1 . . . p
tr
r is a polynomial of sufficiently high degree. Recall that

this is done, e.g., in coding theory, where f is of the form f = xm− 1 in the case of cyclic codes
(see, e.g., [4]). Again, we getK[x]/(f) ' K[x]/(pt1

1)⊕ . . .⊕K[x]/(ptrr) by an isomorphism−→
which takes the equivalence class [p](f) of p ∈ K[x] w.r.t. (f) to the r-tuple ([p]

p
t1
1
, . . . , [p]ptr

r
)

What would be a good choice for f? We have a lot of freedom. Why not simply take
f = (x− k1)(x− k2) . . . (x− kr), where the ki are pairwise different elements of K? We get the
components [p]

p
tj
j

= remainder of p after division by (x − kj) = p(kj). Hence [p](f) is mapped

to (p(k1), p(k2), . . . , p(kr)), if we identify the constant polynomial k with the element k ∈ K.
And what is the way←− back? It is again the Chinese Remainder Theorem!

But what does p(k) mean? We are sliding away from polynomials to polynomial functions.

Instance 4: Polynomial functions

To every polynomial p ∈ F [x], there comes a polynomial function p̄ : F → F in the familiar
way. Let P (F) be the collection of all polynomial functions on F . One easily sees that P (F) is
a ring, in fact a subring of FF , and that ϕ : F [x]→ P (F), p 7→ p̄ is an epimorphism. Is ϕ always
an isomorphism? If F is finite, this cannot happen, because F [x] is infinite, while P (F) is finite.
As an example, take p = x5 − x ∈ Z5[x]. Then p induces the zero function.

For fields F , the situation is easy:

Fact 1. If F is a field then ϕ : F [x]→ P (F), p→ p̄ is an isomorphism⇐⇒ F is infinite.

If F is “only” a ring, the dividing line between “iso / not iso” is still unknown. For example,
an old result of Áczel [1] says that if the additive group (F,+) is torsion-free then ϕ is an
isomporphism.

So for polynomial functions, one cannot apply the “Principle of Comparing Coefficients” in
general. What is a “principle”? Mathematicians do not have principles. . .

Can we decompose P (F)? Well, this is done already, since P (F) is a subring of FF , by the
map i : p̄ → (. . . , p̄(r), . . .), where r runs through all elements of F . Applying i makes a lot
of sense, since it needs more time to compute p̄ · q̄ = p · q, which involves convolutions, where
i(p̄) · i(q̄) can be done in a component-wise manner! Some additional care is needed for constant
coefficients.

Do we have a “formula” to go back again, from im(i) to P (F), so P (F) ←− im(i)? Yes, it
is the interpolation of polynomials.

Instances 3 and 4: The speed-up

Let us go back to the end of Instance 3. We want to evaluate p ∈ F [x] at places k1, . . . , kr, and
we now write p̄(k), of course. We still can choose these places.

Let us do this in an intelligent way and look at an example, p = a0 +a1x+a2x
2 + . . .+a5x

5,
and k1 = 1, k2 = −1. If we put aev := a0+a2+a4 and aod := a1+a3+a5 then p̄(1) = aev+aod
and p̄(−1) = aev − aod.

So p̄(1) and p̄(−1) can be computed very quickly. If F = C, we might continue with i and
−i. In general, we might continue with roots ω of unity, if there are enough of them.

Suppose we have a field F which, for some n ∈ N, has n roots of unity. All finite fields
fulfill this, as well as C. Then there is also a “primitive” n-th root ω of unity, and all other
roots of unity are powers of ω. So, if ω is a primitive n-th root of unity, we evaluate p at
ω0 = 1, ω, ω2, . . . , ωn−1.

Then p = a = (a0, a1, . . . , an−1) =
∑n−1

i=0 âix
i is transferred to

(p(ω0), p(ω), . . . , p(ωn−1) =: (â0, â1, . . . , ân−1) =: â =
n−1∑
i=0

âix
i.

WHICH (SUB)DIRECT DECOMPOSITIONS ARE USEFUL? 3

The map a → â is called the Discrete Fourier Transform (DFT). In applications, a is called the
“signal vector”, while â is the “spectral vector”. Sometimes, the re-writing of a = (a0, a1, . . . , an−1)

as
∑n−1

i=0 aix
i is called the “z-transform”, which is a bit strange since nothing is transformed:

(a0, a1, . . . , an−1) and
∑n−1

i=0 aix
i are THE SAME.

What is the transform a → â good for? The DFT can be made easier. Take a primitive n-th
root ω of unity in F and form the matrix

Dn,ω :=


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

.

1 ωn−1 ω2(n−1) . . . ω(n−1)2

 .

Dn,ω is called the DFT-matrix. We writeDn or simplyD if the context is clear. It has marvellous
properties (see [3]).

Theorem 2. (i) â = a · Dn,ω (so simultaneous polynomial evaluation becomes matrix-vector
multiplication)

(ii) D−1
n,ω = 1

nDn,ω−1 (so D is “essentially self-inverse”, and multiplying by D−1 amounts to
interpolation)

(iii) If p, q ∈ F [x] then p ·q = D−1(Dp ·Dq) (soD translates convolutions into component-wise
products)

In general, the multiplication of an n × n matrix with a vector requires O(n2) operations.
A famous feature of Dn is that matrix-vector multiplication can be done with only O(n logn)
operations. This is known as Fast Fourier Transform (FFT) and rests on the decomposition (in
which we assume that n is even)

Dn,ω =

(
In/2 ∆

In/2 −∆

)(
Dn/2,ω2 0

0 Dn/2,ω2

)
P,

where ∆ = diag(1, ω, . . . , ωn/2) ∈ Fn/2×n/2 and P ∈ Fn×n is the permutation matrix that
maps (x0, x1, . . . , xn−1) to (x0, x2, . . . , xn−2, x1, x3, . . . , xn−1). If n is a power of two, repeated
application of this decomposition allows us to write Dn as a product of O(logn) many matrices
each of which is so simple that matrix-vector multiplication can be done in linear time. This is
the essence of the Cooley-Tuckey algorithm [3]. Gilbert Strang said in 1994: “The FFT is the
most important numerical algorithm in our lifetime”! We agree with “most important” but not
with the restriction to “numerical”. The FFT is an important algebraic algorithm as well.

Also, the largest component âi (for F = C) gives the most important information on a =
(a0, a1, . . . , an−1). This can be used for data compression. In the theory of signal processing and
mechatronics, it is customary to say that one works in the “time domain” if data a are studied.
In contrast, when working with their Fourier transforms, one says one is in the “phase domain”.

So, we have a diagram
F [x] −→ F [x]/(f) −→ Fn

with return map
F [x]/(f)←− Fn,

where←− is either Chinese Remainder or interpolation or D−1.
Observe that←− does not go to F [x] (“wrong address”)! Never mind; there might be many

q ∈ F [x] which have the same equivalence class as p, but then q differs from p by a polynomial
of higher degree than deg(f), which we had excluded.

Instance 4 – Generalized

This can be even further generalized (for details see [2]). Recall that F [x]/(xn−1) is isomorphic
to the group ring F [Cn] over the cyclic group Cn, and F [Z] is isomorphic to the ring of Laurent

4 Manuel Kauers and Günter Pilz

polynomials in x. So one might shift the interest to group rings. Maschke’s Theorem yields a
direct decomposition into simple ideals, and representation theory can switch on its powerful
machinery to make everything constructive. For example, we have

• Q[C3] ∼= Q⊕Q[x]/(x2 + x+ 1),

• C[S3] ∼= C⊕C⊕M2×2(C).

In these group rings, again a “general Discrete Fourier Transform” is available.

Instance 5: Solving equations of degree ≥ 5?

The successes of parallel computations so far might give rise to another hope: Can we get around
the “Abel-Galois-barrier 5” that there cannot be “formulas” for solving equations of degree ≥ 5?

A zero z of a polynomial p ∈ F [x] is an element z ∈ F such that p̄(z) = 0. In other words,
we have p ◦ z = 0, where ◦ denotes the composition of polynomials.

So we “expand” the polynomial ring (F [x],+, ·) to the “composition ring” (F [x],+, ·, ◦).
This means that (F [x],+, ·) is a ring and (F [x],+, ◦) is a “near-ring” (addition is not necessarily
abelian, and we have just one distributive law), see [6]. Can we find a “full ideal” (= kernel of
a composition ring homomorphism), say (f) again, such that (F [x],+, ·, ◦)/(f) can be decom-
posed so that we can work in factors with equivalence classes of polynomials of low degree, find
zeroes there, and use the Chinese Remainder Theorem again to get a zero in F ?

The following result puts a stop to these considerations:

Theorem 3 (Nöbauer [5]). : The composition ring (F [x],+, ·, ◦) is simple iff F is an infinite
field.

Game over!

Instance 6: Other decompositions

What about other decomposition results? Two examples:

Theorem 4. (i) The group (R/Z,+) is the direct sum of copies of Q and of groups of the type
Z∞p .

(ii) Every lattice is a subdirect product of subdirectly irreducible lattices.

In these cases, it seems to be much harder to retrieve concrete information about the structure
which was decomposed. In particular, we do not have a convenient map ←− from the direct
product back into the algebra.

Summary

If a decomposition of an algebra A into algebras Ai should be “useful” (for parallel computing,
and the like), there should be:

• a “good” map −→ from A to the algebras Ai,

• a “sufficiently good and constructive” knowledge of the components Ai, AND

• a “convenient” map←− from the decomposition back into A .

References
[1] Janos Aczel. On Applications and Theory of Functional Equations. Academic Press, 2014.

[2] Thomas Beth. Verfahren der schnellen Fourier-Transformation. Teubner, 1984.

[3] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

[4] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1996.

WHICH (SUB)DIRECT DECOMPOSITIONS ARE USEFUL? 5

[5] Hans Lausch and Winfried Nöbauer. Algebra of Polynomials. North-Holland, 1973.

[6] Günter Pilz. Near-Rings. North-Holland, 1983.

Author information
Manuel Kauers and Günter Pilz, Institute for Algebra, Johannes Kepler University, 4040 Linz, Austria.
E-mail: manuel.kauers@jku.at, guenter.pilz@jku.at

