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ABSTRACT
A sequence is called 𝐶-finite if it satisfies a linear recurrence with

constant coefficients. We study sequences which satisfy a linear

recurrence with 𝐶-finite coefficients. Recently, it was shown that

such 𝐶2
-finite sequences satisfy similar closure properties as 𝐶-

finite sequences. In particular, they form a difference ring.

In this paper we present new techniques for performing these

closure properties of𝐶2
-finite sequences. These methods also allow

us to derive order bounds which were not known before. Addi-

tionally, they provide more insight in the effectiveness of these

computations.

The results are based on the exponent lattice of algebraic num-

bers. We present an iterative algorithm which can be used to com-

pute bases of such lattices.
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Difference equations, holonomic sequences, closure properties, al-
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1 INTRODUCTION
Infinite objects that can be represented by a finite amount of infor-

mation and that can be effectively computed with, e.g., by means

of closure properties, are natural objects of study in symbolic com-

putation. This includes in particular sequences that can be defined

by linear recurrences with coefficients that, in turn, have a finite

description. If these coefficients are polynomials, the sequences

are called holonomic or 𝐷-finite and the special case of constant

coefficients is referred to as 𝐶-finite sequences.

It is well known [16, 20, 32] that these form classes that are

closed under several operations such as addition, multiplication,
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interlacing, taking subsequences, etc. These closure properties are

algorithmic, have been implemented in several computer algebra

systems, and contribute to the “holonomic toolkit” [14] for auto-

matically proving and deriving identities.

It has been shown [11, 12, 25, 27] that many of these closure

properties also hold and can be implemented for sequences that

are defined by linear recurrences with 𝐶-finite coefficients, also

called 𝐶2
-finite. To our knowledge, 𝐶2

-finite sequences have first

been introduced formally by Kotek and Makowsky [17] in the

context of graph polynomials. Thanatipanonda and Zhang [34]

give an overview on different properties of polynomial, 𝐶-finite

and holonomic sequences and consider the extension under the

name 𝑋 -recursive sequences. A survey on closure properties of

linear recurrence sequences including 𝐶2
-finite sequences is given

by Krityakierne and Thanatipanonda [18].

The main computational issue when dealing with this new class

of𝐶2
-finite sequences is the presence of zero divisors. Even though

it was shown that𝐶2
-finite sequences form a difference ring, so far

it was not clear whether their closure properties can be effectively

computed, see also the discussion in Section 2.2 below.

In this paper, we introduce a new method for executing closure

properties that, in particular, comes with order bounds. A key in-

gredient for this technique is the computation of a basis for the

exponent lattice for the eigenvalues of the coefficient recurrences.

For the computation, we introduce an iterative version of Ge’s al-

gorithm [10] described in Section 3. This new version, although

not strictly necessary for the applications in our paper, has the

additional advantage of admitting a concise proof of its correctness.

Based on the exponent lattice of the eigenvalues we introduce the

notion of the torsion number. The torsion number allows us to

decompose a difference ring generated by finitely many 𝐶-finite

sequences into rings whose sequences do not contain infinitely

many zero terms (unless they are the zero sequence). This permits

us to present new algorithms for computing closure properties of

𝐶2
-finite sequences. These methods, together with the correspond-

ing order bounds, for the ring operations, interlacing, and taking

subsequences are presented in Section 5.

2 PRELIMINARIES
In this section we introduce some basic notation and definitions

which are used throughout the paper. We denote the set of natural

numbers by N = {0, 1, 2, . . . }. Furthermore, K ⊇ Q denotes an

algebraic number field. TheK-algebra of sequences under termwise

addition and termwise multiplication is denoted byKN. For the sake
of a cleaner notation, 𝑐 (𝑛) can denote both a sequence (𝑐 (𝑛))𝑛∈N
and the term at index 𝑛. The meaning is always clear from the
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context. The shift operator 𝜎 acts as 𝜎 ((𝑎(𝑛))𝑛∈N) = (𝑎(𝑛 + 1))𝑛∈N
on a sequence (𝑎(𝑛))𝑛∈N. A difference subring 𝑅 ⊆ KN is a subring

which is additionally closed under taking shifts, i.e., 𝜎 (𝑎) ∈ 𝑅 for

all 𝑎 ∈ 𝑅. The ring of recurrence operators 𝑅 [𝜎] is, in general, non-

commutative and an element A B ∑𝑟
𝑖=0

𝑐𝑖𝜎
𝑖 ∈ 𝑅 [𝜎] with 𝑐𝑖 ∈ 𝑅

acts on a sequence 𝑎 = (𝑎(𝑛))𝑛∈N as A𝑎 =
∑𝑟
𝑖=0

𝑐𝑖 (𝑛)𝑎(𝑛 + 𝑖). If
A𝑎 = 0, we say that the operator A annihilates the sequence 𝑎. If

𝑐𝑟 ≠ 0, then 𝑟 is called the order of the operator A. The minimal

order of an operator which annihilates 𝑎 is called the order of the

sequence 𝑎 and is denoted by ord(𝑎).

2.1 𝐶-finite sequences
Sequences 𝑐 ∈ KN which are annihilated by an operator C =∑𝑟
𝑖=0

𝛾𝑖𝜎
𝑖 ∈ K[𝜎] are called 𝐶-finite. Equivalently, these are se-

quences that satisfy a linear recurrence with constant coefficients

𝛾0𝑐 (𝑛) + · · · + 𝛾𝑟𝑐 (𝑛 + 𝑟 ) = 0 for all 𝑛 ∈ N.

The set of 𝐶-finite sequences over K forms a K-algebra which we

denote by R𝐶 . Suppose 𝑐, 𝑑, 𝑐0, . . . , 𝑐𝑚−1 ∈ R𝐶 . Then, the following
closure properties are well known (e.g., [16]):

(1) 𝑐 + 𝑑 ∈ R𝐶 with ord(𝑐 + 𝑑) ≤ ord(𝑐) + ord(𝑑),
(2) 𝑐𝑑 ∈ R𝐶 with ord(𝑐𝑑) ≤ ord(𝑐) ord(𝑑),
(3) 𝑐ℓ,𝑘 B (𝑐 (ℓ𝑛 + 𝑘))𝑛∈N ∈ R𝐶 with ord(𝑐ℓ,𝑘 ) ≤ ord(𝑐) for all

ℓ, 𝑘 ∈ N.
(4) Let 𝑒 be the interlacing of 𝑐0, . . . , 𝑐𝑚−1, i.e., 𝑒 (𝑛) = 𝑐𝑟 (𝑞)

for all 𝑛 = 𝑞𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚. Then, 𝑒 ∈ R𝐶 and

ord(𝑒) ≤ 𝑚∑𝑚
𝑗=1

ord(𝑐 𝑗 ).
The same closure properties and order bounds hold for 𝐷-finite

sequences, i.e., sequences which are annihilated by an operator

A ∈ K[𝑥] [𝜎] [15, 20].
Let C B ∑𝑟−1

𝑖=0
𝛾𝑖𝜎

𝑖 + 𝜎𝑟 be the unique monic minimal annihilat-

ing operator of 𝑐 ∈ R𝐶 . The polynomial

∑𝑟−1

𝑖=0
𝛾𝑖𝑥

𝑖 + 𝑥𝑟 ∈ K[𝑥] is
called the characteristic polynomial of 𝑐 . Over the splitting field L
the polynomial completely factors as 𝑥𝑛0

∏𝑚
𝑖=1
(𝑥 − _𝑖 )𝑑𝑖 with pair-

wise different _1, . . . , _𝑚 ∈ L and 𝑛0, 𝑑1, . . . , 𝑑𝑚 ∈ N. We call these

_𝑖 the eigenvalues of the sequence 𝑐 . The sequence can also be writ-

ten as polynomial-linear combination of exponential sequences

_𝑛
𝑖
: In particular, there are polynomials 𝑝1, . . . , 𝑝𝑚 ∈ L[𝑥] with

deg(𝑝𝑖 ) = 𝑑𝑖 − 1 for 𝑖 = 1, . . . ,𝑚 such that

𝑐 (𝑛) =
𝑚∑︁
𝑖=1

𝑝𝑖 (𝑛)_𝑛𝑖 for all 𝑛 ≥ 𝑛0 . (1)

This is called the closed form of 𝑐 [16, 22].

A 𝐶-finite sequence 𝑐 is called degenerate if it has eigenvalues
_ ≠ ` such that

_
` is a root of unity. Otherwise, the sequence is

called non-degenerate.

Theorem 1 ([1, 8]). Let 𝑐 be a non-degenerate 𝐶-finite sequence.

Then, 𝑐 is either the zero sequence or it only has finitely many zeros,

i.e., there is an 𝑛0 ∈ N such that 𝑐 (𝑛) ≠ 0 for all 𝑛 ≥ 𝑛0.

Suppose 𝑐, 𝑑 are𝐶-finite sequences with eigenvalues _1, . . . , _𝑚1

and `1, . . . , `𝑚2
, respectively. From the closed form of 𝑐 and 𝑑 , it is

clear, that 𝑐 + 𝑑 has eigenvalues _1, . . . , _𝑚1
, `1, . . . , `𝑚2

and 𝑐𝑑 has

eigenvalues _𝑖` 𝑗 with 1 ≤ 𝑖 ≤ 𝑚1 and 1 ≤ 𝑗 ≤ 𝑚2. The sequence

(𝑐 (ℓ𝑛 + 𝑘))𝑛∈N has eigenvalues _ℓ
1
, . . . , _ℓ𝑚 .

2.2 𝐶2-finite sequences
A generalization of 𝐶-finite sequences are 𝐶2

-finite sequences.

These extend 𝐶-finite and 𝐷-finite sequences and include many

more sequences which appear in combinatorics.

Definition 2. A sequence 𝑎 ∈ KN is called 𝐶2
-finite over K if

there are 𝐶-finite sequences 𝑐0, . . . , 𝑐𝑟 over K with 𝑐𝑟 (𝑛) ≠ 0 for

all 𝑛 ≥ 𝑛0 for some 𝑛0 ∈ N such that

𝑐0 (𝑛)𝑎(𝑛) + · · · + 𝑐𝑟 (𝑛)𝑎(𝑛 + 𝑟 ) = 0, for all 𝑛 ∈ N. (2)

Several examples for 𝐶2
-finite sequences are given in [12, 34].

Throughout this article, additional examples are given.

A 𝐶-finite sequence 𝑐 can be uniquely described by a minimal

recurrence and ord(𝑐) many initial values. Similarly, a 𝐶2
-finite

sequence can be described uniquely by its recurrence and by finitely

many initial values. The number of initial values which is needed

to uniquely determine the sequence depends on the zeros of the

leading coefficient 𝑐𝑟 of the recurrence. It can be decided whether

the leading coefficient only has finitely many zeros [1]. However, it

is not known if these finitely many zeros can be computed. This is

known as the Skolem problem [29].

Previously, it was shown that 𝐶2
-finite sequences, analogously

to 𝐶-finite sequences, form a K-algebra and they are furthermore

closed under taking subsequences at arithmetic progressions and

interlacing [11, 12]. So far, it was not known whether these closure

properties can be computed effectively. In this article we show a

method how these closure properties can be performed effectively.

As a caveat, these computations might introduce finitely many

zeros in the leading coefficient which can yield to problems when

one has to decide how many initial values are needed to uniquely

define the sequence. In practice we have, however, observed that

even though the Skolem problem is very difficult in general it can

usually be solved for most examples that appear in practice [26].

Note that in [11, 12] it is assumed that the leading coefficient 𝑐𝑟
in (2) has no zero terms at all. The two definitions are equivalent.

If a sequence satisfies a 𝐶2
-finite recurrence as in Definition 2,

then shifting the recurrence yields a recurrence where the leading

coefficient has no zero terms. The definition here allows us to derive

bounds for the orders of closure properties similar to the 𝐶-finite

case that cannot be derived otherwise (see Example 17).

If 𝑐𝑟 (𝑛) ≠ 0, then the recurrence (2) can be used to compute the

term 𝑎(𝑛+𝑟 ) provided that the previous terms 𝑎(𝑛), . . . , 𝑎(𝑛+𝑟 −1)
are known:

𝑎(𝑛 + 𝑟 ) = − 𝑐0 (𝑛)
𝑐𝑟 (𝑛) 𝑎(𝑛) − · · · −

𝑐𝑟−1 (𝑛)
𝑐𝑟 (𝑛) 𝑎(𝑛 + 𝑟 − 1) .

This is also captured by the companion matrix 𝑀𝑎 of 𝑎 which is

defined as

𝑀𝑎 B

©«

0 0 . . . 0 −𝑐0/𝑐𝑟
1 0 . . . 0 −𝑐1/𝑐𝑟
0 1 . . . 0 −𝑐2/𝑐𝑟
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 . . . 1 −𝑐𝑟−1/𝑐𝑟

ª®®®®®®¬
.

If 𝑐𝑟 (𝑛) ≠ 0 for all 𝑛 ∈ N, then

(𝜎𝑎, 𝜎2𝑎, . . . , 𝜎𝑟𝑎) = (𝑎, 𝜎𝑎, . . . , 𝜎𝑟−1𝑎)𝑀𝑎 .
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In the special case that 𝑎 is a𝐶-finite sequence, we have𝑀𝑎 ∈ K𝑟×𝑟 .
Since the recurrence of a sequence is not unique, neither is the

companion matrix.

In the recurrence (2) we can assume that 𝑛0 = 0 holds in the

closed form (1) for all coefficients 𝑐0, . . . , 𝑐𝑟 . This can be achieved

by extending the closed form representation to all 𝑛 ∈ N and intro-

ducing polynomial factors 𝑛(𝑛 − 1) · · · (𝑛 −𝑛0) in all coefficients 𝑐𝑖 .

This only increases the order of the coefficients 𝑐𝑖 and leaves the

order of the overall recurrence intact.

2.3 Lattices
A Z-submodule 𝐿 of Z𝑚 is called a lattice. Every lattice 𝐿 admits

a finite basis 𝑣1, . . . , 𝑣ℓ ∈ Z𝑚 , i.e., a set of linearly independent

generators of the module 𝐿. We call ℓ the rank of the lattice 𝐿.

A lattice 𝐿 is called pure if for all 𝑘 ∈ Z, 𝑣 ∈ Z𝑚 , 𝑘𝑣 ∈ 𝐿 implies

𝑣 ∈ 𝐿. Equivalently, 𝐿 is pure if and only if 𝐿 is a direct summand

of Z𝑚 [7, Chapter III.16A]. The pure closure 𝐿 of 𝐿 is the smallest

pure lattice which contains 𝐿, i.e., the intersection of all pure lattices

that contain 𝐿. We have (cf. [4])

𝐿 = {𝑣 ∈ Z𝑚 | ∃𝑘 ∈ Z \ {0} : 𝑘𝑣 ∈ 𝐿}.
The LLL algorithm can be used to compute a basis of “short”

vectors for the lattice 𝐿 [6, 19]. Such a basis is called a reduced
basis. Let 𝐿 = ⟨𝑣1, . . . , 𝑣ℓ ⟩ ⊆ Z𝑚 , i.e., 𝐿 is the lattice generated

by 𝑣1, . . . , 𝑣ℓ ∈ Z𝑚 . Let 𝑏1, . . . , 𝑏𝑟 be a reduced basis of 𝐿 and

¯𝑏1, . . . , ¯𝑏𝑟 the corresponding Gram-Schmidt vectors. The reduced

basis is “short” in the sense that (cf. (1.7) in [19] or Theorem 2.6.2

in [6]) 𝑏 𝑗 2

2
≤ 2

𝑘−1
¯𝑏𝑘

2

2
for all 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑟 . (3)

Suppose 𝑉 ∈ Z𝑚×ℓ and 𝑟 = min(𝑚, ℓ). Then, we can compute

unimodular (i.e., invertible) matrices 𝑃 ∈ Z𝑚×𝑚, 𝑄 ∈ Zℓ×ℓ and a

diagonal matrix 𝐷 = diag(𝑑1, . . . , 𝑑𝑟 ) ∈ Z𝑚×ℓ with 𝑑𝑖 | 𝑑𝑖+1 for all
𝑖 = 1, . . . , 𝑟 − 1 such that 𝑃𝑉𝑄 = 𝐷 . The unique matrix 𝐷 is called

the Smith normal form of 𝑉 and the diagonal entries 𝑑𝑖 are called

the invariant factors of𝑉 . The largest diagonal entry 𝑑𝑟 is called the
invariant factor of 𝑉 . If 𝑒𝑖 denotes the 𝑖-th determinantal divisor

of𝑉 , i.e., the greatest common divisor of all 𝑖-by-𝑖 minors of𝑉 , then

𝑑𝑟 =
𝑒𝑟
𝑒𝑟−1

[2, 23, 24].

Let 𝑣1, . . . , 𝑣ℓ ∈ Z𝑚 be a basis of the lattice 𝐿 = ⟨𝑣1, . . . , 𝑣ℓ ⟩ ⊆ Z𝑚
and let𝑉 B (𝑣1, . . . , 𝑣ℓ ) ∈ Z𝑚×ℓ with Smith normal form 𝑃𝑉𝑄 = 𝐷

with nonzero invariant factors 𝑑1, . . . , 𝑑𝑟 . Since𝑄 is unimodular we

have

𝐿 = 𝑉Zℓ = 𝑃−1𝐷𝑄−1Zℓ = 𝑃−1𝐷Zℓ .

Let 𝑝1, . . . , 𝑝𝑚 ∈ Z𝑚 be the columns of 𝑃−1
. Since 𝑃 is unimodular,

these columns form a basis of Z𝑚 and 𝑑1𝑝1, . . . , 𝑑𝑟𝑝𝑟 form a basis

of 𝐿 [33].

3 THE EXPONENT LATTICE OF ALGEBRAIC
NUMBERS

Let _1, . . . , _𝑚 ∈ Q. The set of relations of these algebraic numbers

𝐿 B 𝐿(_1, . . . , _𝑚) B {(𝑒1, . . . , 𝑒𝑚) ∈ Z𝑚 | _𝑒1

1
· · · _𝑒𝑚𝑚 = 1}

forms a lattice. In his PhD thesis [10] Ge gave an algorithm for

computing a basis of 𝐿. It is a combination of LLL with a bound on

the size of the basis vectors and the fact that membership of 𝐿 is easy

to decide. Variants of Ge’s algorithm were given in [9, 13, 38–40].

Herewe present another variant. Our version is inspired by howLLL

is applied in van Hoeij’s algorithm for polynomial factorization [35–

37]. One feature of this version is that it uses approximations that

are only as good as necessary for the particular input, rather than

approximations whose accuracy is determined by the worst case

behavior. Another advantage of our version is that its correctness

admits a very concise proof.

Like Ge, we start by observing that

(𝑒1, . . . , 𝑒𝑚) ∈ 𝐿(_1, . . . , _𝑚) ⇐⇒ _
𝑒1

1
· · · _𝑒𝑚𝑚 = 1

⇐⇒
𝑚∑︁
𝑖=1

𝑒𝑖 log(_𝑖 ) ∈ 2𝜋 iZ.

Hence, instead of finding a basis for 𝐿 = 𝐿(_1, . . . , _𝑚), we can

compute a basis of the lattice

𝐿+ =

{
(𝑒1, . . . , 𝑒𝑚+1) ∈ Z𝑚 |

𝑚∑︁
𝑖=1

𝑒𝑖 log(_𝑖 ) + 𝑒𝑚+12𝜋 i = 0

}

and drop the last coordinates to find a basis of the original lattice 𝐿.

If we agree to always choose the standard branch of the logarithm,

the last coordinate will be bounded by𝑚𝑑 , where 𝑑 is the degree

of the field extension of _1, . . . , _𝑚 . By a result by Masser [21], we

can compute a constant𝑀 ≥ 𝑚𝑑 such that 𝐿 and therefore 𝐿+ have
a basis of vectors 𝑏 with ∥𝑏∥∞ ≤ 𝑀 .

It remains to provide an algorithm which can compute a basis of

𝐿+ =
{
(𝑒1, . . . , 𝑒𝑛) ∈ Z𝑛 | 𝑒1𝑥1 + · · · + 𝑒𝑛𝑥𝑛 = 0

}
where 𝑥1, . . . , 𝑥𝑛 ∈ C \ {0}. Due to the special shape of the 𝑥𝑖
in our case, we can compute rational approximations b𝑖 ∈ Q(i)
of arbitrary precision [3]. In particular, for every 𝜖 > 0 we can

compute b1, . . . , b𝑛 ∈ Q(i) such that

|ℜ(𝑥𝑖 ) − ℜ(b𝑖 ) | < 𝜖 and |ℑ(𝑥𝑖 ) − ℑ(b𝑖 ) | < 𝜖

for all 𝑖 = 1, . . . , 𝑛. Furthermore, we can use the fact that member-

ship (𝑒1, . . . , 𝑒𝑛) ∈ 𝐿+ can be checked and that we know that a basis

with vectors bounded by𝑀 exists.

For proving the correctness of Algorithm 3 we will employ the

following lemma:

Lemma4. [37, Lemma 2] If𝑏1, . . . , 𝑏𝑟 is a lattice basis and ¯𝑏1, . . . , ¯𝑏𝑟
is the correspondingGram-Schmidt basis, then for every 𝑣 ∈ ⟨𝑏1, . . . , 𝑏𝑟 ⟩
with ∥𝑣 ∥

2
<

¯𝑏𝑟


2
we have in fact 𝑣 ∈ ⟨𝑏1, . . . , 𝑏𝑟−1⟩.

Proof. Let 𝑣 ∈ ⟨𝑏1, . . . , 𝑏𝑟 ⟩ be such that ∥𝑣 ∥
2
<

¯𝑏𝑟


2
, say 𝑣 =

𝛼1𝑏1 + · · · + 𝛼𝑟𝑏𝑟 for certain 𝛼1, . . . , 𝛼𝑟 ∈ Z. We have to show that

𝛼𝑟 = 0. Let `𝑖, 𝑗 be such that 𝑏𝑖 =
∑

𝑗≤𝑖 `𝑖, 𝑗 ¯𝑏 𝑗 for all 𝑖, 𝑗 ; note that
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Algorithm 3: Computing a basis for 𝐿+
Input: Computable numbers 𝑥1, . . . , 𝑥𝑛 ∈ C \ {0} and

𝑀 ∈ Q such that the lattice

𝐿+ =

{
(𝑒𝑖 )𝑖=1,...,𝑛 ∈ Z𝑛 |

𝑛∑︁
𝑖=1

𝑒𝑖𝑥𝑖 = 0

}
has a basis of vectors 𝑏 ∈ Z𝑛 with ∥𝑏∥∞ ≤ 𝑀

Needs: One can decide whether 𝑏 ∈ 𝐿+ for any 𝑏 ∈ Z𝑛
Output: A basis of 𝐿+

1 𝑤 ← 1

2 𝐵 ← {(1, 0, . . . , 0, 0, 0), . . . , (0, . . . , 0, 1, 0, 0)} ⊆ Z𝑛+2
3 while ∃ (𝑒1, . . . , 𝑒𝑛, ∗, ∗) ∈ 𝐵 : (𝑒1, . . . , 𝑒𝑛) ∉ 𝐿+ do
4 𝑤 ← 2𝑤

5 find b1, . . . , b𝑛 ∈ Q(i) with |ℜ(b𝑖 ) − ℜ(𝑥𝑖 ) | < 1

𝑛𝑤 and

|ℑ(b𝑖 ) − ℑ(𝑥𝑖 ) | < 1

𝑛𝑤 for all 𝑖 = 1, . . . , 𝑛

6 replace every vector (𝑒1, . . . , 𝑒𝑛, ∗, ∗) ∈ 𝐵 by(
𝑒1, . . . , 𝑒𝑛,𝑤

𝑛∑︁
𝑖=1

𝑒𝑖ℜ(b𝑖 ),𝑤
𝑛∑︁
𝑖=1

𝑒𝑖ℑ(b𝑖 )
)

7 apply LLL to 𝐵, call the output vectors 𝑏1, . . . , 𝑏𝑟 and the

corresponding Gram-Schmidt vectors
¯𝑏1, . . . , ¯𝑏𝑟

8 while 𝑟 > 0 and
¯𝑏𝑟


2
>
√
𝑛 + 2𝑀 do 𝑟 ← 𝑟 − 1

9 𝐵 ← {𝑏1, . . . , 𝑏𝑟 }
10 end
11 return {(𝑒1, . . . , 𝑒𝑛) : (𝑒1, . . . , 𝑒𝑛, ∗, ∗) ∈ 𝐵}

`𝑖,𝑖 = 1. Now

¯𝑏𝑟
2

2
> ∥𝑣 ∥2

2
=

 𝑟∑︁
𝑖=1

𝛼𝑖𝑏𝑖

2

2

=

 𝑟∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝛼𝑖`𝑖, 𝑗 ¯𝑏 𝑗


2

2

=

 𝑟∑︁
𝑗=1

( 𝑟∑︁
𝑖=𝑗

𝛼𝑖`𝑖, 𝑗

)
¯𝑏 𝑗


2

2

Pythagoras

=

𝑟∑︁
𝑗=1

������ 𝑟∑︁
𝑖=𝑗

𝛼𝑖`𝑖, 𝑗

������
2 ¯𝑏 𝑗

2

2

=

𝑟−1∑︁
𝑗=1

������ 𝑟∑︁
𝑖=𝑗

𝛼𝑖`𝑖, 𝑗

������
2 ¯𝑏 𝑗

2

2︸                      ︷︷                      ︸
≥0

+ |𝛼𝑟 |2
¯𝑏𝑟

2

2
≥ |𝛼𝑟 |2

¯𝑏𝑟
2

2

together with 𝛼𝑟 ∈ Z forces 𝛼𝑟 = 0, as claimed. □

Theorem 5. Algorithm 3 is correct and terminates.

Proof. It is clear that every output vector is an element of 𝐿+.
To see that the output vectors generate 𝐿+, we need to justify the

removals in line 9. By assumption, we know that 𝐿+ has a basis

whose elements have components bounded by𝑀 . For every vector

(𝑒1, . . . , 𝑒𝑛) ∈ 𝐿+ with |𝑒𝑖 | < 𝑀 for all 𝑖 we have

𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖ℜ(b𝑖 )
����� = 𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖ℜ(b𝑖 ) − 𝑒𝑖ℜ(𝑥𝑖 )
�����

≤ 𝑤

𝑛∑︁
𝑖=1

|𝑒𝑖 | |ℜ(b𝑖 ) − ℜ(𝑥𝑖 ) |

≤ 𝑤

𝑛∑︁
𝑖=1

|𝑒𝑖 | /(𝑛𝑤) < 𝑀

and likewise for the imaginary parts. Therefore, we are only inter-

ested in vectors 𝑏 = (𝑒1, . . . , 𝑒𝑛, ∗, ∗) in the lattice generated by 𝐵

with

∥𝑏∥
2
≤

√︁
𝑀2 + · · · +𝑀2 +𝑀2 +𝑀2 =

√
𝑛 + 2𝑀.

By Lemma 4, these vectors are still in the lattice after the removals

in line 9.

It remains to show that the algorithm terminates. Suppose it

does not terminate, i.e., the set 𝐵 eventually contains 𝑟 vectors in

every iteration which are not all in the lattice 𝐿+. We show that

from some point on in the algorithm (i.e., for big enough𝑤 ), this

cannot be the case because vectors which are not in 𝐿+ are too long
and are therefore removed in line 9 of the algorithm.

There are only finitely many vectors (𝑒1, . . . , 𝑒𝑛) ∈ Z𝑛 with

|𝑒𝑖 | ≤
√
𝑛 + 2𝑀 for all 𝑖 = 1, . . . , 𝑛. Therefore, there exists an 𝜖 > 0

such that

max( |𝑒1ℜ(𝑥1) + · · · + 𝑒𝑛ℜ(𝑥𝑛) | , |𝑒1ℑ(𝑥1) + · · · + 𝑒𝑛ℑ(𝑥𝑛) |) > 𝜖

for all (𝑒1, . . . , 𝑒𝑛) ∈ Z𝑛 \ 𝐿+ with |𝑒𝑖 | ≤
√
𝑛 + 2𝑀 for all 𝑖 . Choose

such an 𝜖 . Suppose we are in line 3 of the algorithm with 𝑤 ≥√
𝑛+2𝑀 (1+2(𝑟−1)/2)

𝜖 and 𝑏 𝑗 ∈ 𝐵 \ 𝐿 with 𝑗 ∈ {1, . . . , 𝑟 }. Let

𝑏 𝑗 =

(
𝑒1, . . . , 𝑒𝑛,𝑤

𝑛∑︁
𝑖=1

𝑒𝑖ℜ(b𝑖 ),𝑤
𝑛∑︁
𝑖=1

𝑒𝑖ℑ(b𝑖 )
)
.

Since 𝑏 𝑗 has not been removed in line 9 in the previous iteration,

we have |𝑒𝑖 | ≤
√
𝑛 + 2𝑀 for all 𝑖 = 1, . . . , 𝑛. By the choice of 𝜖 for

either 𝑓 = ℜ or 𝑓 = ℑ we have

𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖 𝑓 (b𝑖 )
����� = 𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 ) + 𝑓 (𝑥𝑖 ))
�����

= 𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 )) +
𝑛∑︁
𝑖=1

𝑒𝑖 𝑓 (𝑥𝑖 )
�����

≥ 𝑤

(����� 𝑛∑︁
𝑖=1

𝑒𝑖 𝑓 (𝑥𝑖 )
����� −

����� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 ))
�����
)

> 𝑤

(
𝜖 −

����� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 ))
�����
)
.

Furthermore, we have����� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 ))
����� ≤ 𝑛∑︁

𝑖=1

|𝑒𝑖 | |𝑓 (b𝑖 ) − 𝑓 (𝑥𝑖 ) |

<

𝑛∑︁
𝑖=1

√
𝑛 + 2𝑀 1

𝑛𝑤 =

√
𝑛+2𝑀
𝑤 .
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Using this and the condition on𝑤 in the inequality above yields

𝑤

����� 𝑛∑︁
𝑖=1

𝑒𝑖 𝑓 (b𝑖 )
����� > 𝑤𝑒 −

√
𝑛 + 2𝑀 ≥ 2

(𝑟−1)/2√𝑛 + 2𝑀.

Therefore,

𝑏 𝑗 
2
> 2
(𝑟−1)/2√𝑛 + 2𝑀 . In particular, using (3),¯𝑏𝑘


2
≥ 2
−(𝑘−1)/2 𝑏 𝑗 

2
> 2
(𝑟−𝑘)/2√𝑛 + 2𝑀 ≥

√
𝑛 + 2𝑀

for all 𝑘 = 𝑗, . . . , 𝑟 . Hence, 𝑏 𝑗 , . . . , 𝑏𝑟 would have been removed

already in the past iteration and cannot be in the set 𝐵 anymore, a

contradiction. □

An implementation of the algorithm is part of the rec_sequences
package

1
and is publicly available [25].

4 TORSION NUMBER
For proving the order bounds for𝐶2

-finite sequences, we will heav-

ily rely on the fact that a 𝐶-finite sequence 𝑐 can be written as

interlacing of non-degenerate sequences 𝑐 (𝑑𝑛), . . . , 𝑐 (𝑑𝑛 + 𝑑 − 1)
[8, Theorem 1.2]. More generally, if we have a finitely generated

difference algebra of 𝐶-finite sequences, we will determine a num-

ber 𝑑 ∈ N (which we will call the torsion number) such that every

sequence in the algebra can be written as the interlacing of 𝑑 non-

degenerate subsequences.

Let 𝑐0, . . . , 𝑐𝑟 ∈ R𝐶 with eigenvalues _1, . . . , _𝑚 and let 𝑅𝑑 B
K𝜎 [𝑐0 (𝑑𝑛), . . . , 𝑐𝑟 (𝑑𝑛)] be the smallest difference algebra which

contains the sequences 𝑐0 (𝑑𝑛), . . . , 𝑐𝑟 (𝑑𝑛). Suppose 𝑐 ∈ 𝑅𝑑 . Then,
every eigenvalue _ of 𝑐 is of the form _ = _

𝑒1

1
· · · _𝑒𝑚𝑚 for some

𝑒1, . . . , 𝑒𝑚 ∈ N. We want to find a 𝑑 such that every sequence

𝑐 ∈ 𝑅𝑑 is non-degenerate. Equivalently, we want to find a 𝑑 such

that (
_
𝑑𝑒

1

1
· · ·_𝑑𝑒𝑚𝑚

_
𝑑𝑓

1

1
· · ·_𝑑𝑓𝑚

𝑚

)𝑘
= 1 =⇒ _

𝑑𝑒1

1
· · · _𝑑𝑒𝑚𝑚 = _

𝑑𝑓1
1
· · · _𝑑𝑓𝑚𝑚

for all 𝑘, 𝑒1, . . . , 𝑒𝑚, 𝑓1, . . . , 𝑓𝑚 ∈ N. In order to write this more con-

cisely we define the multiplicative group 𝐺 B ⟨_1, . . . , _𝑚⟩ ≤
(C×, ·). Then, this condition reads as

∀𝑘 ∈ N≥1∀_ ∈ 𝐺 : _𝑘𝑑 = 1 =⇒ _𝑑 = 1.

The following lemma shows that this number 𝑑 also has a purely

group-theoretical and a purely lattice-theoretical description.

Lemma 6. Let 𝐺 B ⟨_1, . . . , _𝑚⟩ ≤ (C×, ·). The following condi-

tions on 𝑑 ∈ N≥1 are equivalent:

(1) The number 𝑑 satisfies

∀𝑘 ∈ N≥1∀_ ∈ 𝐺 : _𝑘𝑑 = 1 =⇒ _𝑑 = 1.

(2) Let 𝑇 (𝐺) B {_ ∈ 𝐺 | ord(_) < ∞} be the torsion subgroup

of 𝐺 . Then, 𝑑 satisfies

ord(_) | 𝑑 for all _ ∈ 𝑇 (𝐺) .
(3) Let

𝐿 B 𝐿(_1, . . . , _𝑚) B {(𝑒1, . . . , 𝑒𝑚) ∈ Z𝑚 | _𝑒1

1
· · · _𝑒𝑚𝑚 = 1}

be the lattice of integer relations among _1, . . . , _𝑚 . Then, 𝑑

satisfies

∀𝑘 ∈ N≥1 ∀𝑣 ∈ Z𝑚 : 𝑘𝑑𝑣 ∈ 𝐿 =⇒ 𝑑𝑣 ∈ 𝐿. (4)

1
The code is available at https://github.com/PhilippNuspl/rec_sequences in the

IntegerRelations class.

Proof. 1 =⇒ 2: Let _ ∈ 𝑇 (𝐺) and let 𝑚 ∈ N≥1 be minimal

with _𝑚 = 1. Then, clearly _𝑚𝑑 = 1. By assumption, _𝑑 = 1. As𝑚

was chosen minimal, we have𝑚 | 𝑑 .
2 =⇒ 3: Let 𝑘 ∈ N≥1, 𝑣 = (𝑒1, . . . , 𝑒𝑚) ∈ Z𝑚 and 𝑘𝑑𝑣 ∈ 𝐿. Let

_ = _
𝑒1

1
· · · _𝑒𝑚𝑚 . By definition of 𝐿,

_𝑘𝑑 = _
𝑘𝑑𝑒1

1
· · · _𝑘𝑑𝑒𝑚𝑚 = 1.

Hence, _ ∈ 𝑇 (𝐺). Therefore, by assumption, ord(_) | 𝑑 , so _𝑑 = 1

and 𝑑𝑣 ∈ 𝐿.
3 =⇒ 1: Let 𝑘 ∈ N≥1, _ = _

𝑒1

1
· · · _𝑒𝑚𝑚 ∈ 𝐺 and _𝑘𝑑 = 1. Defining

𝑣 B (𝑒1, . . . , 𝑒𝑚) ∈ Z𝑚 yields 𝑘𝑑𝑣 ∈ 𝐿. By assumption, 𝑑𝑣 ∈ 𝐿, i.e.,
_𝑑 = 1. □

Considering condition 2 of Lemma 6, we can see that the small-

est 𝑑 which satisfies the condition is the exponent of the torsion

group.

Definition 7. The torsion number 𝑑 ∈ N≥1 of _1, . . . , _𝑚 ∈ Q is

defined as

𝑑 B exp(𝑇 (𝐺)) B lcm(ord(_) | _ ∈ 𝑇 (𝐺))
where 𝐺 B ⟨_1, . . . , _𝑚⟩ ≤ (C×, ·).

We also call 𝑑 the torsion number of the lattice 𝐿 if it is the

smallest number satisfying (4). Using the terminology of pure mod-

ules, (4) is equivalent to 𝐿𝑑 B {𝑣 ∈ Z𝑚 | 𝑑𝑣 ∈ 𝐿} ⊇ 𝐿 being a

pure lattice. We show that for suitable 𝑑 the lattice 𝐿𝑑 is precisely

the pure closure of 𝐿. The property of being pure is closely related

to the invariant factors of the matrix built by a basis of a lattice.

The following lemma is already given, without a proof, in [5] on

page 80. For the sake of completeness we include a proof here.

Lemma8. Let 𝑣1, . . . , 𝑣ℓ ∈ Z𝑚 be a basis of the lattice𝐿 = ⟨𝑣1, . . . , 𝑣ℓ ⟩ ⊆
Z𝑚 . Let 𝑉 B (𝑣1, . . . , 𝑣ℓ ) ∈ Z𝑚×ℓ . Then, 𝐿 is pure if and only if all

invariant factors of 𝑉 are 1.

Proof. Let 𝑃𝑉𝑄 = 𝐷 be the Smith normal form of 𝑉 with in-

variant factors 𝑑1, . . . , 𝑑ℓ . Furthermore, let 𝑝1, . . . , 𝑝𝑚 ∈ Z𝑚 denote

the columns of the unimodular matrix 𝑃−1
.

=⇒ : The set {𝑑1𝑝1, . . . , 𝑑ℓ𝑝ℓ } forms a basis of 𝐿. As 𝐿 is pure,

𝑝1, . . . , 𝑝ℓ also form a basis of 𝐿. Hence, there is a unimodular

change-of-basis matrix𝑈 with𝑈𝑑ℓ𝑝ℓ = 𝑝ℓ . In particular (cf. Corol-

lary 158 in [23]),

gcd(𝑈𝑑ℓ𝑝ℓ ) = 𝑑ℓ gcd(𝑝ℓ ) = gcd(𝑝ℓ ) .
Therefore, 𝑑ℓ = 1 and by the divisibility property of the invariant

factors 𝑑1 = · · · = 𝑑ℓ = 1.

⇐=: As {𝑝1, . . . , 𝑝ℓ } form a basis of 𝐿 and {𝑝1, . . . , 𝑝𝑚} form a

basis of Z𝑚 , 𝐿 is a direct summand of Z𝑚 and therefore pure. □

Now, we want to show that the torsion number of algebraic num-

bers _1, . . . , _𝑚 ∈ Q can actually be computed. First, we have de-

vised an algorithm in Section 3 which computes a basis 𝑣1, . . . , 𝑣ℓ ∈
Z𝑚 for the lattice 𝐿 B 𝐿(_1, . . . , _𝑚). Then, the invariant factor of
the matrix built by the basis is precisely the torsion number of the

lattice:

Theorem 9. Let 𝑣1, . . . , 𝑣ℓ ∈ Z𝑚 be a basis of the lattice 𝐿 =

⟨𝑣1, . . . , 𝑣ℓ ⟩ ⊆ Z𝑚 . Let 𝑉 B (𝑣1, . . . , 𝑣ℓ ) ∈ Z𝑚×ℓ with invariant

factor 𝑑 . Then, 𝐿𝑑 = {𝑣 ∈ Z𝑚 | 𝑑𝑣 ∈ 𝐿} is the pure closure of 𝐿. In
particular, 𝑑 is the torsion number of 𝐿.

https://github.com/PhilippNuspl/rec_sequences
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Proof. The lattices 𝐿 and 𝐿𝑑 have the same rank ℓ . Let

𝑑1, . . . , 𝑑ℓ−1, 𝑑ℓ = 𝑑

be the invariant factors of 𝐿 and 𝑑1, . . . , 𝑑ℓ the invariant factors

of 𝐿𝑑 . The lattice 𝐿𝑑 has a basis of the form

𝑑1𝑝1, . . . , 𝑑ℓ𝑝ℓ .

Let 𝑉 B (𝑑1𝑝1, . . . , 𝑑ℓ𝑝ℓ ). Then, 𝑉𝑆 = 𝑉 for some matrix 𝑆 ∈ Zℓ×ℓ
as 𝐿 ⊆ 𝐿𝑑 . Therefore, 𝑑ℓ | 𝑑ℓ = 𝑑 [24, Lemma II.2]. Hence, 𝑑𝑝ℓ ∈ 𝐿𝑑 ,
so 𝑝ℓ ∈ 𝐿𝑑 . By the same argument as in Lemma 8, 𝑑 = 𝑑ℓ = 1, so

𝐿𝑑 is pure.

As 𝐿𝑑 is pure, the pure closure 𝐿 of 𝐿 is contained in 𝐿𝑑 . Let

𝑣 ∈ 𝐿𝑑 . Then, 𝑑𝑣 ∈ 𝐿, so 𝑣 ∈ 𝐿. Therefore, 𝐿𝑑 = 𝐿. □

Example 10. Let

_1 = 2
1/2, _2 = (−2)1/3, _3 = i, _4 = −i.

The columns of

𝑉 B
©«
0 0 −2

0 0 3

1 2 −1

1 −2 1

ª®®®¬ = 𝑃−1

©«
1 0 0

0 1 0

0 0 4

0 0 0

ª®®®¬𝑄
−1

are a basis of 𝐿(_1, _2, _3, _4). Hence, 𝑑 = 4 is the torsion number

of _1, . . . , _4.

Let 𝑐0, . . . , 𝑐𝑟 ∈ R𝐶 with eigenvalues _1, . . . , _𝑚 . Then, we have

seen that we can compute a number 𝑑 ∈ N≥1 (namely the torsion

number) such that the algebra

𝑅 B K𝜎 [𝑐0 (𝑑𝑛), . . . , 𝑐𝑟 (𝑑𝑛)]

only contains sequences which are non-degenerate, i.e., sequences

which contain only finitely many zeros. A non-degenerate sequence

might be a zero divisor in the ring KN. However, we can still define

the localization 𝑄 (𝑅) B { 𝑐
𝑑
| 𝑐 ∈ 𝑅,𝑑 ∈ 𝑅 \ {0}}. This localiza-

tion𝑄 (𝑅) is a field. Note, that an element of𝑄 (𝑅) can be interpreted
only as a sequence in KN from some term on (cf. the discussion in

Section 8.2 in [30] or [31]). For instance, the sequence
3
𝑛

2
𝑛−1

cannot

be evaluated at the term 𝑛 = 0. This is not a problem for our appli-

cations as we will see in Section 5. We summarize the discussions

of the section in the following theorem:

Theorem 11. Let 𝑐0, . . . , 𝑐𝑟 ∈ R𝐶 with eigenvalues _1, . . . , _𝑚 .

Then, we can compute a number 𝑑 ∈ N≥1 (namely the torsion

number) such that the localization 𝑄 (𝑅) of the algebra

𝑅 B K𝜎 [𝑐0 (𝑑𝑛), . . . , 𝑐𝑟 (𝑑𝑛)]

is a field. The elements of the field 𝑄 (𝑅) can be considered as

sequences which are nonzero from some term on.

From the closed form of 𝐶-finite sequences it is clear that these

sequences can be seen as special cases of sums of single nested

product expressions. The torsion number can be used to find a

certain algebraic independent basis of these sequences [31].

5 ORDER BOUNDS
In this section we will derive order bounds for the ring operations

and additional closure properties of 𝐶2
-finite sequences.

The computation of closure properties of 𝐶2
-finite sequences

can be reduced to solving linear systems of equations [11, 12]. A

𝐶2
-finite recurrence

𝑥0 (𝑛) + 𝑥1 (𝑛)𝜎 + · · · + 𝑥𝑠 (𝑛)𝜎𝑠

with 𝑥𝑖 ∈ 𝑅 for some suitable ring 𝑅 of sequences is obtained by

computing an element (𝑥0, . . . , 𝑥𝑠 ) in the kernel of a matrix(
𝑤0,𝑤1, . . . ,𝑤𝑠

)
∈ 𝑄 (𝑅)𝑟×(𝑠+1) . (5)

The 𝑤𝑖 can be computed iteratively using 𝑤𝑖+1 = 𝑀𝜎 (𝑤𝑖 ) for a
suitable matrix𝑀 ∈ 𝑄 (𝑅)𝑟×𝑟 (where the shift operator 𝜎 is applied

componentwise).

• In the case a recurrence for 𝑎 + 𝑏 is computed, we use𝑤0 =

𝑒0 ⊕ 𝑒0 and 𝑀 = 𝑀𝑎 ⊕ 𝑀𝑏 where 𝑀𝑎, 𝑀𝑏 are the compan-

ion matrices of 𝑎, 𝑏 and 𝑒0, 𝑒0 are the first unit vectors of

appropriate sizes.

• In the case a recurrence for 𝑎𝑏 is computed, we use 𝑤0 =

𝑒0 ⊗ 𝑒0 and𝑀 = 𝑀𝑎 ⊗ 𝑀𝑏 .

• In the case a recurrence for 𝑎(ℓ𝑛) is computed, we use𝑤0 =

𝑒0 and𝑀 = 𝑀𝑎 (ℓ𝑛) · · ·𝑀𝑎 (ℓ𝑛 + ℓ − 1).
• In the case a 𝐶2

-finite recurrence for 𝑐 ( 𝑗𝑛2 + 𝑘𝑛 + ℓ) with
𝑗, 𝑘, ℓ ∈ N and a 𝐶-finite sequence 𝑐 (which does not have 0

as an eigenvalue) is computed, we use

𝑤0 = 𝑀𝑘𝑛+ℓ−𝑟+1
𝑐 𝑒𝑟−1 and𝑀 = 𝑀

𝑗 (2𝑛+1)
𝑐 (6)

where𝑀𝑐 is the companion matrix of 𝑐 and 𝑒𝑟−1 the last unit

vector.

The underlying ring 𝑅 is the difference algebra K𝜎 [𝑐0, . . . , 𝑐𝑟 ] gen-
erated by the 𝐶-finite sequences 𝑐0, . . . , 𝑐𝑟 appearing in𝑤0 and𝑀 .

5.1 Interlacing and subsequence
Theorem 12. Let 𝑎1 (𝑛), . . . , 𝑎𝑑 (𝑛) be 𝐶2

-finite sequences of max-

imal order 𝑟 . Let 𝑏 be the interlacing of these sequences. We can

compute a 𝐶2
-finite recurrence of order at most 𝑑𝑟 for 𝑏.

Proof. By shifting the recurrences of the 𝑎𝑠 appropriately, we

can assume that they all satisfy a 𝐶2
-finite recurrence of order 𝑟 of

the form

𝑐𝑠,0 (𝑛)𝑎𝑠 (𝑛) + · · · + 𝑐𝑠,𝑟 (𝑛)𝑎𝑠 (𝑛 + 𝑟 ) = 0

for 𝑠 = 1, . . . , 𝑑 for 𝐶-finite sequences 𝑐𝑠,𝑖 where the 𝑐𝑠,𝑟 only have

finitely many zeros. Let 𝑒𝑑𝑖 be the interlacing of 𝑐1,𝑖 , . . . , 𝑐𝑑,𝑖 for

𝑖 = 0, . . . , 𝑟 . These 𝑒𝑑𝑖 are then 𝐶-finite and 𝑒𝑑𝑟 only has finitely

many zeros. Then, 𝑏 satisfies the recurrence

𝑒0 (𝑛)𝑏 (𝑛) + 𝑒𝑑 (𝑛)𝑏 (𝑛 + 𝑑) + · · · + 𝑒𝑑𝑟 (𝑛)𝑏 (𝑛 + 𝑑𝑟 ) = 0.

□

As seen in the proof of Theorem 12, computing the interlacing

of 𝐶2
-finite sequences is simpler than in the case of 𝐶-finite and 𝐷-

finite sequences. This is because the coefficients of the recurrence,

namely𝐶-finite sequences, are closed under interlacing themselves.
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Example 13. Let 𝑐 be 𝐶-finite satisfying

𝑐 (𝑛) − 𝑐 (𝑛 + 𝑟 ) = 0, 𝑐 (0) = 1, 𝑐 (1) = · · · = 𝑐 (𝑟 − 1) = 0.

Furthermore, let 𝑎 be the interlacing of 𝑐 and 𝑑 − 1 times the zero

sequence. Theorem 12 shows that 𝑎 is 𝐶2
-finite of order at most 𝑑𝑟 .

The sequence 𝑎 is cyclic and has 𝑟𝑑 − 1 consecutive zeros. Hence,

the sequence 𝑎 also has to have order at least 𝑟𝑑 as otherwise, the

sequence would be constantly zero. The bound in Theorem 12 is

therefore tight in general.

Lemma 14. Let 𝑎 be 𝐶2
-finite of order 𝑟 and let 𝑑 be the torsion

number of the eigenvalues appearing in the recurrence of 𝑎. Let

ℓ ∈ N. We can compute a 𝐶2
-finite recurrence of order at most 𝑟

which is satisfied by all sequences 𝑎(𝑑ℓ𝑛 + 𝑖) for 𝑖 = 0, . . . , 𝑑ℓ − 1.

Proof. The sequences 𝑎(𝑛 + 𝑖) for 𝑖 = 0, . . . , 𝑑 − 1 all satisfy the

same recurrence. By the choice of 𝑑 , all sequences in the ring 𝑅

generated by the sequences appearing in

𝑀 = 𝑀𝑎 (𝑑ℓ𝑛) · · ·𝑀𝑎 (𝑑ℓ𝑛 + 𝑑ℓ − 1)

are non-degenerate. By Theorem 11, 𝑄 (𝑅) is a field. Therefore, if
𝑠 = 𝑟 , then the linear system (5) is underdetermined and we can

compute an element (after clearing denominators) (𝑥0, . . . , 𝑥𝑟 ) ∈
𝑅𝑟+1 in the kernel with 𝑥𝑡 ≠ 0 and 𝑥𝑡+1 = · · · = 𝑥𝑟 = 0 for some

𝑡 ≤ 𝑟 . This gives rise to a 𝐶2
-finite recurrence

𝑥0 (𝑛) + 𝑥1 (𝑛)𝜎 + · · · + 𝑥𝑡 (𝑛)𝜎𝑡

as 𝑥𝑡 only has finitely many zeros by the choice of 𝑑 . □

To extend Lemma 14 to subsequences at arbitrary arithmetic pro-

gressions we write such an arbitrary subsequence as the interlacing

of certain subsequences for which Lemma 14 can be applied.

Theorem 15. Let 𝑎 be 𝐶2
-finite of order 𝑟 and let 𝑑 be the torsion

number of the eigenvalues appearing in the recurrence of 𝑎. Let

ℓ ∈ N. We can compute a 𝐶2
-finite recurrence of order at most 𝑑𝑟

which is satisfied by the sequence 𝑎(ℓ𝑛).

Proof. By Lemma 14 we can compute a recurrence of order at

most 𝑟 satisfied by 𝑎(𝑑ℓ𝑛 + 𝑖) for 𝑖 = 0, . . . , 𝑑ℓ − 1. Let 𝑏 be the

interlacing of the 𝑑 sequences

𝑎(𝑑ℓ𝑛), 𝑎(𝑑ℓ𝑛 + ℓ), . . . , 𝑎(𝑑ℓ𝑛 + (𝑑 − 1)ℓ).

By Theorem 12, 𝑏 has order at most 𝑑𝑟 . We show that 𝑏 (𝑛) = 𝑎(ℓ𝑛):
Let 𝑛 = 𝑞𝑑 + 𝑠 with 0 ≤ 𝑠 < 𝑑 . Then, by the definition of 𝑏

𝑏 (𝑛) = 𝑏 (𝑞𝑑 + 𝑠) = 𝑎(𝑑ℓ𝑞 + 𝑠ℓ) = 𝑎(ℓ (𝑑𝑞 + 𝑠)) = 𝑎(ℓ𝑛) .

□

5.2 Ring operations
Theorem 16. Let 𝑎, 𝑏 be 𝐶2

-finite of order 𝑟1, 𝑟2, respectively and

let 𝑑 be the torsion number of the eigenvalues appearing in the

recurrences of 𝑎, 𝑏. Then,

(1) the sequence 𝑎 +𝑏 is𝐶2
-finite of order at most 𝑑 (𝑟1 + 𝑟2) and

(2) the sequence 𝑎𝑏 is 𝐶2
-finite of order at most 𝑑𝑟1𝑟2.

Furthermore, such recurrences can be computed.

Proof. We can compute𝐶2
-finite recurrences of maximal order

𝑟1, 𝑟2 for 𝑎(𝑑𝑛 + 𝑖), 𝑏 (𝑑𝑛 + 𝑖) by Lemma 14. The closure properties

𝑎(𝑑𝑛 + 𝑖) + 𝑏 (𝑑𝑛 + 𝑖) and 𝑎(𝑑𝑛 + 𝑖)𝑏 (𝑑𝑛 + 𝑖) can be computed again

by solving a linear system of equations over the field 𝑄 (𝑅). Then,
the same order bounds as in the𝐶-finite and 𝐷-finite case apply, so

the sequences 𝑎(𝑑𝑛 + 𝑖) +𝑏 (𝑑𝑛 + 𝑖), 𝑎(𝑑𝑛 + 𝑖)𝑏 (𝑑𝑛 + 𝑖) have maximal

orders 𝑟1 + 𝑟2, 𝑟1𝑟2, respectively. By Theorem 12, we can interlace

these sequence and obtain a recurrence of order 𝑑 (𝑟1 + 𝑟2), 𝑑𝑟1𝑟2

for 𝑎 + 𝑏 and 𝑎𝑏, respectively. □

In the special case that both 𝐶2
-finite sequences are 𝐶-finite or

𝐷-finite, the torsion number is 1 and the bounds simplify to the

known order bounds for these rings.

Theorem 16 does not imply that the ring of𝐶2
-finite sequences is

computable. We can compute𝐶2
-finite recurrences for the sum and

the product. These recurrences, however, have leading coefficients

which can have finitely many zeros. To uniquely determine the

sequences 𝑎 +𝑏, 𝑎𝑏 we might need to define additional initial values

at these singularities. However, by the Skolem problem, we do not

know whether these singularities can be computed. This is also

illustrated in the next example.

Example 17. Let 𝑎(𝑛) = 2
(𝑛+1

2
)
(A006125 in the OEIS [28]) and

𝑏 (𝑛) = 4
(𝑛

2
)
(A053763). Both sequences are 𝐶2

-finite satisfying the

recurrences

2
𝑛+1 𝑎(𝑛) − 𝑎(𝑛 + 1) = 0, 4

𝑛 𝑏 (𝑛) − 𝑏 (𝑛 + 1) = 0.

The torsion number of 𝐿(1, 2, 4) is 𝑑 = 1. The coefficients for a

recurrence of 𝑐 = 𝑎 + 𝑏 are given by an element in the kernel of(
1 2

𝑛+1
2

2𝑛+3

1 2
2𝑛

2
4𝑛+2

)
.

A recurrence is therefore, for instance, given by

2
3𝑛+3 (2𝑛 − 1)𝑐 (𝑛) − 2

𝑛+2 (22𝑛 − 2)𝑐 (𝑛 + 1) + (2𝑛 − 2)𝑐 (𝑛 + 2) = 0.

The recurrence has order ord(𝑎) + ord(𝑏) = 2 as expected but the

leading coefficient has a zero term at 𝑛 = 1. Shifting the recurrence

yields a recurrence of higher order with a leading coefficient which

does not have any zero terms anymore.

Example 18. Let 𝑐 be 𝐶-finite of order 2 satisfying

𝑐 (𝑛) − 𝑐 (𝑛 + 2) = 0, 𝑐 (0) = −1, 𝑐 (1) = 1.

Let 𝑎, 𝑏 be 𝐶2
-finite satisfying

𝑎(𝑛) = 1 𝑐 (𝑛)𝑏 (𝑛) − 𝑏 (𝑛 + 1) = 0, 𝑏 (0) = 1.

The eigenvalues that appear are 1 and −1. The torsion number is

therefore 𝑑 = 2. Let 𝑎𝑖 (𝑛) = 𝑎(2𝑛 + 𝑖) and 𝑏𝑖 (𝑛) = 𝑏 (2𝑛 + 𝑖) for
𝑖 = 0, 1. These are even 𝐶-finite of order 1 satisfying

𝑎𝑖 (𝑛) − 𝑎𝑖 (𝑛 + 1) = 0, 𝑏𝑖 (𝑛) + 𝑏𝑖 (𝑛 + 1) = 0.

Let 𝑠𝑖 = 𝑎𝑖 + 𝑏𝑖 . These 𝑠𝑖 are 𝐶-finite of order 2 satisfying

𝑠𝑖 (𝑛) − 𝑠𝑖 (𝑛 + 2) = 0.

The interlacing 𝑠 = 𝑎 + 𝑏 of 𝑠0, 𝑠1 satisfies the𝐶-finite recurrence of

order 4 = 𝑑 (ord(𝑎) + ord(𝑏))
𝑠 (𝑛) − 𝑠 (𝑛 + 4) = 0.

However, 𝑠 also satisfies a 𝐶2
-finite recurrence of order 3, namely

𝑐0 (𝑛)𝑠 (𝑛) + 𝑐2 (𝑛)𝑠 (𝑛 + 2) + 𝑠 (𝑛 + 3) = 0

http://oeis.org/A006125
http://oeis.org/A053763
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with

𝑐0 (𝑛) − 𝑐0 (𝑛 + 2) = 0, 𝑐0 (0) = −1, 𝑐0 (1) = 0,

𝑐2 (𝑛) − 𝑐2 (𝑛 + 2) = 0, 𝑐2 (0) = 0, 𝑐2 (1) = −1.

There cannot be a shorter recurrence for 𝑠 (𝑛) as it contains 2 con-

secutive zeros.

5.3 Sparse subsequences
Theorem 19. Let 𝑐 be 𝐶-finite of order 𝑟 and _1, . . . , _𝑚 its eigen-

values and _𝑖 ≠ 0 for all 𝑖 = 1, . . . ,𝑚. Let 𝑑 be the torsion number

of the eigenvalues. Then, we can compute a 𝐶2
-finite recurrence of

𝑐 ( 𝑗𝑛2 + 𝑘𝑛 + ℓ)
of maximal order 𝑑𝑟 for all 𝑗, 𝑘, ℓ ∈ N.

Proof. In a first step, we show how we can find a recurrence of

order 𝑟 for the sequence

𝑎(𝑛) = 𝑐 (𝑑 ( 𝑗𝑛2 + 𝑘𝑛) + ℓ) .
Lemma 11 in [17] shows that 𝑀𝑝𝑛+𝑞

for 𝑝, 𝑞 ∈ Z is a matrix of

𝐶-finite sequences. The proof shows that the characteristic polyno-

mials of the sequences is the characteristic polynomial of𝑀𝑝
. Let

𝑀𝑐 be the companion matrix of 𝑐 . Suppose

(𝑥 − _1)𝑑1 · · · (𝑥 − _𝑚)𝑑𝑚

is the characteristic polynomial of 𝑐 which, by definition of the com-

panion matrix, is also equal to the characteristic polynomial of𝑀𝑐 .

Then, by the closed form of 𝐶-finite sequences, the characteristic

polynomial of 𝑐 (𝑝𝑛) is given by

(𝑥 − _𝑝
1
)𝑑1 · · · (𝑥 − _𝑝𝑚)𝑑𝑚

which, in turn, is equal to the characteristic polynomial of 𝑀
𝑝
𝑐 .

By (6), the sequences that generate the underlying ring 𝑅 used for

computing a recurrence for 𝑎(𝑛) all have characteristic polynomial

equal to the characteristic polynomials of 𝑀𝑑𝑘
𝑐 and 𝑀

2𝑑 𝑗
𝑐 . An el-

ement in the kernel of the linear system over the field 𝑄 (𝑅) can
easily be computed if 𝑠 = 𝑟 . This gives rise to a𝐶2

-finite recurrence

of order 𝑟 for 𝑎.

An arbitrary sequence

𝑏 (𝑛) = 𝑐 ( 𝑗𝑛2 + 𝑘𝑛 + ℓ)
can be written as interlacing of sequences

𝑎𝑟 (𝑛) = 𝑐 (𝑑 (𝑑 𝑗𝑛2 + (2 𝑗𝑟 + 𝑘)𝑛) + 𝑗𝑟2 + 𝑘𝑟 + ℓ)
for 𝑟 = 0, . . . , 𝑑 − 1 as the term at index 𝑛 = 𝑞𝑑 + 𝑟 of the interlacing
is precisely given by

𝑎𝑟 (𝑞) = 𝑐 (𝑑 (𝑑 𝑗𝑞2 + (2 𝑗𝑟 + 𝑘)𝑞) + 𝑗𝑟2 + 𝑘𝑟 + ℓ)
= 𝑐 ( 𝑗 (𝑑2𝑞2 + 2𝑟𝑞 + 𝑟2) + 𝑘 (𝑑𝑞 + 𝑟 ) + ℓ) = 𝑐 ( 𝑗𝑛2 + 𝑘𝑛 + ℓ) .

We can compute𝐶2
-finite recurrences of order 𝑟 for these sequences

𝑎𝑟 by the first part of the proof (choosing 𝑗 = 𝑑 𝑗, 𝑘 = 2 𝑗𝑟 + 𝑘, ℓ =
𝑗𝑟2 + 𝑘𝑟 + ℓ). By Theorem 12 we can therefore compute a 𝐶2

-finite

recurrence of order 𝑑𝑟 for 𝑏. □

Example 20. Let 𝑐 be the 𝐶-finite sequence (A006131 in the OEIS)

satisfying

4 𝑐 (𝑛) + 𝑐 (𝑛 + 1) − 𝑐 (𝑛 + 2) = 0, 𝑐 (0) = 𝑐 (1) = 1.

The sequence has eigenvalues
1±
√

17

2
and their torsion number

is 1. The sparse subsequence 𝑎(𝑛) = 𝑐 (𝑛2) is 𝐶2
-finite of order 2

satisfying

𝑐0 (𝑛)𝑎(𝑛) − 𝑐 (4𝑛 + 3)𝑎(𝑛 + 1) + 𝑐 (2𝑛)𝑎(𝑛 + 2) = 0

where 𝑐0 is 𝐶-finite of order 2 satisfying

4096 𝑐0 (𝑛)−144 𝑐0 (𝑛+1)+𝑐0 (𝑛+2) = 0, 𝑐0 (0) = −20, 𝑐0 (1) = −1856.

6 OUTLOOK
Recently, the class of simple 𝐶2-finite sequences has been intro-

duced [27] that satisfies the same computational properties as 𝐶2
-

finite sequences, but does not share the same technical issues. In

particular, it is possible to derive bounds for the asymptotic behav-

ior, there is a characterization through the generating function and

closure properties can be computed more efficiently.

It is, however, not clear whether it is possible to derive order

bounds for simple 𝐶2
-finite sequences as we have presented here

for 𝐶2
-finite sequence. In that case, one is dealing with an inhomo-

geneous linear system and the underlying ring is not a principal

ideal domain. Hence, one cannot simply bound the rank of modules.

Typically, given a defining recurrence for a 𝐶2
-finite sequence,

it is difficult to argue that it does not satisfy a shorter recurrence.

For 𝐷-finite sequences, it is a common strategy to use Guess-and-

prove to derive a shorter recurrence (or to find evidence that it

is holonomic in the first place). It would be desirable to have a

guessing routine for𝐶2
-finite sequences. As a naive approach leads

to a non-linear system (see also [34]), it needs to be investigated

how this can be solved efficiently.
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