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ABSTRACT
Although in theory we can decide whether a given D-finite func-

tion is transcendental, transcendence proofs remain a challenge in

practice. Typically, transcendence is certified by checking certain

incomplete sufficient conditions. In this paper we propose an ad-

ditional such condition which catches some cases on which other

tests fail.
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1 INTRODUCTION
An algebraic function is a quantity 𝑦 for which there are polynomi-

als 𝑢0, . . . , 𝑢𝑑 , not all zero, such that

𝑢0 (𝑥) + 𝑢1 (𝑥)𝑦 + · · · + 𝑢𝑑 (𝑥)𝑦𝑑 = 0.

A D-finite function is a quantity 𝑦 for which there are polynomials

𝑝0, . . . , 𝑝𝑟 , not all zero, such that

𝑝0 (𝑥)𝑦 + 𝑝1 (𝑥)𝑦′ + · · · + 𝑝𝑟 (𝑥)𝑦 (𝑟 ) = 0.

As recognized by Abel, every algebraic function is also D-finite,

and it is not hard to construct a differential equation from a known

polynomial equation. The other direction is much more difficult, as

a given differential equation may or may not have any algebraic

solutions. The problems of finding out whether a given differen-

tial equation has some (nonzero) algebraic solutions, and finding

out whether a given power series solution of a given differential

equation is algebraic can be reduced to the problem of finding out

whether a given differential equation has only algebraic solutions,
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using operator factorization [24] or minimization techniques [10],

respectively.

The problem to decide whether a given differential equation

admits only algebraic solutions has received a lot of attention since

the 19th century, when Schwarz, Klein, Fuchs and others studied

the problem for equations with 𝑟 = 2 [15], but even this special case

was not fully understood until Baldassari and Dwork [1] gave a

complete decision procedure in 1979. Only a year later, Singer [21]

offered an algorithm that applies to equations of arbitrary order 𝑟 .

His algorithm is, however, only of theoretical interest, as it relies on

solving a nonlinear system of algebraic equations whose number of

variables is determined by a group-theoretic bound involving the

term (49𝑟 )𝑟 2

. This is far from feasible, even for 𝑟 = 2. However, in

practice, for small orders, the bound can be refined, leading to more

practical algorithms. This has been done for order 2 [19, 22], order

3 [22, 23] and orders 4 and 5 [13]. The problem remains difficult

beyond those known cases.

If a differential equation has only algebraic solutions, their mini-

mal polynomials are not difficult to find. One way is to compute

a truncated power series solution of the differential equation and

then use linear algebra or Hermite-Padé approximation [2] to find

a candidate annihilating polynomial. From the first 𝑁 terms of a

series solution, we can reliably detect annihilating polynomials of

degrees 𝑑𝑥 , 𝑑𝑦 with (𝑑𝑥 + 1) (𝑑𝑦 + 1) < 𝑁 . The correctness of such

a candidate can be checked by computing the differential equation

satisfied by the solution of the candidate equation and comparing

it with the input equation. If they do not match, or if no candidate

equation is found, repeat the procedure with a higher truncation

order 𝑁 and higher degrees 𝑑𝑥 , 𝑑𝑦 . Eventually, the correct minimal

polynomial will be found.

In Sect. 4 we give an alternative method which can decide for a

given 𝑑𝑦 whether all solutions are algebraic with a minimal poly-

nomial of degree at most 𝑑𝑦 , regardless of the degree 𝑑𝑥 of the

polynomial coefficients of the minimal polynomial. This method

has the advantage that 𝑑𝑥 need not be guessed in advance, but it

still requires a guess for 𝑑𝑦 . We are thus led to the question how

we can detect with a reasonable amount of computation time that a

differential equation has at least one transcendental solution. There

are indeed several things that are worth trying. For example, if a

differential equation has a logarithmic or an exponential singularity,

it cannot only have algebraic solutions. This test was applied for

example in order to prove transcendence of the generating func-

tion for Kreweras walks with interacting boundaries [9]. Another

popular test is to determine the asymptotic behaviour of the series

coefficients of a solution of the differential equation. If it is not of

the form 𝜙𝑛𝑛𝛼 with 𝛼 ∈ Q \ {−1,−2,−3, . . . }, this also proves the

presence of a transcendental solution [14]. A third possibility is to

use arbitrary precision arithmetic [18, 20] to compute eigenvalues
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of monodromy matrices for the differential equation. If there is an

eigenvalue that is not a root of unity, there must be a transcendental

solution. A fourth idea is to exploit that an algebraic power series

𝑓 ∈ Q[[𝑥]] must be globally bounded, i.e., there must be nonzero

integers 𝛼, 𝛽 such that 𝛼 𝑓 (𝛽𝑥) ∈ Z[[𝑥]]. If a given differential

operator has a series solution that is not globally bounded, then

it cannot only have algebraic solutions. As a fifth approach, we

can investigate the 𝑝-curvature of the differential equation [6, 7]

and resort to a conjecture of Grothendieck according to which the

𝑝-curvature is zero for almost all primes 𝑝 if and only if the differ-

ential equation has only algebraic solutions. A nice account on this

approach was recently given by Bostan, Caruso, and Roques [5].

Another idea is to try to prove transcendence via the criterion of

Harris and Sibuya [16], which says that for a D-finite function 𝑓 ,

the reciprocal 1/𝑓 is D-finite as well if and only if the logarithmic

derivative 𝑓 ′/𝑓 is algebraic. Finally, there are powerful criteria for
certain special differential equations, e.g., the criterion of Beukers

and Heckman for testing algebraicity of a hypergeometric differen-

tial equation [3].

All these tests have limitations. The first four tests only provide

a sufficient condition for the existence of transcendental solutions,

but there are equations with transcendental solutions on which all

three tests fail. In addition, for the fourth test, even if we find a so-

lution that looks like it is not globally bounded, it can be difficult to

prove that it really is not. A limitation of the 𝑝-curvature test is the

quantifier “almost all”: if we encounter a prime (or several primes)

for which the 𝑝-curvature is nonzero, this is strong evidence in

favor of a transcendental solution, but there remains a small chance

that the prime(s) were just unlucky. The criterion of Harris and

Sibuya reduces the problem of proving that 𝑓 ′/𝑓 is transcendental
to the problem of proving that 1/𝑓 is not D-finite, which is typically

more difficult. In fact, this criterion is more valuable in the other

direction: to prove that 1/𝑓 is not D-finite, it suffices to prove that

𝑓 ′/𝑓 is not algebraic. The obvious limitation of the criterion of

Beukers and Heckman is that it only applies to hypergeometric

functions.

In view of this situation, additional sufficient conditions for tran-

scendental solutions that can be tested with reasonable computa-

tional cost are of interest. Ideally, such tests should also provide

some artifacts that can serve as witness for the existence of tran-

scendental solutions. We propose the term transcendence certificate
for such artifacts. For example, a logarithmic or exponential singu-

larity can be viewed as such a transcendence certificate. Observe

that the algorithms of Kovacic and Singer mentioned earlier do

not provide any transcendence certificates but will just report “no

algebraic solution” as output.

The purpose of the present paper is to introduce a transcendence

certificate based on the following classical fact about algebraic

functions:

Proposition 1. [4, 25] Every non-constant algebraic function
must have at least one pole.

With our new test, we are able to prove the existence of tran-

scendental solutions for some equations that have no logarithmic

singularities, no series solutions with illegal coefficient asymptotics,

and whose monodromy matrices have just roots of unity as eigen-

values. We also wish to point out that our approach is applicable to

differential equations of any order.

2 PRELIMINARIES
Throughout this paper, let 𝐶 be an algebraically closed field of

characteristic zero, and let 𝐾 = 𝐶 (𝑥) denote the field of rational

functions over 𝐶 . A Puiseux series at b ∈ 𝐶 is a series of the form

𝑐𝑛 (𝑥 − b)𝑛/𝑞 + 𝑐𝑛+1 (𝑥 − b) (𝑛+1)/𝑞 + · · · with 𝑛 ∈ Z, 𝑞 ∈ N, and
𝑐𝑛, 𝑐𝑛+1, . . . ∈ 𝐶; we write 𝐶 (( (𝑥 − b)1/𝑞 )) for the field of all

Puiseux series at b whose exponents have a common denominator

dividing𝑞 ∈ N. Similarly, a Puiseux series at∞ is a series of the form

𝑐𝑛𝑥
−𝑛/𝑞+𝑐𝑛+1𝑥

−(𝑛+1)/𝑞+· · · = 𝑐𝑛 (𝑥−1)𝑛/𝑞+𝑐𝑛+1 (𝑥−1) (𝑛+1)/𝑞+· · · ;
the field of all Puiseux series at∞ is denoted by𝐶 ((𝑥−1/𝑞)). In both

cases, we call 𝑛/𝑞 the starting exponent of the series, provided that

𝑐𝑛 ≠ 0.

An algebraic function field 𝐸 = 𝐾 [𝑦]/⟨𝑚⟩ is a field extension

of the rational function field 𝐾 of finite degree, where 𝑚 is an

irreducible polynomial in 𝐾 [𝑦]. For every b ∈ 𝐶 ∪ {∞}, the ele-
ment 𝑦 ∈ 𝐸 can be identified with any of the deg𝑦 (𝑚) many roots

of the minimal polynomial𝑚 in the field of Puiseux series at b ; we

call them the expansions of 𝑦 at b .

A Puiseux series is said to be integral if its starting exponent

is nonnegative, i.e., if the corresponding function does not have a

pole at the expansion point. The element 𝑦 of 𝐸 is called integral at

b ∈ 𝐶 ∪ {∞} if all its Puiseux series expansions at b are integral. In
order to extend the definition of integrality to other elements of 𝐸,

note that for every expansion 𝑓 of𝑦 we have a field homomorphism

ℎ𝑓 : 𝐸 → 𝐶 (( (𝑥−b)1/𝑞 )) (or ℎ𝑓 : 𝐸 → 𝐶 ((𝑥−1/𝑞)) if b = ∞) which

maps 𝑦 to 𝑓 . Now 𝑢 ∈ 𝐸 is called integral at b if for all expansions 𝑓

of 𝑦 the series ℎ𝑓 (𝑢) is integral. The element 𝑢 is called (globally)

integral if it is integral at every b ∈ 𝐶 (but not necessarily at infinity).

The set of all integral elements of 𝐸 forms a free 𝐶 [𝑥]-submodule

of 𝐸, and a basis of this module is called an integral basis of 𝐸. We

say that an element of 𝐸 is completely integral if it is integral at
every b ∈ 𝐶 ∪ {∞}. According to Proposition 1, the completely

integral elements of 𝐸 are precisely the elements of 𝐶 .

Let 𝐷 denote the usual derivation with respect to 𝑥 , i.e., 𝐷 (𝑓 ) =
𝑓 ′, which turns 𝐾 = 𝐶 (𝑥) or 𝐸 = 𝐶 (𝑥) [𝑦]/⟨𝑚⟩ into differential

fields. An element 𝑐 of a differential field 𝐹 is called a constant

if 𝐷 (𝑐) = 0; these constants always form a subfield of 𝐹 . A linear

differential operator is an expression of the form 𝐿 = 𝑝0+𝑝1𝐷+· · ·+
𝑝𝑟𝐷

𝑟
with 𝑝0, . . . , 𝑝𝑟 ∈ 𝐾 . If 𝑝𝑟 ≠ 0, we call ord(𝐿) = 𝑟 = deg𝐷 (𝐿)

the order of the operator. The operator 𝐿 is called monic if 𝑝𝑟 = 1.

The set of all linear differential operators will be denoted by 𝐾 [𝐷];
it forms a non-commutative ring in which the multiplication is

governed by the Leibniz rule 𝐷𝑥 = 𝑥𝐷 + 1. An operator 𝐿 is called

irreducible if it cannot be written as 𝐿 = 𝐿1 · 𝐿2 with ord(𝐿1) ≥ 1

and ord(𝐿2) ≥ 1. Every differential field 𝐹 is a 𝐾 [𝐷]-left-module

via the action

(𝑝0 + 𝑝1𝐷 + · · · + 𝑝𝑟𝐷𝑟 ) · 𝑦 := 𝑝0𝑦 + 𝑝1𝐷 (𝑦) + · · · + 𝑝𝑟𝐷𝑟 (𝑦) .

An element 𝑦 of a differential field 𝐹 is called a solution of an opera-

tor 𝐿 ∈ 𝐾 [𝐷] if 𝐿 ·𝑦 = 0. The set of all solutions of 𝐿 in a differential

field 𝐹 is denoted by 𝑉 (𝐿). It is always a vector space over the

constant field of 𝐹 and hence called the solution space of 𝐿. If the



constant field of 𝐹 is𝐶 , then the dimension of𝑉 (𝐿) in 𝐹 is bounded

by the order of 𝐿, but in general it is smaller. We say that 𝐿 has

only algebraic solutions if there is a differential field 𝐸 = 𝐾 [𝑦]/⟨𝑚⟩
such that the solution space 𝑉 (𝐿) in 𝐸 has dimension ord(𝐿). If 𝐿
is an irreducible operator then either all its solutions are algebraic

or none of them (except for the zero solution) [21, Prop. 2.5].

If 𝐿 = 𝑝0 + · · · + 𝑝𝑟𝐷𝑟 ∈ 𝐾 [𝐷] is an operator of order 𝑟 , we

call b ∈ 𝐶 a singularity of 𝐿 if it is a pole of one of the rational

functions 𝑝0/𝑝𝑟 , . . . , 𝑝𝑟−1/𝑝𝑟 . The point ∞ is called a singularity if,

after the substitution 𝑥 ↦→ 𝑥−1
, the origin 0 becomes a singularity.

If b ∈ 𝐶 ∪ {∞} is not a singularity of 𝐿, then 𝐿 has 𝑟 linearly

independent Puiseux series solutions at b , and they are all integral.

The notion of integrality for differential operators is defined

in a similar way as discussed above for algebraic field extensions

𝐸 = 𝐾 [𝑦]/⟨𝑚⟩. Throughout this paper, we consider only operators

which have a basis of Puiseux series solutions at every point b ∈ 𝐶∪
{∞}. For such an operator𝐿 ∈ 𝐾 [𝐷], we have themodule𝐾 [𝐷]/⟨𝐿⟩
where ⟨𝐿⟩ denotes the left ideal {𝑃 · 𝐿 | 𝑃 ∈ 𝐾 [𝐷]}. Note that

𝐾 [𝐷]/⟨𝐿⟩ is not a ring but only a (left)𝐾 [𝐷]-module. In thismodule,

the equivalence class [1]𝐿 has the property 𝐿 · [1]𝐿 = [𝐿]𝐿 = [0]𝐿 ,
so [1]𝐿 can be considered as a solution of 𝐿 in𝐾 [𝐷]/⟨𝐿⟩, very much

like the element𝑦 ∈ 𝐸 is a root of𝑚. Similar as for algebraic function

fields, we can associate [1]𝐿 ∈ 𝐾 [𝐷]/⟨𝐿⟩ with any solution 𝑓 of

𝐿 in a Puiseux series field 𝐶 (( (𝑥 − b)1/𝑞 )) or 𝐶 ((𝑥−1/𝑞)). The
association of [1]𝐿 with 𝑓 extends to 𝐾 [𝐷]/⟨𝐿⟩ by mapping an

equivalence class [𝑃]𝐿 to the series 𝑃 · 𝑓 . The notions of integrality
can now be defined like before:

• [𝑃]𝐿 is called (locally) integral at some point b ∈ 𝐶 ∪ {∞} if
for every Puiseux series solution 𝑓 of 𝐿 at b , the series 𝑃 · 𝑓
is integral.

• [𝑃]𝐿 is called (globally) integral if it is locally integral at

every point b ∈ 𝐶 (but not necessarily at∞).

• [𝑃]𝐿 is called completely integral if it is locally integral at

every point b ∈ 𝐶 ∪ {∞}.

Note that in the last two items it suffices to consider points b that

are singularities of 𝐿 or poles of some of the coefficients of 𝑃 . For

any fixed 𝐿 and 𝑃 , these are only finitely many. Also recall that we

restrict our attention to operators 𝐿 which have a basis of Puiseux

solutions, so that the quantifier “for all Puiseux series solutions” in
the definitions above is equivalent to “for all solutions”.

The set of all integral elements in 𝐾 [𝐷]/⟨𝐿⟩ forms a free 𝐶 [𝑥]-
left-module, and a basis of this module is called an integral basis of
𝐾 [𝐷]/⟨𝐿⟩. An integral basis {𝑤1, . . . ,𝑤𝑟 } is called normal at infinity
if there are integers 𝜏1, . . . , 𝜏𝑟 ∈ Z such that {𝑥𝜏1𝑤1, . . . , 𝑥

𝜏𝑟𝑤𝑟 } is a
basis of the 𝐶 (𝑥)∞-left-module of all elements of 𝐾 [𝐷]/⟨𝐿⟩ which
are integral at infinity. Here,𝐶 (𝑥)∞ refers to the ring of all rational

functions 𝑢/𝑣 with deg𝑢 ≤ deg 𝑣 . Integral bases which are normal

at infinity always exist, and they can be computed [12, 17].

Finally, we recall some fundamental facts about operators. The

adjoint 𝐿∗ of an operator 𝐿 ∈ 𝐾 [𝐷] is defined in such a way that

for any two operators 𝐿,𝑀 ∈ 𝐾 [𝐷] we have (𝐿 +𝑀)∗ = 𝐿∗ +𝑀∗

and (𝐿𝑀)∗ = 𝑀∗𝐿∗. We have 𝐷∗ = −𝐷 and 𝑞∗ = 𝑞 for all 𝑞 ∈ 𝐾 .
Moreover, ord(𝐿∗) = ord(𝐿) for every 𝐿 ∈ 𝐾 [𝐷]. The least common
left multiple of two operators 𝐿,𝑀 ∈ 𝐾 [𝐷], denoted by lclm(𝐿,𝑀),
is defined as the unique monic operator of lowest order which has

both 𝐿 and𝑀 as right factor. Its key feature is that whenever 𝑓 is

a solution of 𝐿 and 𝑔 is a solution of𝑀 , then 𝑓 + 𝑔 is a solution of

lclm(𝐿,𝑀). For the efficient computation of the least common left

multiple, see [8]. There is a similar construction for multiplication.

The symmetric product 𝐿 ⊗ 𝑀 of two operators 𝐿,𝑀 ∈ 𝐾 [𝐷] is
defined as the unique monic operator of lowest order such that

whenever 𝑓 is a solution of 𝐿 and 𝑔 is a solution of 𝑀 , then 𝑓 𝑔 is

a solution of 𝐿 ⊗ 𝑀 (regardless of the differential field to which

𝑓 and 𝑔 belong). As a special case, the 𝑠th symmetric power of an
operator 𝐿 ∈ 𝐾 [𝐷] is defined as 𝐿⊗𝑠 = 𝐿 ⊗ · · · ⊗ 𝐿. For the efficient

computation of the symmetric powers, see [11].

By construction, we have𝑉 (𝐿) +𝑉 (𝑀) ⊆ 𝑉 (lclm(𝐿,𝑀)), and in
general, the inclusion is proper. However, if dim𝑉 (𝐿) = ord(𝐿) and
dim𝑉 (𝑀) = ord(𝑀), then we have𝑉 (𝐿) +𝑉 (𝑀) = 𝑉 (lclm(𝐿,𝑀)),
i.e., the least common multiple cannot have any extraneous solu-

tions. Likewise, if dim𝑉 (𝐿) = ord(𝐿) and dim𝑉 (𝑀) = ord(𝑀), the
solution space of the symmetric product 𝐿 ⊗ 𝑀 is generated by all

products 𝑓 𝑔 with 𝑓 ∈ 𝑉 (𝐿) and 𝑔 ∈ 𝑉 (𝑀). These facts were shown
by Singer [21] in the context of complex functions, and again using

more abstract machinery in the book of van der Put and Singer [24].

3 PSEUDOCONSTANTS
Let 𝐿 ∈ 𝐾 [𝐷] be a linear differential operator. As mentioned before,

if 𝐿 has a logarithmic or exponential singularity, it follows imme-

diately that 𝐿 does not only have algebraic solutions and we may

view the singularity as a transcendence certificate. We continue to

exclude this case from consideration, i.e., we continue to assume

that 𝐿 has no logarithmic or exponential singularity at any point in

𝐶 ∪ {∞}. In other words, we assume that 𝐿 has a basis of Puiseux

series solutions at every point.

Definition 2. Let 𝐿 ∈ 𝐾 [𝐷], and let [𝑃]𝐿 ∈ 𝐾 [𝐷]/⟨𝐿⟩.
(1) [𝑃]𝐿 is called a constant if 𝐷 · [𝑃]𝐿 = [0]𝐿 ;
(2) [𝑃]𝐿 is called a pseudoconstant if [𝑃]𝐿 is completely integral but

not a constant.

We will say for short that “𝐿 has a [pseudo]constant” if 𝐾 [𝐷]/⟨𝐿⟩
contains a [pseudo]constant.

Proposition 3. Let 𝐿 ∈ 𝐾 [𝐷], and let [𝑃]𝐿 ∈ 𝐾 [𝐷]/⟨𝐿⟩. Let 𝐸
be an extension of 𝐾 such that the solution space 𝑉 (𝐿) of 𝐿 in 𝐸 has
dimension ord(𝐿).
(1) [𝑃]𝐿 is a constant if and only if 𝑃 · 𝑓 is a constant for every

𝑓 ∈ 𝑉 (𝐿).
(2) If [𝑃]𝐿 is a nonzero constant and ord(𝑃) < ord(𝐿), then ord(𝑃) =

ord(𝐿) − 1.
(3) The set of all constants forms a 𝐶-vector space of dimension at

most ord(𝐿).

Proof.

(1) Clearly, if [𝑃]𝐿 is a constant, then for all 𝑓 ∈ 𝑉 (𝐿), 𝐷 · (𝑃 · 𝑓 ) =
(𝐷 · [𝑃]𝐿) · 𝑓 = 0. Conversely, let 𝑟 be the order of 𝐿 and 𝑃 be the

representative of order at most 𝑟 − 1 of [𝑃]𝐿 . Assume that 𝑃 · 𝑓
is a constant for all 𝑓 ∈ 𝑉 (𝐿), i.e., 𝐷 · (𝑃 · 𝑓 ) = 0. This means

that 𝑉 (𝐿) ⊂ 𝑉 (𝐷 · 𝑃). Since 𝑉 (𝐷 · 𝑃) has dimension at most 𝑟

and𝑉 (𝐿) has dimension 𝑟 , it follows that𝑉 (𝐿) = 𝑉 (𝐷 ·𝑃). This
implies that 𝐿 and 𝐷 · 𝑃 are equal up to an invertible factor in

𝐾 , and therefore that 𝐷 · [𝑃]𝐿 = [𝐷 · 𝑃]𝐿 = [0]𝐿 .



(2) If ord(𝑃) < ord(𝐿) − 1, then ord(𝐷𝑃) < ord(𝐿), so the assump-

tion 𝐷 · [𝑃]𝐿 = [𝐷𝑃]𝐿 = 0 forces 𝐷𝑃 = 0, which in turn forces

𝑃 = 0 in contradiction to the assumption that [𝑃]𝐿 is not zero.

(3) It is clear that the constants form a 𝐶-vector space. In order to

prove the bound on the dimension, consider a 𝑃 ∈ 𝐾 [𝐷] with
ord(𝑃) < ord(𝐿) such that [𝑃]𝐿 is a constant. Then 𝐷 · [𝑃]𝐿 =

[𝐷𝑃]𝐿 = 0, so there is a 𝑞 ∈ 𝐾 with 𝐷𝑃 = 𝑞𝐿. It is clear that 𝑞 is

uniquely determined and that the function which maps every

constant [𝑃]𝐿 to the corresponding 𝑞 is 𝐶-linear and injective.

Now 𝐷𝑃 = 𝑞𝐿 implies (𝐷𝑃)∗ = (𝑞𝐿)∗, so 𝑃∗𝐷∗ = 𝐿∗𝑞∗, so
−𝑃∗𝐷 = 𝐿∗𝑞. Since 1 is a solution of the left hand side, it must

be a solution of the right hand side, so 0 = (𝐿∗𝑞) · 1 = 𝐿∗ · 𝑞, so
𝑞 ∈ 𝑉 (𝐿∗). We have thus constructed an injective 𝐶-linear map

from the space of all constants to the solution space of 𝐿∗ in 𝐾 .
Since the dimension of the latter is at most ord(𝐿), the claim
follows. □

If [𝑃]𝐿 is a constant, then it is completely integral, but unlike in

the case of algebraic functions, the converse is not true in general.

This means that pseudoconstants may exist.

Example 4. Let 𝐿 = 3𝑥 (𝑥2 − 1)𝐷2 + 2(3𝑥2 − 1)𝐷 . All its solu-
tions are integral at every place including infinity, therefore [1]𝐿 is
completely integral. However, 𝐷 · [1]𝐿 = [𝐷]𝐿 ≠ [0]𝐿 , so it is not
a constant. Alternatively, one can observe that 𝐿 has a non-constant
solution, and therefore [1]𝐿 cannot be a constant. So [1]𝐿 is a pseu-
doconstant.

In view of Prop. 1, we can regard pseudoconstants as transcen-

dence certificates.

Theorem 5. Let 𝐿 ∈ 𝐾 [𝐷] be such that there exists a pseudocon-
stant [𝑃]𝐿 ∈ 𝐾 [𝐷]/⟨𝐿⟩. Then 𝐿 admits at least one transcendental
solution.

Proof. For a contradiction, assume that 𝐿 has only algebraic

solutions. Let 𝐸 be an algebraic extension of𝐾 such that the solution

space 𝑉 (𝐿) in 𝐸 has dimension ord(𝐿). Since algebraic functions
are closed under application of linear operators, 𝑃 · 𝑓 is algebraic
for all 𝑓 ∈ 𝑉 (𝐿). Since [𝑃]𝐿 is completely integral, 𝑃 · 𝑓 does not
have a pole at any b ∈ 𝐶 ∪ {∞}. By Prop. 1, this implies that 𝑃 · 𝑓
is constant. Therefore, by Prop. 3, [𝑃]𝐿 is a constant, which is a

contradiction. □

Example 6. Consider the operator

𝐿 =
(
𝑥2 − 𝑥

)
𝐷2 +

(
31

24
𝑥 − 5

6

)
𝐷 + 1

48
,

annihilating the function 𝑥1/6 (𝑥 − 1)13/24

2𝐹1

(
7

8
, 5

6
;

7

6
;𝑥
)
. The op-

erator is irreducible, and therefore all its solutions have the same
nature. By Schwarz’ classification and closure properties, they must
be transcendental, but let us ignore this argument for the sake of the
example.

The singularities of the operator are 0, 1 and ∞, and a basis of
solutions at each singularity is given by

𝑦0,1 = 𝑥1/6

(
1 + 1

12
𝑥 + O(𝑥2)

)
𝑦0,2 = 1 + 1

40
𝑥 + O(𝑥2)

𝑦1,1 = (𝑥−1)13/24

(
1 − 34

111
(𝑥−1) + O((𝑥−1)2)

)

𝑦1,2 = 1 − 1

22
(𝑥−1) + O((𝑥−1)2)

𝑦∞,1 = (1/𝑥)1/6

(
1 + 4

75
(1/𝑥) + O((1/𝑥)2)

)
𝑦∞,2 = (1/𝑥)7/8

(
1 + 7

184
(1/𝑥) + O((1/𝑥)2)

)
Therefore, [1]𝐿 is a pseudoconstant, and thus the operator 𝐿 has no
nonzero algebraic solution.

As noted in the introduction, we could also compute the monodromy
matrices of 𝐿 around 0, 1 and∞. If one of them was not a root of unity,
this would give another proof of transcendence. However, numeric
computations suggest that all eigenvalues are roots of unity in this
example. More precisely, the monodromy group around 0 is generated
by two matrices𝑀1 and𝑀2 with

𝑀3

1
=

(
1 0

0 1

)
± 10

−17

(
0 0

0 7.38 ± 6.75i

)
and

𝑀24

2
=

(
1 0

0 1

)
± 10

−13

(
1.45 ± 1.42i 3.44 ± 3.42i

0.758 ± 0.757i 1.96 ± 1.96i

)
At 1, the monodromy group is generated by two 6th roots of unity,
and at∞, by two 24th roots of unity.

Example 7. Consider the operator

𝐿 = (𝑥 − 1)3𝑥3 (𝑥 + 1)3𝐷3

+ 19

5
(𝑥 − 1)2𝑥2 (𝑥 + 1)2

(
𝑥2 + 22069

9576
𝑥 − 195

152

)
𝐷2

− 99

80
(𝑥 − 1)𝑥 (𝑥 + 1)(

𝑥4 − 117001919

37422
𝑥3 − 105923

5346
𝑥2 + 16795789

5346
𝑥 + 205

66

)
𝐷

− 9

20
𝑥6 + 517319279

68040
𝑥5 + 256382531

27216
𝑥4

− 19723513

4320
𝑥3 − 2560752251

272160
𝑥2 − 828238469

272160
𝑥 − 3

32
.

This operator has the singularities 0, 1,−1,∞, with respective initial
exponents

(0) − 1

8
− 3

4
−1

(1) 5

7

4

9
−2

(−1) 5171

630

3

8
− 2

3

(∞) 4

5

3

4
− 3

4

The operator is irreducible, and therefore all its solutions have the
same nature. 𝐿 has the pseudoconstant [𝑃]𝐿 , with

𝑃 = (𝑥 + 1)−6𝑥3 (𝑥 − 1)2𝐷2

+ (𝑥 + 1)−7𝑥2 (𝑥 − 1)𝛼 (𝑥)𝐷
+ (𝑥 + 1)−8𝑥𝛽 (𝑥),

where 𝛼 (𝑥) and 𝛽 (𝑥) are certain polynomials of degree 3 and 6 re-
spectively, with coefficients in Q. So all the solutions of 𝐿 are tran-
scendental.

For operators with at most 3 singularities, the nature of the

solutions and the existence of pseudoconstants are determined

by the initial exponents of the solutions. Indeed, the operator is

then uniquely determined up to a scalar factor by its singularities

and initial exponents. Changing the position of the singularities is

equivalent to applying a rational change of variables by a Möbius

transform, which preserves the nature of the solutions and the

pseudoconstants.



This property does not hold for operators withmore singularities,

as the next example shows.

Example 8. Consider the operator

𝐿 = (𝑥 − 2)3 (𝑥 − 1)3𝑥3𝐷3

+ 19

5
(𝑥 − 2)2 (𝑥 − 1)2𝑥2

(
𝑥2 − 16547

9576
𝑥 + 2420

1197

)
𝐷2

+ 99

80
(𝑥 − 2) (𝑥 − 1)𝑥(

𝑥4 + 8816399

112266
𝑥3 − 8566381

37422
𝑥2 + 7980386

56133
𝑥 − 3200

6237

)
𝐷

− 9

20
𝑥6 + 5640547

68040
𝑥5 − 20050393

136080
𝑥4

− 2904319

30240
𝑥3 + 5167531

54432
𝑥2 + 1144387

19440
𝑥 + 320

63
.

It has the singularities 0, 1, 2,∞, with respective initial exponents:

(0) 5

7

4

9
−2

(1) 5171

630

3

8
− 2

3

(2) − 1

8
− 3

4
−1

(∞) 4

5

3

4
− 3

4

The initial exponents are the same as those in Example 7, but the
position of the singularities differ. Unlike the operator in Example 7,
the operator 𝐿 does not admit a pseudoconstant. Note that using the
technique described in [22], it can be proven that the operator 𝐿 does
nonetheless admit only transcendental solutions.

Example 9. In order to illustrate that this proof technique works
for operators of any order, we provide1 an operator of order 6 as well as
a transcendence certificate. The operator has singularities at 0, 1, . . . , 6

as well as∞, with the following exponents:

(0, . . . , 6) − 2

7
0

3

7

8

7

13

7

18

7

(∞) −1 0 1 2 3 4

There are at least two ways to search for pseudoconstants for a

given 𝐿. The first one uses integral bases. It is shown in Lemma 8 of

[12] that a basis of the𝐶-vector space of all completely integral ele-

ments of 𝐾 [𝐷]/⟨𝐿⟩ is given by { 𝑥 𝑗𝑤𝑖 : 𝑖 = 1, . . . , 𝑟 ; 𝑗 = 0, . . . , 𝜏𝑖 }
whenever {𝑤1, . . . ,𝑤𝑟 } is an integral basis that is normal at infin-

ity and 𝜏1, . . . , 𝜏𝑟 ∈ Z are such that {𝑥𝜏1𝑤1, . . . , 𝑥
𝜏𝑟𝑤𝑟 } is a local

integral basis at infinity. This motivates the following algorithm.

Algorithm 10. Input: 𝐿 ∈ 𝐾 [𝐷]
Output: a pseudoconstant of 𝐿 if there is one, otherwise ⊥.

1 Compute an integral basis𝑤1, . . . ,𝑤𝑟 of 𝐾 [𝐷]/⟨𝐿⟩ which is nor-
mal at ∞, and the corresponding 𝜏1, . . . , 𝜏𝑟 ∈ Z

2 If there are 𝑖 ∈ {1, . . . , 𝑟 } and 𝑗 ∈ {0, . . . , 𝜏𝑖 } with [𝐷𝑥 𝑗𝑤𝑖 ]𝐿 ≠ 0,
return such an 𝑥 𝑗𝑤𝑖

3 Otherwise, return ⊥

Theorem 11. Algorithm 10 is correct.

Proof. It is clear that the algorithm is correct if it does not

return ⊥. It remains to show that 𝐿 has no pseudoconstant if the al-

gorithm does return ⊥. In view of the remarks before the algorithm,

every completely integral element of 𝐾 [𝐷]/⟨𝐿⟩, and thus in partic-

ular every pseudoconstant, is a 𝐶-linear combination of the 𝑥 𝑗𝑤𝑖 .

But if all the 𝑥 𝑗𝑤𝑖 were constants, then, since the constants also

1
https://github.com/mkauers/ore_algebra/blob/master/src/ore_algebra/examples/

pseudoconstants.py

form a 𝐶-vector space, so would be all their linear combinations.

Therefore, if there are pseudoconstants at all, there must be one

among the 𝑥 𝑗𝑤𝑖 . □

An implementation of Algorithm 10 is available in the latest

version of the SageMath package ore_algebra2. Otherwise, in an

environment where no functionality for computing integral bases

is available, we can use linear algebra to search for pseudoconstants

by brute force. This has the advantage of being conceptually more

simple, but the disadvantage that we cannot easily recognize the

absence of pseudoconstants. Let b1, . . . , b𝑚 ∈ 𝐶 be the singularities

of 𝐿, and assume that ∞ is not a singularity. At each singularity b𝑖 ,

let
𝑝𝑖
𝑞 ∈ Q be the smallest exponent appearing in one of the solu-

tions at b𝑖 . Let𝑢 = (𝑥−b1)max(0, ⌈−𝑝1/𝑞⌉) · · · (𝑥−b𝑚)max(0, ⌈−𝑝𝑚/𝑞⌉)
,

so that [𝑢]𝐿 is globally integral.

For each singularity b𝑖 , choose a bound 𝑁𝑖 ∈ N on the degree

of the denominator of a local integral basis at b𝑖 , and let 𝑁 =

𝑁1 + · · · + 𝑁𝑚 .

We form the ansatz

𝑞 =
𝑢

(𝑥 − b1)𝑁1 · · · (𝑥 − b𝑚)𝑁𝑚

𝑟−1∑︁
𝑗=0

𝑁∑︁
𝑖=0

𝑐𝑖, 𝑗𝑥
𝑖𝐷 𝑗 . (1)

with unknowns 𝑐𝑖, 𝑗 . Evaluating it at all solutions at b1, . . . , b𝑚,∞
gives series whose coefficients are linear combinations of the un-

knowns 𝑐𝑖, 𝑗 , and setting those coefficients with negative valuations

to 0 yields a system of linear equations to solve. Each solution is an

operator which is completely integral.

However, if no non-zero solution is found, or if all solutions are

constants, this is not enough to conclude that the operator does not

have a pseudoconstant. It could just mean that the guessed bounds

on the denominator were too conservative.

If 𝐿 does not have a pseudoconstant, we could try to apply some

transformation to 𝐿 that does not change the nature of the solutions

of 𝐿 but may affect the existence of pseudoconstants. For example,

applying a gauge transform to 𝐿 does not change the nature of its

solutions. However, gauge transforms do not affect the existence of

pseudoconstants either. Indeed, let 𝐿 ∈ 𝐾 [𝐷] be a linear operator,
𝑀 ∈ 𝐾 [𝐷] be another one and 𝐿′ be the gauge transform of 𝐿

such that 𝑉 (𝐿′) = {𝑀 · 𝑓 : 𝑓 ∈ 𝑉 (𝐿)}. Assume that [𝑃]𝐿′ is a
pseudoconstant in 𝐾 [𝐷]/⟨𝐿′⟩. Then 𝑃𝑀 · 𝑓 does not have a pole
for any 𝑓 ∈ 𝑉 (𝐿), and there exists an 𝑓 ∈ 𝑉 (𝐿) such that 𝑃𝑀 ·
𝑓 is not a constant. By definition, this implies that [𝑃𝑀]𝐿 is a

pseudoconstant in 𝐾 [𝐷]/⟨𝐿⟩. In conclusion, gauge transforms are

not strong enough to create pseudoconstants. We will see next that

we may have more success with other operations.

4 SYMMETRIC POWERS
Symmetric powers are useful for proving identities among D-finite

functions and they find applications in algorithms for factoring

operators [24]. They can also be used to decide for a given operator𝐿

and a given 𝑑 ∈ Nwhether all solutions of 𝐿 are algebraic functions

of degree at most 𝑑 . For, if 𝑓 is an algebraic solution of 𝐿 with a

minimal polynomial𝑚 ∈ 𝐾 [𝑦] of degree 𝑑 , then𝑚 has 𝑑 distinct

solutions 𝑓1, . . . , 𝑓𝑑 in an algebraic closure 𝐾 of 𝐾 and we can write

𝑚 = (𝑦− 𝑓1) · · · (𝑦− 𝑓𝑑 ). The solutions 𝑓1, . . . , 𝑓𝑑 of𝑚 are conjugates

2
https://github.com/mkauers/ore_algebra

https://github.com/mkauers/ore_algebra/blob/master/src/ore_algebra/examples/pseudoconstants.py
https://github.com/mkauers/ore_algebra/blob/master/src/ore_algebra/examples/pseudoconstants.py
https://github.com/mkauers/ore_algebra


of 𝑓 , and since 𝐿 has coefficients in𝐾 , we have 𝐿 ·𝜎 (𝑓 ) = 𝜎 (𝐿 · 𝑓 ) = 0

for every automorphism 𝜎 that fixes𝐾 . Therefore, 𝑓1, . . . , 𝑓𝑑 are also

solutions of 𝐿. For every 𝑖 , the 𝑖th coefficient of𝑚 = (𝑦− 𝑓1) · · · (𝑦−
𝑓𝑑 ) is the (𝑑 − 𝑖)th elementary symmetric polynomial of 𝑓1, . . . , 𝑓𝑑
and therefore an element of 𝐿⊗(𝑑−𝑖) . As the coefficients of𝑚 belong

to 𝐾 = 𝐶 (𝑥), they must show up among the rational solutions of

𝐿⊗(𝑑−𝑖) . This observation motivates the following algorithm.

Algorithm 12. Input: 𝐿 ∈ 𝐶 (𝑥) [𝐷] and 𝑑 ∈ N.
Output: if all solutions of 𝐿 are algebraic functions of degree at

most 𝑑 , the minimal polynomial of one such solution; otherwise ⊥.
1 for 𝑖 = 1, . . . , 𝑑 , compute the symmetric power 𝐿⊗𝑖 .
2 for 𝑖 = 1, . . . , 𝑑 , compute basis elements 𝑞𝑖,1, . . . , 𝑞𝑖,𝑁𝑖

of the
solution space of 𝐿⊗𝑖 in 𝐶 (𝑥).

3 form an ansatz 𝑦𝑑 +∑𝑑
𝑖=1

∑𝑁𝑖

𝑗=1
𝑐𝑖, 𝑗𝑞𝑖, 𝑗𝑦

𝑑−𝑖 with undetermined
coefficients 𝑐𝑖, 𝑗

4 substitute a truncated series solution 𝑓 of 𝐿 into the ansatz, equate
coefficients, and solve the resulting system for the undetermined
coefficients 𝑐𝑖, 𝑗 .

5 if the system has no solution, return ⊥.
6 let𝑚 be the polynomial corresponding to one of the solutions of

the linear system.
7 if all roots of𝑚 are solutions of 𝐿, return𝑚
8 otherwise, go back to step 4 and try again with a higher truncation

order.

Compared to the guess-and-prove approach mentioned in the

introduction, the algorithm above has the advantage that only one

of the degrees of the minimal polynomials has to be guessed.

Algorithm 12 indicates that symmetric powers know something

about algebraicity of solutions. The next result points in the same

direction. It says that the symmetric powers of an operator 𝐿 are

larger if 𝐿 has a transcendental solution.

Theorem 13. Let 𝐿 ∈ 𝐶 (𝑥) [𝐷].
(1) If 𝐿 has only algebraic solutions, then ord(𝐿⊗𝑠 ) = O(𝑠) as 𝑠 → ∞.
(2) If 𝐿 has at least one transcendental solution and 𝐷2 is a right

factor of 𝐿, then ord(𝐿⊗𝑠 ) = Ω(𝑠2) for 𝑠 → ∞.

Proof. Let 𝑟 be the order of 𝐿.

(1) Let 𝑓1, . . . , 𝑓𝑟 be a basis of 𝑉 (𝐿), and let𝑚1, . . . ,𝑚𝑟 ∈ 𝐶 (𝑥) [𝑦]
be their respective minimal polynomials. Furthermore, let 𝐼rat =

{ 𝑝 ∈ 𝐶 (𝑥) [𝑦1, . . . , 𝑦𝑟 ] : 𝑝 (𝑓1, . . . , 𝑓𝑟 ) = 0 } be the ideal of alge-
braic relations among 𝑓1, . . . , 𝑓𝑟 . Since𝑚𝑖 (𝑦𝑖 ) ∈ 𝐼rat, we have

dim(𝐼rat) = 0. Therefore, the ideal 𝐼
pol

= 𝐼rat ∩𝐶 [𝑥] [𝑦1, . . . , 𝑦𝑟 ]
has dimension 1. As eliminating a variable cannot increase the

dimension, we find that the ideal 𝐼const := 𝐼
pol

∩𝐶 [𝑦1, . . . , 𝑦𝑟 ]
has dimension at most 1. This means that the dimension of the

𝐶-vector space generated in 𝐶 [𝑦1, . . . , 𝑦𝑟 ]/𝐼 by the power prod-

ucts 𝑦
𝑒1

1
· · ·𝑦𝑒𝑟𝑟 with 𝑒1, . . . , 𝑒𝑟 ∈ N such that 𝑒1 + · · · + 𝑒𝑟 ≤ 𝑠

has dimension O(𝑠1), as 𝑠 → ∞. Therefore, the dimension of

the 𝐶-vector space generated by 𝑓
𝑒1

1
· · · 𝑓 𝑒𝑟𝑟 with 𝑒1, . . . , 𝑒𝑟 ∈ N

such that 𝑒1 + · · · + 𝑒𝑟 = 𝑠 has dimension O(𝑠1), as 𝑠 → ∞. This

space is the solution space of 𝐿⊗𝑠 , and the order of 𝐿⊗𝑠 matches

the dimension of this space.

(2) Since 𝐷2
is a right factor of 𝐿, we have 1 and 𝑥 among the solu-

tions of 𝐿. If there is also at least one transcendental solution 𝑓 ,

then the solution space of 𝐿⊗𝑠 contains all elements 1
𝑒1𝑥𝑒2 𝑓 𝑒3

with 𝑒1, 𝑒2, 𝑒3 ∈ N such that 𝑒1 + 𝑒2 + 𝑒3 = 𝑠 , and the transcen-

dence of 𝑓 implies that they are all linearly independent over𝐶 .

As these are

(𝑠+2

𝑠

)
= Ω(𝑠2) many, the claim follows again from

dim𝐶 𝑉 (𝐿⊗𝑠 ) = ord(𝐿⊗𝑠 ). □

This theorem provides yet another heuristic test for the existence

of transcendental solutions: simply compute 𝐿⊗𝑠 for the first few
𝑠 and see how their orders grow. As the theorem only makes a

statement for asymptotically large 𝑠 , looking at specific values of 𝑠

will not allow us to make any definite conclusion, but it can provide

convincing evidence.

Example 14. Consider the operators

𝐿1 =
(
256𝑥5 − 3125

)
𝐷4 + 3200𝑥4𝐷3

+ 9840𝑥3𝐷2 + 6120𝑥2𝐷 − 504𝑥

𝐿2 = lclm

(
𝐷2,

(
𝑥2 − 𝑥

)
𝐷2 +

(
31

24
𝑥 − 5

6

)
𝐷 + 1

48

)
.

The operator 𝐿1 is the annihilator of the roots of 𝑦5 + 𝑥𝑦 + 1 in 𝐾 [𝑦],
so it only has algebraic solutions. The operator 𝐿2 is the lclm of the
operator from Example 6 and 𝐷2, so it has a transcendental solution
and it has 𝐷2 as a right factor. The order of the symmetric powers of
the operators is growing as follows:

𝑠 1 2 3 4 5

ord(𝐿⊗𝑠
1

) 4 9 15 21 27

ord(𝐿⊗𝑠
2

) 4 10 20 35 56

As predicted by the theorem, for 𝐿1 the growth is linear, and for 𝐿2

the growth is at least quadratic (cubic).

The assumption on having 𝐷2
as a right factor in the second

part of the theorem cannot be dropped, as can be seen for example

with 𝐿 = 𝐷2 − 1, whose solutions are exp(𝑥) and exp(−𝑥). The
solution space of 𝐿⊗𝑠 is spanned by the terms exp(𝑥 (𝑖 − (𝑠 − 𝑖)))
for 𝑖 ∈ {0, . . . , 𝑠}, and therefore has dimension 𝑠 + 1 = O(𝑠). More

generally, for any operator of order 𝑟 ≤ 2, the order of 𝐿⊗𝑠 is

bounded by

(𝑠+𝑟−1

𝑠

)
≤ 𝑠+1. The divisibility condition says that 1 and

𝑥 are solutions of 𝐿, and in order to have in addition a transcendental

solution, the order of 𝐿 must be at least 3. If 𝐿 does not have 𝐷2
as

a right factor, apply the theorem to lclm(𝐿, 𝐷2) instead of 𝐿. Note

that 𝐿 has only algebraic solutions if and only if lclm(𝐿, 𝐷2) has
only algebraic solutions.

More generally, if𝑀 is any operator that has only algebraic solu-

tions, then 𝐿 has only algebraic solutions if and only if lclm(𝐿,𝑀)
has only algebraic solutions. This is because, as remarked at the end

of Sect. 2, the least common multiple does not have any extraneous

solutions. Nevertheless, as we show next, there is no hope that

lclm(𝐿,𝑀) could have any pseudoconstants if not already 𝐿 has

any.

Lemma 15. Let 𝐿,𝑀 ∈ 𝐾 [𝐷] and 𝑁 = lclm(𝐿,𝑀). If [𝑃]𝑁 is
a nonzero completely integral element (resp. a pseudoconstant) in
𝐾 [𝐷]/⟨𝑁 ⟩, then at least one of [𝑃]𝐿 or [𝑃]𝑀 is a non-zero completely
integral element (resp. a pseudoconstant) in the respective module.

Proof. Let [𝑃]𝑁 be a completely integral element of 𝐾 [𝐷]/⟨𝑁 ⟩.
Let 𝐸 be an extension of 𝐾 such that 𝑉 (𝑁 ) ⊆ 𝐸 has dimension

ord(𝑁 ).



Note that by definition of the lclm, both equivalence classes [𝑃]𝐿
and [𝑃]𝑀 are well-defined. Since 𝑉 (𝑁 ) = 𝑉 (𝐿) +𝑉 (𝑀), both [𝑃]𝐿
and [𝑃]𝑀 are completely integral.

If [𝑃]𝑁 is non-zero, there exists ℎ ∈ 𝑉 (𝑁 ) such that 𝑃 · ℎ ≠ 0.

Therefore there exist 𝑓 ∈ 𝑉 (𝐿) and 𝑔 ∈ 𝑉 (𝑀) such that ℎ = 𝑓 + 𝑔
and 𝑃 · 𝑓 + 𝑃 · 𝑔 ≠ 0. So at least one of 𝑃 · 𝑓 and 𝑃 · 𝑔 is nonzero,
implying respectively that [𝑃]𝐿 or [𝑃]𝑀 is nonzero.

The additional property that 𝑃 is not a constant similarly propa-

gates to at least one of the summands. □

In view of this negative result, it is remarkable that taking sym-

metric products can produce pseudoconstants. For example, the

function considered in Example 6 is a product of an algebraic func-

tion and a hypergeometric function. The linear operator which

annihilates only the hypergeometric function (without the alge-

braic function multiplier) does not have a pseudoconstant. If the

given operator 𝐿 has no pseudoconstants, we can thus ask whether

there is an operator𝑀 with only algebraic solutions such that 𝐿⊗𝑀
has pseudoconstants. Of course, as long as nobody tells us how

to choose 𝑀 , this observation is not really helpful. What we can

easily do however is to multiply the solutions of 𝐿 with each other.

It turns out that this is sometimes sufficient.

Example 16. Consider the operator

𝐿 =
(
𝑥2 − 𝑥

)
𝐷2 +

(
49

6
𝑥 − 7

3

)
𝐷 + 12

annihilating the hypergeometric function 2𝐹1

(
9

2
, 8

3
;

7

3
;𝑥
)
. The opera-

tor does not have a pseudoconstant. However, the operator 𝐿⊗2 does
have a pseudoconstant

𝛼 (𝑥)𝐷2 + 𝛽 (𝑥)𝐷 + 𝛾 (𝑥)
where 𝛼 , 𝛽 and 𝛾 are polynomials in 𝑥 , with respective degree 11,
10 and 9. By Theorem 18 below, this implies that 𝐿 has at least one
transcendental solution.

Example 17. Consider the operator

𝐿 =
(
𝑥2 − 𝑥

)
𝐷2 +

(
65

24
𝑥 − 7

6

)
𝐷 + 35

48

annihilating the hypergeometric function 2𝐹1

(
7

8
, 5

6
;

7

6
;𝑥
)
. This is the

hypergeometric function appearing in Example 6.
The operator does not have a pseudoconstant. However, the operator

𝐿⊗5 does have the pseudoconstant [𝑥 (𝑥 − 1)3]. By Theorem 18 below,
this implies that all nonzero solutions of 𝐿 are transcendental.

The exponents of the solutions of 𝐿 at its singularities are:

(0) − 1

6
0

(1) − 13

24
0

(∞) 5

6

7

8

Multiplying all the solutions by 𝑥1/6 (𝑥 −1)13/24 allows us to clear the
poles at 0 and 1, without creating a pole at infinity: the exponents at
infinity become 5

6
− 1

6
− 13

24
= 1

7
and 7

8
− 1

6
− 13

24
= 1

8
, both non-negative.

This confirms the observation in Example 6.
The presence of rational exponents in 𝑥1/6 (𝑥 − 1)13/24 means that

it does not qualify as a pseudoconstant with our definition. However,
considering symmetric powers allows us to clear those denominators.
First, observe that the lowest exponents of the solutions of 𝐿⊗𝑠 are − 1

6
𝑠

at 0, − 13

24
𝑠 at 1 and 5

6
𝑠 at infinity. We are looking for a pseudoconstant

of the form [𝑥𝑎 (𝑥 − 1)𝑏 ] with 𝑎, 𝑏 integers. Multiplying by such an

𝑎

𝑏

1 2 3

1

2

3

4

0

𝑠 = 1

𝑠 = 2

𝑠 = 3

𝑠 = 4

𝑠 = 5

𝑠 = 6

Figure 1: Solutions of the system (2) for 𝑠 in {1, . . . , 6}

element adds 𝑎 to the exponent at 0, 𝑏 to the exponent at 1, and
subtracts 𝑎 +𝑏 from the exponent at infinity. The complete integrality
condition thus translates into the following inequalities:

0 ≤ − 1

6
𝑠 + 𝑎 0 ≤ − 13

24
𝑠 + 𝑏 0 ≤ 5

6
𝑠 − 𝑎 − 𝑏. (2)

The solutions, for 𝑠 in {1, . . . , 6}, are represented in Figure 1. The
smallest value of 𝑠 for which there is an integer solution is 5, and we
recover the pseudoconstant [𝑥 (𝑥 − 1)3] = [𝑥4 − 3𝑥3 + 3𝑥2 − 𝑥] for
𝐿⊗5.

Theorem 18. Let 𝐿 ∈ 𝐾 [𝐷] be a differential operator. Suppose
that for some 𝑠 ∈ N the symmetric power 𝐿⊗𝑠 has a pseudoconstant.
Then 𝐿 has at least one transcendental solution.

Proof. The solution space of 𝐿⊗𝑠 is spanned by all products of

𝑠 solutions of 𝐿. The existence of a pseudoconstant in 𝐾 [𝐷]/⟨𝐿⊗𝑠 ⟩
proves that at least one solution of 𝐿⊗𝑠 is transcendental, and there-
fore at least one solution of 𝐿 is transcendental. □

In other words, a pseudoconstant for 𝐿⊗𝑠 can be viewed as a

transcendence certificate for 𝐿. As shown by the previous examples,

such a certificate may exist even if 𝐿 itself does not have pseudo-

constants. So it is worthwhile to search for pseudoconstants of

symmetric powers. As shown by the following theorem, we can-

not increase our chances to find a pseudoconstant any further by

adding some rational solutions to the solution space of 𝐿.

Proposition 19. Let 𝑀 ∈ 𝐾 [𝐷] be an operator that has only
solutions in 𝐾 , let 𝐿 ∈ 𝐾 [𝐷], and let 𝑠 ∈ N. If lclm(𝐿,𝑀)⊗𝑠 has a
pseudoconstant then there is a 𝑑 ∈ {1, . . . , 𝑠} such that 𝐿⊗𝑑 has a
pseudoconstant.

Proof. First note that

𝐿𝑠 := lclm(𝐿,𝑀)⊗𝑠 = lclm

(
𝐿⊗𝑠 , 𝐿⊗(𝑠−1) ⊗ 𝑀, . . . , 𝑀⊗𝑠 ) .

By Lemma 15, if [𝑃]𝐿𝑠 is a pseudoconstant, then there exists 𝑑 ∈
{1, . . . , 𝑠} such that [𝑃]𝐿⊗𝑑 ⊗𝑀⊗(𝑑−𝑠 ) is also a pseudoconstant.

This means that for every Puiseux series solution 𝑓 of 𝐿 at some

point b ∈ 𝐶 ∪ {∞} and every solution 𝑟 ∈ 𝐶 (𝑥) of𝑀 we have that

𝑃 · (𝑟𝑑−𝑠 𝑓 𝑑 ) is integral, and that for at least one 𝑟 and one 𝑓 , the

quantity 𝑃 · (𝑟𝑑−𝑠 𝑓 𝑑 ) is not a constant. Fixing one such solution

𝑟 ∈ 𝐶 (𝑥) \ {0} of𝑀 , it follows that 𝑃𝑟𝑑−𝑠 is a completely integral



element of𝐾 [𝐷]/⟨𝐿⊗𝑑 ⟩ and that [𝑃𝑟𝑑−𝑠 ]𝐿⊗𝑑 is not a constant. Thus

𝐿⊗𝑑 has the pseudoconstant [𝑃𝑟𝑑−𝑠 ]𝐿⊗𝑑 . □

We have not been able to answer the following question:

Question 20. Is it true that for every operator 𝐿 with at least one
transcendental solution there exists an 𝑠 ∈ N such that 𝐿⊗𝑠 has a
pseudoconstant?

If the answer to Question 20 is yes, then this fact in combination

with Alg. 12 would yield a new decision procedure for the existence

of transcendental solutions. We could simply search in parallel

for 𝑠 = 1, 2, 3, . . . for an algebraic solution of 𝐿 of degree 𝑠 and a

pseudoconstant of 𝐿⊗𝑠 . Exactly one of these parallel threads would

have to terminate after a finite number of steps.

A natural idea to prove the existence of pseudoconstants of 𝐿⊗𝑠

for sufficiently large 𝑠 is to show that the linear system, which

emerges from a search for pseudoconstants via the linear algebra

approach, has more variables than equations for sufficiently large 𝑠 .

Unfortunately, this does not seem to be the case: indeed, if 𝑅(𝑠)
is the order of 𝐿⊗𝑠 , the ansatz (1) has Θ(𝑁𝑅(𝑠)) undetermined

coefficients. As for the number of equations, it is equal to the num-

ber of series coefficients to set to zero: for each series solution 𝑓𝑖
(𝑖 ∈ {1, . . . , 𝑅(𝑠)}), the valuation of 𝑞(𝑓𝑖 ) can be as low as −𝑁 , for a

total of Θ(𝑁𝑅(𝑠)) equations.
The following example can perhaps be considered as some piece

of empirical evidence that the answer to Question 20 is no. On the

other hand, we can show (Prop. 23) that for an operator 𝐿 with only

algebraic solutions there is always an 𝑠 such that 𝐿⊗𝑠 has a constant
(but of course no pseudoconstant), and this could be considered as

some piece of evidence that the answer to Question 20 may be yes.

Example 21. Consider the operator(
𝑥2 − 𝑥

)
𝐷2 +

(
164

15
𝑥 − 16

3

)
𝐷 + 1403

60
,

which annihilates the hypergeometric function 2𝐹1

(
61

10
, 23

6
;

16

3
;𝑥
)
.

Thanks to Schwarz’ classification, we know that the operator has
no algebraic solutions. However, an exhaustive search using integral
bases could not find a completely integral element for 𝐿⊗𝑠 for any
𝑠 ≤ 6, and a heuristic search using linear algebra could not find one
for any 𝑠 ≤ 30.

Lemma 22. Let 𝑀 ∈ 𝐾 [𝐷] and let 𝑞 ∈ 𝐾 be such that 𝑀 · 𝑞 ≠ 0.
Then 𝐿 := lclm(𝑞𝐷 − 𝑞′, 𝑀) has a nonzero constant.

Proof. Note that 𝑉 (𝐿) = span(𝑞) + 𝑉 (𝑀) and 𝑢 := 𝑀 · 𝑞 ≠ 0.

Consider 𝑃 := 𝑢−1𝑀 . Every 𝑓 ∈ 𝑉 (𝐿) can be written as 𝑓 = 𝑐𝑞 +𝑚
for a 𝑐 ∈ 𝐶 and an𝑚 ∈ 𝑉 (𝑀). So 𝑃 · 𝑓 = 𝑢−1 (𝑀 ·𝑚 + 𝑐𝑀 · 𝑞) =
𝑢−1𝑐𝑢 = 𝑐 . By Prop. 3 part 1, it follows that [𝑃] is a nonzero constant
of 𝐿. □

Proposition 23. If 𝐿 ∈ 𝐾 [𝐷] has only algebraic solutions and
𝑑 is such that all the solutions of 𝐿 have a minimal polynomial of
degree at most 𝑑 , then 𝐿⊗𝑑 has a nonzero constant.

Proof. Since 𝐿 has only algebraic solutions, also 𝐿⊗𝑑 has only

algebraic solutions. Moreover, 𝐿⊗𝑑 has at least one nonzero rational

function solution 𝑞 (e.g., the product of all the conjugates of some

algebraic solution of 𝐿). If 𝑓 is a solution of 𝐿⊗𝑑 , then so are all the

conjugates of 𝑓 , because 𝐿⊗𝑑 has coefficients in 𝐾 . The solution

space of the minimal order annihilating operator of 𝑓 is generated

by 𝑓 and its conjugates and therefore a right factor of 𝐿⊗𝑑 .
Let 𝑓1 be a solution of 𝐿⊗𝑑 which does not belong to span(𝑞),

and let 𝑀1 be a minimal order annihilating operator of 𝑓1. For

𝑛 = 1, 2, . . . , let 𝑓𝑛 be a solution of 𝐿⊗𝑑 which does not belong to

span(𝑞) +𝑉 (𝑀1) + · · · +𝑉 (𝑀𝑛−1), and let 𝑀𝑖 be a minimal order

annihilating operator of 𝑓𝑛 , until we have 𝑉 (𝐿⊗𝑑 ) = span(𝑞) +
𝑉 (𝑀1) + · · · +𝑉 (𝑀𝑛). At this stage, we have

𝐿⊗𝑑 = lclm(𝑞𝐷 − 𝑞′, lclm(𝑀1, . . . , 𝑀𝑛)),

and since lclm(𝑀1, . . . , 𝑀𝑛) · 𝑞 ≠ 0 by the choice of 𝑀1, . . . , 𝑀𝑛 ,

Lemma 22 applies. The claim follows. □

5 CONCLUSION
We propose the notion of a transcendence certificate for any kind

of artifact whose existence implies that a given differential opera-

tor has at least one transcendental solution. Simple transcendence

certificates are logarithmic and exponential singularities. Pseudo-
constants introduced in Def. 2 can also serve as transcendence

certificates. We have given examples of operators that have no

logarithmic or exponential singularities but that do have pseudo-

constants.

We have also given examples of operators that have no pseudo-

constants even though they have transcendental solutions. To such

operators, we can try to apply transformations that preserve the ex-

istence of transcendental solutions but may lead to the appearance

of pseudoconstants. In particular, as shown in Sect. 4, it can happen

that an operator 𝐿 has no pseudoconstants but some symmetric

power 𝐿⊗𝑠 of 𝐿 does. A pseudoconstant of 𝐿⊗𝑠 suffices to certify

the existence of a transcendental solution of 𝐿. An open question

(Question 20) is whether the existence of transcendental solutions

of 𝐿 implies the existence of an 𝑠 such that 𝐿⊗𝑠 has pseudoconstants.
We would be very interested in an answer to this question.

There are further possibilities to transform an operator with

no pseudoconstants to one that may have some. For example, we

could try to exploit that the composition of a D-finite function with

an algebraic function is always D-finite. If 𝑓 is D-finite and 𝑔 is

algebraic, then 𝑓 ◦ 𝑔 is algebraic if and only if 𝑓 is algebraic, thus a

pseudoconstant for an annihilating operator of 𝑓 ◦ 𝑔 could serve

as a transcendence certificate for an annihilating operator of 𝑓 .

Note that unlike the transformations considered in this paper, the

composition can not only remove singularities but also create new

ones. We have not found an example where this process reveals

new pseudoconstants.

In another direction, we could try to weaken the requirements of

Def. 2. According to our definition, [𝑃]𝐿 is a pseudoconstant if every
local solution 𝑓 of 𝐿 is such that 𝑃 · 𝑓 has nonnegative valuation.
For a transcendence certificate, it would suffice to have one global
solution 𝑓 of 𝐿 (a complex function defined on a Riemann surface)

which is not constant and has no pole. If we relax Def. 2 accordingly,

it may be that additional operators would have pseudoconstants.

However, we would no longer know how to decide the existence of

pseudoconstants for a given operator.
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