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Abstract

In an automatic search, we found conjectural recurrences for some sequences in the
OEIS that were not previously recognized as being D-finite. In some cases, we are
able to prove the conjectured recurrence. In some cases, we are not able to prove the
conjectured recurrence, but we can prove that a recurrence exists. In some remaining
cases, we do not know where the recurrence might come from.
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1 Introduction

The On-Line Encyclopedia of Integer Sequences (OEIS) [26] contains more than 360,000 se-
quences of all kinds of different flavors. A prominent flavor is the class of D-finite sequences,
i.e., sequences which satisfy a linear recurrence equation with polynomial coefficients. Such
sequences are interesting from the point of view of experimental mathematics because ex-
tensive computer algebra support for detecting and proving relations among such sequences
is available. It has been estimated in 2005 [24] and again in 2022 [30] that about 25% of the
sequences in the OEIS fall into this category.

There is a popular technique for searching for potential recurrence equations satisfied by a
sequence of which only the first few terms are known. This technique is known as “automated
guessing” and is implemented in various computer algebra systems [25, 11, 10, 13]. If this
method detects a candidate recurrence, it is almost always correct, although the method
does not provide the slightest hint how the relation could be proven. If the method detects
no recurrence, this proves that there is no recurrence of order r and degree d for certain r, d
such that (r + 2)(d + 1) is smaller than the number N of available terms. This might mean
that the sequence satisfies no recurrence at all, or that all recurrences it satisfies are too
large to be recognized from the available data.

For the latter situation, we have recently [14] introduced a refined variant of the guessing
methodology that is sometimes able to detect recurrences that are beyond the reach of the
classical approach, hereafter referred to as LA-based guessing (LA for ‘linear algebra’). For
the present paper, we have scanned the OEIS for sequences where this new method, hereafter
referred to as LLL-based guessing (LLL for the lattice reduction algorithm used within the
method), produces interesting output. Applying LLL-based guessing to all entries of the
OEIS where LA-based guessing finds no equation and where at least 25 and at most 150
terms are available, we detected recurrences in around 600 cases. Going through these cases
one by one, many were easily recognized as correct, and many were easily recognized as
wrong, or at least highly implausible. Others were such that it was easy to compute enough
additional terms that LA-based guessing could find the recurrence.

Here we present the remaining cases, in which we found the guessed recurrence trust-
worthy enough to take a closer look at the sequence. An overview is given in Table 1.
Using classical techniques, we managed to prove some of the guessed recurrences, or at
least that some recurrence must exist, or we were able to generate some further terms.
These cases are discussed in Sects. 3–5. In Sect. 6, we list the sequences for which we have
found a convincing guess but no convincing explanation. We invite our readers to take a
chance on these sequences. Results and remarks made in this article have been added to the
OEIS entries of the corresponding sequences. This article is accompanied by a Mathematica
notebook containing all our guessed recurrences, derivations and proofs; it is available at
www.koutschan.de/data/seq/.
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Sect. Entry Year First terms N M L r d

1.2 A187990 2011 117, 181, 260, 355, 467 50 – – 1 3 P

3.1 A177317 2010 1, 2, 48, 2288, 135040 29 60 22 3 14 P

3.2 A199250 2011 1, 1, 14, 21, 424, 571 56 98 56 8 18 P

3.3 A250556 2014 8, 60, 302, 1516, 7126 47 58 47 9 8 P

3.4 A264947 2015 1, 60, 3201, 184740 20 ? ? ? ? D

4.1 A265234 2015 1, 43, 2592, 184740 31 56 27 6 6 P

4.2 A172572 2010 90, 67950, 90291600 33 44 17 3 9 D

4.2 A172671 2010 90, 202410, 747558000 33 75 25 4 13 D

4.3 A188818 2011 2, 9, 48, 256, 1360 32 55 26 5 10 P

4.4 A306322 2019 1, 0, 0, 25, 386, 4657 41 63 30 4 14 P

5.1 A195806 2011 16, 105, 496, 1759, 5052 32 41 30 4 10 D

5.1 A216940 2012 260, 27768, 1664244 37 44 29 1 23 D

5.2 A194478 2011 0, 0, 0, 1, 337, 8733 32 35 19 2 12 P

6.1 A215570 2012 1, 35, 18720, 19369350 48 68 27 3 15 O

6.2 A339987 2020 1, 4, 90, 8400, 1426950 40 70 24 5 10 O

6.3 A269021 2016 1, 2, 23, 588, 24553 42 108 28 4 21 O

6.4 A181198 2010 1, 1, 8, 169, 6392 27 33 14 2 9 O

6.4 A181199 2010 1, 1, 16, 985, 141696 26 103 34 3 24 O

6.5 A181280 2010 0, 0, 0, 58, 1629, 28924 27 32 26 10 1 O

6.6 A253217 2014 0, 0, 1, 19, 268, 3568 37 53 27 5 9 O

6.7 A098926 2004 0, 2, 12, 90, 556, 5242 34 55 26 8 7 O

6.8 A164735 2009 0, 0, 0, 0, 0, 0, 0, 1, 0, 4 70 80 66 15 4 O

Table 1: N is the number of terms available in the OEIS at the time of writing.
M is the minimal number of terms that LA-based guessing, as implemented in the command
GuessMinRE of the package Guess.m [11] needs in order to detect the recurrence.
L is the minimal number of terms that LLL-based guessing [14] needs in order to detect the
recurrence.
r and d are the order and the degree of the recurrence we found.
In the rightmost column, ‘P’ indicates that the guessed recurrence is proven, ‘D’ means that
we can prove D-finiteness but not the guessed recurrence, and ‘O’ means that the case is
open.
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1.1 Sequences A237684 and A039836

Conjectures produced by automated guessing can often be trusted, but not always. Before
we get to trustworthy discoveries, let us mention some irregular cases.

For example, the sequence A237684 is defined as

an =

⌊
n p(n)∑
k≤n p(k)

⌋
,

where p(n) denotes the nth prime number. It is known that p(n) is not D-finite [8], so it
may come as a surprise that our LLL-based guesser finds the astonishingly simple recurrence

(n− 8)an + (14− 2n)an+1 + (2n− 10)an+2 + (4− n)an+3 = 0.

To see what is going on here, observe that the first few terms of the sequence are

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2.

For at least the next few thousand terms, the sequence continues with 2’s, and the guessed
recurrence is correct if and only if the sequence continues with 2’s forever. The guesser did
not discover any interesting pattern but only resonates the obvious observation that the
sequence appears to be ultimately constant. It just chose the coefficients of the recurrence in
such a way that it matches the finitely many irregular terms in the beginning. Incidentally,
the sequence is indeed constant for n ≥ 8, so after all, the guessed recurrence happens to be
correct; see the recent work of Axler [2] and the references given in his paper.

Another example for the same phenomenon is the sequence A039836, whose nth term is
defined as the maximal number m of integers si with 1 ≤ s1 < s2 < · · · < sm ≤ n such that
all sums si +sj with i 6= j are pairwise distinct. The LLL-based guesser finds a recurrence of
order 2 and degree 36 which we do not reproduce here because there is not reason to believe
that it is correct. The initial terms of the sequence are

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7,

7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,

9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 11, 11, 12, 12, 12, 12, 12, 12,

and again, the recurrence only seems to express that the sequence is constant except at some
(finitely many) exceptional indices. This is not convincing.
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1.2 Sequence A187990

If a guesser returns a recurrence whose polynomial coefficients encode that there are some
exceptional indices, then it is a good idea to be skeptical. But we should not be too skep-
tical either. For example, consider the sequence A187990, which counts the number of
nondecreasing arrangements x1 ≤ · · · ≤ x6 with x1, . . . , x6 ∈ {−n − 4, . . . , n + 4} and∑6

i=1 sign(xi) · 2|xi| = 0 where sign(0) = 1. LLL-based guessing delivers the recurrence

(n− 27)(n− 26)(n3 + 39n2 + 260n + 402)an+1

= (n− 27)(n− 26)(n3 + 42n2 + 341n + 702)an,

which looks suspicious, because it indicates that n = 27 is an outlier. We would probably
not expect such an isolated outlier for the sequence, and so we might be tempted to discard
the recurrence as probably wrong.

But there is another possible explanation. It could also be that the value a27 is incorrect.
Indeed, we can derive a closed form for the number of 6-tuples by case distinction. In Table 2
we assume xi ≥ 0 but not that the entries appear in the correct order, and in each line we
count only those cases that were not counted in some previous line.

Putting everything together yields an = 1
6
(n3 + 39n2 + 260n + 402) and therefore a27 =

9256, in contrast to the value 9168 that was given in OEIS.

2 Basics about D-finiteness

We give a quick summary of some basic facts and terminology about D-finite sequences. Most
of this is probably known to most readers, the others are referred to classical sources [27, 31,
32, 25, 4, 23, 28, 15, 18, 12, 5] for further information.

1. A power series a(x) =
∑∞

n=0 anx
n is called D-finite if it satisfies a linear differential

equation with polynomial coefficients, i.e., if there are polynomials p0, . . . , pr, not all
zero, such that

p0(x)a(x) + p1(x)a′(x) + · · ·+ pr(x)a(r)(x) = 0.

2. A sequence (an) is called D-finite if it satisfies a linear recurrence with polynomial
coefficients, i.e., if there are polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

for all n ∈ N. Some authors say P-finite or P-recursive instead of D-finite.

3. A sequence (an) is D-finite if and only if the corresponding power series
∑∞

n=0 anx
n is

D-finite. D-finiteness of sequences and power series is preserved under addition and
multiplication. If (an) and (bn) are D-finite sequences, then so is their interlacing
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case ranges number

−x1,−x2,−x3, x3, x2, x1 1 ≤ x1 ≤ x2 ≤ x3 ≤ n + 4
(
n+6

3

)
−x1,−x2, x2 − 1, x2 − 1,

1 ≤ x2 ≤ x1 ≤ n + 4
(
n+5

2

)
x1 − 1, x1 − 1

−x1,−x2,−x2, x2 + 1, 1 ≤ x1 ≤ n + 4, 1 ≤ x2 ≤ n + 3,
(n + 3)2

x1 − 1, x1 − 1 x1 6= x2 + 1

−x1,−x1,−x2,−x2, x2 + 1,
1 ≤ x2 ≤ x1 ≤ n + 3

(
n+4

2

)
x1 + 1

−x1,−x2, x2, x1 − 2, x1 − 2, 2 ≤ x1 ≤ n + 4, 1 ≤ x2 ≤ n + 4,
(n + 3)2

x1 − 1 x1 6= x2 + 1

−x1,−x1 + 1,−x1 + 1,−x2, 2 ≤ x1 ≤ n + 3, 1 ≤ x2 ≤ n + 4,
2
(
n+3

2

)
x2, x1 + 1 x1 6= x2

−x1 − 3, x1, x1, x1, x1, x1 + 2 0 ≤ x1 ≤ n + 1 n + 2

−x1 − 3, x1, x1, x1 + 1,
0 ≤ x1 ≤ n + 1 n + 2

x1 + 1, x1 + 1

−x1 − 4, x1, x1, x1 + 1,
0 ≤ x1 ≤ n n + 1

x1 + 2, x1 + 3

−x1 − 2,−x1,−x1,−x1,
1 ≤ x1 ≤ n + 1 n + 1

−x1, x1 + 3

−x1 − 1,−x1 − 1,−x1 − 1,
1 ≤ x1 ≤ n + 1 n + 1

−x1,−x1, x1 + 3

−x1 − 3,−x1 − 2,−x1 − 1,
1 ≤ x1 ≤ n n

−x1,−x1, x1 + 4

Table 2: Case distinction for A187990.
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sequence a0, b0, a1, b1, a2, b2, . . . . If a(x) is D-finite and b(x) is algebraic, then a(b(x))
is D-finite. All these facts are known as closure properties of the class of D-finite
sequences/series. Closure properties are constructive in the sense that, for example, a
(provably correct) recurrence for (an + bn) can be computed from known recurrences
for (an) and (bn).

4. It can be useful to view differential equations and recurrence equations as operators.
For example, we may write a differential equation in the form

(p0(x) + p1(x)D + · · ·+ pr(x)Dr) · a(x) = 0,

where D denotes the derivation. The operator p0(x) + p1(x)D + · · ·+ pr(x)Dr belongs
to a certain non-commutative ring in which the multiplication is defined in such a way
that it amounts to the composition of operators, i.e., we have (ML)·a(x) = M ·(L·a(x))
for any two operators M,L. Note, for example, that we have Dx = xD+1 in this ring.

An analogous construction is possible for recurrence equations. Instead of the deriva-
tion D we then use the forward shift S, which acts via S · (an) = (an+1). In this case
we have the noncommutativity relation Sx = (x + 1)S.

5. If L and M are two operators, we say that L is a right factor of ML and that ML is a
left multiple of L. The operator L is called irreducible if it does not have any nontrivial
right factor. Note that if a is a solution of an operator L, then it is also a solution of
every left multiple of L, because L ·a = 0 implies (ML) ·a = M · (L ·a) = M ·0 = 0 for
every M . Conversely, if a is a solution of ML, it may or may not be a solution of L,
but it can be checked algorithmically whether it is.

6. A bivariate series a(x, y) is called D-finite if it is D-finite w.r.t. x and D-finite w.r.t. y,
i.e., if there are polynomials p1, . . . , pr, not all zero, and polynomials q1, . . . , qs, not all
zero, such that

p0(x, y)a(x, y) + p1(x, y)
d

dx
a(x, y) + · · ·+ pr(x, y)

dr

dxr
a(x, y) = 0,

q0(x, y)a(x, y) + q1(x, y)
d

dy
a(x, y) + · · ·+ qs(x, y)

ds

dys
a(x, y) = 0.

The definition extends in the obvious way to series in any (finite) number of variables.
The definition also applies to series that may involve negative or fractional exponents.

7. Sums and products of multivariate D-finite series are again D-finite (“closure proper-
ties”). Taking residues also preserves D-finiteness. For example, if a(x, y) is a bivariate
D-finite series, then the series resx a(x, y) := 〈x−1〉a(x, y) is a univariate D-finite se-
ries in y. Also, if we write a(x, y) =

∑
n,k an,kx

nyk, then the diagonal (an,n)∞n=0 is
a univariate D-finite sequence. These operations extend to more variables and they
are constructive. Differential equations satisfied by residues or a recurrence equation
satisfied by the diagonal can be computed by a technique known as creative telescoping.
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8. Creative telescoping is also used for summation. If (an,k) is a bivariate sequence such
that its generating function a(x, y) =

∑
n,k an,kx

nyk is D-finite, then the definite sum∑n
k=0 an,k is a univariate D-finite sequence, and we can compute a recurrence for it

from a known system of differential equations for a(x, y). This applies in particular
when an,k can be written as a product of polynomials and binomial coefficients, and it
extends to the case of more variables and multiple sums.

3 Transfer matrix method

3.1 Sequence A177317

Our first candidate sequence (an) counts the number of permutations of n copies of {1, . . . , 5}
such that any two neighboring entries differ by at most one. For example, for n = 1, there
are exactly two such permutations,

(1, 2, 3, 4, 5) and (5, 4, 3, 2, 1),

while for n = 2 there are more interesting instances, like

(2, 1, 1, 2, 3, 3, 4, 5, 4, 5) or (4, 5, 5, 4, 3, 2, 3, 2, 1, 1),

in total a2 = 48 permutations. From the 29 given terms, the LLL-based guesser finds
a recurrence of order 3 with polynomial coefficients of degree 14, which roughly looks as
follows:

(n + 2)2(n + 3)4
(
13113n8 + · · ·+ 10512

)
an+3

− 2(n + 2)2
(
668763n12 + · · ·+ 20370096

)
an+2

+ (n + 1)2
(
878571n12 + · · ·+ 14722560

)
an+1

− 3n3(n + 1)(3n + 1)(3n + 2)
(
13113n8 + · · ·+ 3281160

)
an = 0.

The same recurrence can actually be found by using only 22 terms, giving us some confidence
that it is meaningful. In contrast, LA-based guessing requires at least 60 terms, and therefore
could not find it from the available data.

The sequence A177317 is the 5th row of the bivariate sequence A331562, whose ith row
counts the described permutations with entries in {1, . . . , i}. Only the first four rows were
already known to be D-finite. The argument below shows that actually every row is D-finite.

The sequence entries can be computed by dynamic programming, more specifically by the
transfer matrix method [19, 20, 28]. This method is applicable whenever the possible choices
at a certain position (here: the kth position in the permutation) depend only locally on the
previous state (here: the (k − 1)st position in the permutation), so that the transition can
be modeled by a finite-state machine. The global condition that each number must appear
exactly n times is taken care of by introducing catalytic variables: for each i, the variable xi
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records the number of occurrences of i. Let pn ∈ Z[x1, x2, x3, x4] be the permutation-counting
polynomial, whose coefficient of the monomial xa

1x
b
2x

c
3x

d
4 equals the number of permutations

of length n with a 1’s, b 2’s, etc., and n − a − b − c − d 5’s, with entries in {1, . . . , 5} and
satisfying the gap condition. Since we know that the total length is n, we do not need a
variable x5 to count the 5’s. We use the following transfer matrix M , together with the start
vector vinit and the accepting-state vector vfinal,

M =


x1 x1 0 0 0
x2 x2 x2 0 0
0 x3 x3 x3 0
0 0 x4 x4 x4

0 0 0 1 1

 , vinit = (x1, x2, x3, x4, 1), vfinal =


1
1
1
1
1


to express the permutation-counting polynomial as a matrix-vector product:

pn(x1, x2, x3, x4) = vinit ·Mn−1 · vfinal.

Now, the sequence entries can be obtained by a simple coefficient extraction:

an =
〈
xn

1x
n
2x

n
3x

n
4

〉
p5n(x1, x2, x3, x4) =

〈
xn

1x
n
2x

n
3x

n
4

〉(
vinit ·M5n−1 · vfinal

)
.

Although the matrix is of small size, and despite the fact that we have already saved one
variable, it is quite time-consuming to compute the values an in this way, because the four-
variable polynomials grow very rapidly. For example, computing a12 takes about four minutes
and produces a vector of more than one gigabyte in size.

The method could be optimized, e.g., by truncating the intermediate polynomials and
omitting all terms with exponents greater than n. However, instead of using the transfer
matrix method to compute an for specific values of n, it is more interesting to employ
it for deriving a closed form for the five-variable generating function F (x1, x2, x3, x4, t) =∑∞

n=0 pn(x1, x2, x3, x4)tn.
For this purpose, recall the explicit formula [28, Thm. 4.7.2] for the generating function

of the sequence appearing in the (i, j)th entry of a matrix power Mn

∞∑
n=0

(
Mn
)
i,j
· tn = (−1)i+j det(I` − tM)[j,i]

det(I` − tM)
, (1)

where the exponent [j, i] indicates the removal of the jth row and the ith column of the
matrix I` − tM . Hence, the generating function F is just a certain linear combination of
such rational functions, determined by the vectors vinit and vfinal. An explicit computation
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gives

F (x1, x2, x3, x4, t) =
(

2t3x3(x1x2 + x1x4x2 + x4x2 + x1x4)− t2x3(x2x1 − 3x1

+ x2x4 + x4)− 2t(x3x1 + x4x1 + x1 + x2 + x3 + x2x4) + x1 + x2 + x3 + x4 + 1
)

/(
−t4x3(x1x2 + x1x4x2 + x4x2 + x1x4)

+ t3x3(x2x1 − x1 + x2x4 + x4) + t2(x3x1 + x4x1 + x1 + x2 + x3

+ x2x4)− t(x1 + x2 + x3 + x4 + 1) + 1
)
.

Using this generating function, the sequence terms can be expressed as a residue,

an =
〈
xn

1x
n
2x

n
3x

n
4 t

5n−1
〉
F (x1, x2, x3, x4, t) = resx1,x2,x3,x4,t

F (x1, x2, x3, x4, t)

(x1x2x3x4)n+1 t5n
.

A recurrence equation for the residue can be derived by creative telescoping. Here, we have
to apply it five times, once for each variable, which takes about 10 minutes in total, using
HolonomicFunctions.m [17]. The result is exactly the guessed order-3 recurrence, which
proves that the guess was indeed correct.

Theorem 1. A177317 is D-finite and satisfies a recurrence of order 3 and degree 14.

3.2 Sequence A199250

The next sequence deals with a similar counting problem, but now for two-dimensional
arrangements. Its description in the OEIS reads as follows: “number of n × 2 arrays with
values {0, . . . , 3} introduced in row major order, the number of instances of each value within
one of each other, and no element equal to any horizontal or vertical neighbor.”

Using the 56 terms given in the OEIS, a linear recurrence of order 22 and coefficient
degree 3 can be guessed. We realize that this is not the minimal one: when more terms are
used (they can conjecturally be produced, e.g., by applying the guessed order-22 recurrence),
then a recurrence of order 8 and degree 18 can be found, which happens to be a right factor
of the previous one, when viewed as operators. It is very unlikely that an artifact recurrence
has such a right factor, and thus our guess appears to be trustworthy.

Also this sequence can be computed with the transfer matrix method. Since horizontal
neighbors must be different, there are 12 possible rows that can appear in such arrays,

(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2),

each of which represents a state. The condition that vertical neighbors must be unequal
determines a finite-state machine that encodes which rows can potentially follow any given
row. As in the previous section, one introduces catalytic variables to implement the global
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condition that each number must appear equally often in the array (resp., “almost equally
often” if the number of rows is odd). This yields the following 12× 12-matrix M :

M =



0 0 0 xy yz y xz 0 z x 0 z
0 0 0 xy 0 y xz yz z x y 0
0 0 0 xy yz 0 xz yz 0 x y z
xy xz x 0 0 0 0 yz z 0 y z
xy 0 x 0 0 0 xz yz z x y 0
xy xz 0 0 0 0 xz yz 0 x y z
xy xz x 0 yz y 0 0 0 0 y z
0 xz x xy yz y 0 0 0 x 0 z
xy xz 0 xy yz 0 0 0 0 x y z
xy xz x 0 yz y 0 yz z 0 0 0
0 xz x xy yz y xz 0 z 0 0 0
xy 0 x xy 0 y xz yz z 0 0 0



.

Its (i, j)-entry equals 0 if state i and state j agree on their first or second position. Otherwise
the (i, j)-entry of M equals xaybzc, where a (or b or c, resp.) counts the number of 0’s (or 1’s
or 2’s, resp.) in state j. The condition that numbers are introduced in row-major order forces
the first row to be (0, 1), so this is the only initial state, while all states can be accepting
states, and thus we define

vinit = (xy, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

vfinal = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)>.

Then, for each n ≥ 1, the polynomial pn(x, y, z) = vinit ·Mn−1 · vfinal counts the number of
such arrays, disregarding the balancing of the number of occurrences of 0’s, 1’s, 2’s, and 3’s.
Hence, we are interested in the coefficient of (xyz)n/2 in pn(x, y, z) if n is even, or in the sum
of the six coefficients of (xy)(n−1)/2z(n+1)/2, . . . , (xy)(n+1)/2z(n−1)/2, . . . , if n is odd. Finally,
this number has to be divided by 2, in order to discard all solutions where a 3 is introduced
before a 2 (in row-major order).

With this method it takes less than half an hour to compute the first 100 terms of the
sequence, allowing us to cross-check our conjecture with terms that were not used for the
guessing. Moreover, the transfer-matrix construction implies that the sequence is D-finite,
and it enables us to deduce a provably correct recurrence. For the generating function of the
full counting sequence, F (x, y, z, t) =

∑∞
n=0 pn(x, y, z)tn, several applications of (1) yield the

following closed form:

F (x, y, z, t) =
txy

∑12
i=1(−1)i+1 det(I12 − tM)[1,i]

det(I12 − tM)

=
txy(tz + 1)

1− tx− ty − txy − tz − txz − tyz − 7t2xyz
.
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The desired recurrence can now be obtained via creative telescoping. For example, for even n,
we compute a recurrence for

resx,y,z,t
1

xyzt

F (x, y, z, t)

(xyz)n t2n
.

The result, which is an order-6 and degree-17 recurrence for (a2n), is obtained in about a
minute. Slightly more complicated is the case of odd n, for which we deduce a recurrence
of order 6 and degree 22. Both are not minimal-order, but combining them results in a
recurrence of order 24 and degree 79 for (an). The latter is a left multiple of the guessed
recurrence operator, therefore allowing us to prove that the guess is correct.

Theorem 2. A199250 is D-finite and satisfies a recurrence of order 8 and degree 18. The
subsequence formed by the even (resp., odd) indices satisfies a recurrence of order 4 and
degree 8 (resp., 10).

3.3 Sequence A250556

It is not always easy to see whether the transfer matrix method can be applied, and if so,
what is a suitable set of states. Consider for example the sequence A250556, which is defined
as

an :=
∣∣{v ∈ {0, 1, 2, 3}n+2

∣∣ ∃ s ∈ {−1,+1}n : ∆2(v) · s = 0
}∣∣,

where ∆(v1, . . . , vn) := (v2 − v1, . . . , vn − vn−1) is the forward difference operator. It is not
completely obvious how to translate the conditions on the arrays v into states, because we
have to consider all possible sign vectors for combining their second differences to 0. To
address this problem, we introduce states that encode the following information:

1. The last two entries of the array, since they are needed to compute the second difference
when appending another entry to the array.

2. The set of numbers that can be produced by taking the scalar product of the second
differences with all possible sign vectors.

Note that for the second item, it suffices to store only the absolute values of these numbers,
since the corresponding negative numbers could be produced by switching all signs in the
sign vector.

For example, consider the state (3, 1, {1, 5}), which means that the array that was pro-
duced so far is of the form (. . . , 3, 1) and that all signed sums of its second differences sum
up to either 1 or 5 (or, of course, to −1 or −5). We wish to extend the array by a 1. The
new second difference that we can build is 3 − 2 · 1 + 1 = 2. Hence we add or subtract 2
to each number in the list, yielding the new state (1, 1, {1, 3, 7}). Note that 1− 2 = −1 has
turned into a +1 by our nonnegativity convention.

The problem is that the signed sums of the second differences can get arbitrarily large
as the arrays get longer. Of course, if we bound the number of sequence terms we wish to
compute, then we could devise an upper bound for these signed sums. Then with a fixed
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transfer matrix we could compute a certain finite number of sequence terms. Fortunately,
we can do better: we derive a global upper bound B and show that it is sufficient to store
only signed sums up to B, independent on the length of the arrays. This bound B must have
the property that for any sequence of signed second differences that add up to 0 and whose
partial sums exceed B, there must exist another sign vector, that combines these second
differences to 0 without exceeding B. Here is an example showing that B ≥ 19: the array

(1, 3, 0, 2, 0, 3, 0, 3, 0, 3, 1)

has the second differences
(−5, 5,−4, 5,−6, 6,−6, 6,−5)

which combine to 0 using the sign vector

(−1, 1,−1, 1, 1,−1, 1,−1,−1)

(or its additive inverse). Note that there are no other sign vectors that produce 0. The
partial sums in the signed sum 5 + 5 + 4 + 5− 6− 6− 6− 6 + 5 = 0 go all the way up to 19
before they finally descend to 0.

We argue that actually B = 19, i.e., that there is no example like the one above where
the partial sums are forced to exceed 19. For this purpose, we have to identify all pairs
(S1, S2) of multisets with values in {1, . . . , 6} such that

∑
(S1) =

∑
(S2) > 19, but such that

there are no nontrivial subsets T1 ⊂ S1 and T2 ⊂ S2 with
∑

(T1) =
∑

(T2). Hence, the only
way that a signed sum of S1 ∪ S2 equals 0 is that all elements in S1 have the same sign, and
all elements in S2 have the opposite sign. Here are all possible choices for S1 and S2:

S1 = {1, 1, 6, 6, 6}, S2 = {5, 5, 5, 5}, or

S1 = {2, 6, 6, 6}, S2 = {5, 5, 5, 5}, or

S1 = {5, 5, 5, 5}, S2 = {4, 4, 4, 4, 4}, or

S1 = {6, 6, 6, 6}, S2 = {4, 5, 5, 5, 5}, or

S1 = {6, 6, 6, 6, 6}, S2 = {5, 5, 5, 5, 5, 5}.

The first two possibilities can be excluded, because in the array of second differences a ±6
can never be followed by a ±1 or by a ±2. For the remaining three possibilities, we can do an
exhaustive search: build all permutations of S1∪(−S2) that have a partial sum > 19, for each
of them apply suitable sign vectors (it is easy to see that an array of second differences with
values in {±4,±5,±6} must have alternating signs), and then construct all corresponding
arrays v. The final outcome is that there are no such arrays v, proving that B = 19 is the
desired bound.

Next, a suitable set of states has to be defined. Naively, one could expect that 16,777,200
states are necessary, since there are 16 possibilities for the last two entries of the array
and 220 − 1 nontrivial subsets of {0, . . . , 19}. A closer inspection reveals that we can work
with much fewer states. From the transition rule between the states it is apparent that the
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reachable numbers in each state are either all even or all odd. Hence it suffices to take all
nontrivial subsets of {1, 3, 5, . . . , 19} and of {0, 2, 4, . . . , 18}, yielding 16 ·(210−1) ·2 = 32,736
states. Still, this set contains many unreachable states, for example when the set of possible
signed sums has a gap greater than 12. Eliminating all such useless states results in a set of
2484 states.

Using the corresponding 2484 × 2484 transfer matrix, which contains only 0’s and 1’s,
one can easily compute hundreds or thousands of sequence terms in almost no time (0.6s
for the first 1000 terms, for example). The matrix formulation also implies directly that
the sequence is D-finite. Since there are no catalytic variables, we can directly derive a
rational function expression for its generating function. Hence, the sequence is even C-finite,
i.e., it satisfies a linear recurrence with constant coefficients. The start vector vinit has 60
nonzero entries and the accepting-state vector vfinal has 720 nonzeros. Instead of applying
the determinant formula (1) 60 · 720 = 43,200 times (each case taking about three seconds),
we compute the signed sum of all (i, j)-minors, where j is a fixed nonzero position in vinit

and i runs through all nonzero positions of vfinal, by taking the determinant of the matrix
I`− tM with the jth column being replaced by vfinal (for each j this takes about 30 seconds).
Putting everything together, we obtain the generating function

−2t
(
32t27 − 56t26 + 508t25 − 300t24 + 684t23 − 1296t22 − 1324t21

− 202t20 + 403t19 + 4173t18 + 1985t17 + 903t16 − 4504t15

− 4178t14 − 3614t13 + 1666t12 + 2087t11 + 3597t10 + 406t9

+ 38t8 − 1231t7 − 453t6 − 139t5 + 115t4 + 73t3 − 3t2 + 2t + 4
)/(

(t− 1)3(t + 1)2(2t− 1)(4t− 1)(t2 + 1)2(2t3 − 1)2
)
.

The C-finite recurrence for A250556 can be read off from its denominator:

an+17 − 7an+16 + 14an+15 − 12an+14 + 26an+13 − 42an+12

+ 8an+11 − 4an+10 + an+9 + 73an+8 − 58an+7 + 44an+6

− 84an+5 + 8an+4 + 36an+3 − 28an+2 + 56an+1 − 32an = 0.

This recurrence can be found with guessing from a12, . . . , a47; the first values a1, . . . , a11 are
exceptional and do not satisfy this recurrence (note that the numerator degree exceeds the
denominator degree by 10). Without this additional knowledge it is not possible to find
anything with classical linear algebra guessing. In contrast, the LLL-based guesser finds a
recurrence of order 22 and degree 1, which is a right factor of the order-27 operator. The
minimal recurrence however is of order 9 and degree 8.

Theorem 3. A250556 is D-finite and satisfies a recurrence of order 9 and degree 8.

3.4 Sequence A264947

Even for innocent-looking sequences it can sometimes be very hard to compute their terms
and find a recurrence. A264947 enumerates 4 × n arrays containing n copies of {0, 1, 2, 3}
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with no equal horizontal neighbors. (Moreover, new values in the array should be introduced
sequentially from 0, but this condition is not so relevant, as it just divides the final count by
4! = 24.)

The OEIS lists only 20 terms. Can we compute more, and/or derive a recurrence equation,
since this problem is an obvious application of the transfer matrix method? From what we
have seen in the previous sections, it is clear that the states are the 44 = 256 possible columns
and that we have to introduce three catalytic variables x, y, z to count the occurrences of
0, 1, 2, respectively. Therefore, we know for sure that A264947 is D-finite.

However, things are computationally expensive, because the matrix has considerable
dimensions (256 × 256) and because it contains three variables. With quite some effort we
were able to compute 80 terms of the sequence. After about one month of non-parallelized
computation our compute server with 256 GB ran out of memory. Unfortunately, the data
obtained before the crash is still not enough to guess a recurrence (which we know for sure
must exist). To get an idea of the difficulty of this problem, compare with the simpler case
of 3 × n arrays with n copies of {0, 1, 2} (A264946): here the recurrence has order 9 and
degree 13, and we need 63 terms to find it with LLL-based guessing. The 104 terms given in
the OEIS are just sufficient to find the recurrence with LA-based guessing (and this is why
it did not make it into our collection).

Likewise, we did not succeed to compute the rational function expression for the four-
variable generating function: computing the determinants appearing in (1) turned out to be
prohibitively expensive. We tried to compute one of the 256 determinants, but aborted the
computation after five days.

Theorem 4. A264947 is D-finite.

It remains an open problem to find a provably correct recurrence for the sequence A264947.

4 Lattice walks

4.1 Sequence A265234

Changing a small detail can sometimes make a big difference. For example, if we change
the condition “no equal horizontal neighbors” in A264947 from the previous section into “no
equal vertical neighbors”, then the problem becomes significantly simpler.

This time, the condition on neighbors can be satisfied by making a suitable selection of
admissible columns—there are 108 which do not have equal neighbors. There are no further
restrictions concerning which column can follow another one. In principle, one could again
model this process by a transfer matrix, but it is more efficient to take a slightly different
viewpoint. Consider the integer lattice Z3 and interpret the point (x, y, z) as having seen
x 0’s, y 1’s, and z 2’s, when filling the array from left to right. Adding a column to the
array then corresponds to making a step in this lattice. Note that different columns may
correspond to the same step: for example, (1, 0, 1, 3)> and (3, 1, 1, 0)> both correspond to
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the step (1, 2, 0). In this interpretation, the nth sequence term counts the number of walks
of length n, starting at the origin (0, 0, 0) and ending at (n, n, n). By construction, these
walks will never leave the first octant, and hence, sequence A265234 can be viewed as an
unrestricted walk enumeration problem in 3D. Using the set of admissible columns, we define
the stepset polynomial

s(x, y, z) = 2x2 + 6xy + 6x2y + 2y2 + 6xy2 + 2x2y2 + 6xz

+ 6x2z + 6yz + 24xyz + 6x2yz + 6y2z + 6xy2z

+ 2z2 + 6xz2 + 2x2z2 + 6yz2 + 6xyz2 + 2y2z2.

The generating function of A265234 can then be obtained as the diagonal of the rational
function

1

1− t s(x, y, z)
,

divided by 24 to account for permutations of the numbers 0, 1, 2, 3. Creative telescoping
delivers exactly the guessed order-6 recurrence, taking less than a minute. The sequence
terms could also be computed via

an =
1

24

〈
xnynzn

〉(
s(x, y, z)

)n
,

which takes about 100s for 56 terms (this is the amount of data necessary for LA-based
guessing).

Theorem 5. A265234 is D-finite and satisfies a recurrence of order 6 and degree 6.

4.2 Sequence A172572 and A172671

These two sequences count the number of {0, 1}-arrays or {0, 1, 2}-arrays, respectively, of
dimension 3n × 6 with row sums 2 and column sums n. Hence, for A172572 the row-sum
condition yields exactly

(
6
2

)
= 15 possibilities for what a row can look like:

R1 = (1, 1, 0, 0, 0, 0), R2 = (1, 0, 1, 0, 0, 0), . . . , R15 = (0, 0, 0, 0, 1, 1).

Let ci denote the number of occurrences of Ri in the final array. The condition on the column
sums translates into

15∑
i=1

ciRi = (n, n, n, n, n, n),
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which yields six linear equations for the ci. Their general solution is

c5 = n− c1 − c2 − c3 − c4,

c9 = n− c1 − c6 − c7 − c8,

c12 = n− c2 − c6 − c10 − c11,

c13 = 2n− c1 − c2 − c3 − c4 − c6 − c7 − c8 − c10 − c11,

c14 = c1 + c2 + c4 + c6 + c8 + c11 − n,

c15 = c1 + c2 + c3 + c6 + c7 + c10 − n.

Note that the condition on the number of rows,
∑15

i=1 ci = 3n, is a consequence of these
equations. For each admissible choice of the ci, the number of arrays that can be built by
permuting the corresponding numbers of rows is given by the multinomial coefficient(

3n

c1, . . . , c15

)
.

The total number of arrays an is then obtained by summing over the nine remaining free
variables among the ci, and by replacing the other ones by the linear expressions displayed
above:

an =
∑

c1,c2,c3,c4,c6,c7,c8,c10,c11

(
3n

c1, c2, c3, c4, n− c1 − c2 − c3 − c4, c6, . . .

)
.

We have omitted the summation ranges here, since the sum has natural boundaries. Instead,
one could fix the range 0 ≤ ci ≤ n for each variable, or even more refined summation
ranges, implied by the condition that all lower entries of the multinomial coefficient must
be nonnegative and at most 3n. This nine-fold sum can be reduced by means of the Chu-
Vandermonde identity

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m + n

r

)
.

Instantiating it with k = c11, r = n−c2−c6−c10, m = 2n−c1−c2−c3−c4−c6−c7−c8−c10,
and n = c1 + c4 + c8− c10, we can eliminate the last summation. This can be done similarly
for the summations w.r.t. c8 and c4, so that we obtain the following six-fold sum:

an =
n∑

c1=0

n−c1∑
c2=0

n−c1−c2∑
c3=0

min{n−c1,n−c2}∑
c6=0

min{n−c1−c6,n−c3}∑
c7=0

min{n−c2−c6,n−c3−c7}∑
c10=max{0,n−c1−c2−c3−c6−c7}(

(3n)! (4n− 2c1 − 2c2 − 2c3 − 2c6 − 2c7 − 2c10)!
)/(

c1! c2! c3! c6! c7! c10!

(n− c1 − c2 − c3)! (n− c1 − c6 − c7)!(n− c2 − c6 − c10)! (n− c3 − c7 − c10)!(
(2n− c1 − c2 − c3 − c6 − c7 − c10)!

)2
(c1 + c2 + c3 + c6 + c7 + c10 − n)!

)
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At this point it is clear that A172572 is D-finite. However, deriving a recurrence from this
sum representation via creative telescoping is still a challenging task. We were not able to
complete it in reasonable time.

Instead, one can use this formula to compute some further terms of the sequence. Im-
plementing it in Mathematica, and taking into account some of the symmetries that follow
from permuting the columns of the array, we get the following timings for computing the
nth term of the sequence:

n 12 14 16 18 20 · · · 28 30 32 · · · 44
time (s) 0.49 1.02 1.91 3.53 6.09 · · · 40.1 57.1 81.6 · · · 518

The computation of the first 33 terms that were given in OEIS took 549s in total, while the
computation time for the first 44 terms that are needed for LA-based guessing was 3566s.
Note also that the above formula allows one to compute the nth term of the sequence,
without computing all the previous ones.

Alternatively, the {0, 1}-arrays counted by A172572 can be interpreted as walks in the
first orthant N6 of the six-dimensional integer lattice, starting at the origin, and with allowed
step set S = {R1, . . . , R15}. The column sum condition implies that we are interested in
the number of walks that end on the diagonal point (n, n, n, n, n, n). To determine this
number, we generate a six-dimensional array A, such that the entry An1,n2,n3,n4,n5,n6 records
the number of walks ending at position (n1, n2, n3, n4, n5, n6) and using only steps from S.
The entries of this array can be computed by means of the multivariate C-finite stepset
recurrence

An1,n2,n3,n4,n5,n6 =
∑
s∈S

An1−s1,n2−s2,n3−s3,n4−s4,n5−s5,n6−s6 , (2)

with the initial condition A0,0,0,0,0,0 = 1 and the boundary condition that An1,n2,n3,n4,n5,n6 = 0
whenever at least one of the six indices ni is negative. Note that each walk ending at
(n1, n2, n3, n4, n5, n6) consists of exactly (n1 + n2 + n3 + n4 + n5 + n6)/2 steps, and thus the
length of the walks does not need to be recorded separately. Several optimizations can make
this enumeration more time- and memory-efficient. First, we exploit the symmetry that
follows from permuting the columns of the {0, 1}-array, i.e., the coordinates of the array A,
which means that it suffices to record only values for n1 ≥ n2 ≥ · · · ≥ n6. Second, since for
computing the walks with k steps one only needs the information about walks with k − 1
steps, we can discard the data related to shorter walks, which has the effect that only a
five-dimensional array has to be kept in memory. Of course, whenever k is divisible by 3,
the diagonal entry should be saved, as it contains the sequence term ak/3. If one aims at
computing a1, . . . , an for prescribed fixed n, then one can confine the array to {0, 1, . . . , n}5,
because walks that have left this hypercube can never come back to a diagonal position
inside the hypercube. With this approach, we obtained the first 33 terms in 232s, while the
44 terms that are required for LA-based guessing took 1053s.

We see that this procedure is faster than the previous one, at least when one wants to
compute all terms of the sequence up to a certain index. The disadvantage is that extending
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the sequence requires a complete restart of the computation (or one has to omit some of the
optimizations described above).

In any case, the walk viewpoint allows us to express the generating function of the
sequence A172572 as the diagonal of a six-variable rational function whose denominator is
the stepset polynomial, given as the characteristic polynomial of the recurrence (2),

∞∑
n=0

anx
n = diag

1

1− x1x2 − x1x3 − x1x4 − · · · − x4x5 − x4x6 − x5x6

.

From this representation it again follows immediately that the generating function is D-
finite. A recurrence for (an) can in principle be derived by applying creative telescoping to
the corresponding six-fold integral, but similar to the six-fold sum before, we did not manage
to complete this task in reasonable time (the computation was aborted after one month).
We therefore propose our guessed recurrence as a conjecture to the reader, which we present
in compact form by dividing out a hypergeometric factor.

Conjecture 6. If (an) denotes the sequence A172572 then for ãn := 1

(3n
n )

an we have

(n + 3)4(62n2 + 217n + 191)ãn+3

− 6(5084n6 + 68634n5 + 383756n4 + 1137319n3

+ 1884032n2 + 1653960n + 601185)ãn+2

− 4(2n + 3)(31372n5 + 313720n4 + 1227805n3

+ 2354425n2 + 2220988n + 827860)ãn+1

+ 6000(n + 1)2(2n + 1)(2n + 3)(62n2 + 341n + 470)ãn = 0.

The sequence A172671 is very similar, the only difference being that now also 2’s are
allowed as entries in the array. This increases the number of possible rows to

(
6
2

)
+
(

6
1

)
= 21.

Performing a similar analysis as for A172572, we find an eleven-fold hypergeometric sum
representation, which however is not useful for any practical purposes. Here, it is much
better to treat the corresponding walk counting problem, which is still in the six-dimensional
integer lattice, but now with a stepset of size 21. Again, we only succeeded to compute some
more sequence terms (the already available terms a1, . . . , a33 took 298s, while a1, . . . , a75 that
are needed for LA-based guessing took about 9h), but we failed to derive a recurrence by
creative telescoping, which would prove our guess.
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Conjecture 7. If (an) denotes the sequence A172671 then for ãn := n!3

(3n)!
an we have

3(n + 3)(n + 4)3(3784n4 + 32164n3 + 100749n2 + 137862n + 69678)ãn+4

− (n + 3)(3799136n7 + 72183584n6 + 579689880n5 + 2548427912n4

+ 6617561702n3 + 10141503096n2 + 8487349821n + 2991586122)ãn+3

− 3(10844944n8 + 222321352n7 + 1973930222n6 + 9916013134n5

+ 30831383530n4 + 60768378830n3 + 74160044251n2

+ 51243135187n + 15352797306)ãn+2

+ (n + 2)(29681696n7 + 504588832n6 + 3602458816n5 + 14001842392n4

+ 32010306742n3 + 43078657918n2 + 31639900193n

+ 9799573455)ãn+1

+ 15435(n + 1)3(n + 2)(3784n4 + 47300n3 + 219945n2

+ 450988n + 344237)ãn = 0.

Although we cannot prove that the conjectured recurrences for A172671 and A172572
are correct, it follows from the sum expressions that some recurrences for these sequences
must exist.

Theorem 8. A172671 and A172572 are D-finite.

4.3 Sequence A188818

This sequence counts the number of n×n binary arrays without the pattern 01 diagonally or
antidiagonally. The OEIS lists 32 terms, from which the LLL-based guesser finds a recurrence
of order 5 and degree 10. With LA-based guessing one needs at least 55 terms to find this
recurrence. Although it is not obvious at first glance, also here lattice paths turn out to be
the key to the solution.

The fact that the forbidden patterns are considered along (anti-)diagonals allows us to
decompose the problem. The even positions in the array, i.e., positions (x, y) with x + y
even, and the odd positions can be filled with 0’s and 1’s independent of each other. Hence,
the nth sequence term, an, can be written as

an = en · on,

where en and on count the number of admissible {0, 1}-arrangements on the even and odd
positions in the n × n array, respectively. See Fig. 1, where a particular solution (left) is
decomposed into an even part (middle) and an odd part (right).

If we focus only on positions of the same parity, then we see that the array contains a
region with 1’s on the top, and at the bottom a region with 0’s. Both regions are separated
by a path that starts somewhere on the left border, ends somewhere on the right border, and
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Figure 1: A particular 12× 12 array for A188818 (left), where dots and bullets represent 0’s
and 1’s, respectively. The middle (resp., right) image shows the even (resp., odd) positions,
where 0’s and 1’s are separated by a generalized Dyck path.

uses steps (1, 1) and (1,−1) (see Fig. 1). Let D
(
(a, b)→ (c, d)

∣∣ R) denote the number of such
generalized Dyck paths that start at (a, b), end at (c, d), and satisfy certain restrictions R.

In our setting, we certainly have the restriction y ≥ 1 to avoid that the path leaves the
n× n array through its bottom side. For the upper side, we have to allow the path to leave
the square a little bit, in order to enable 0’s to appear in the top row, but the path must
not go above n + 2 (see the right part of Fig. 1). For example, to compute en for odd n, we
add up

D
(
(1, y1)→ (n, y2)

∣∣ 1 ≤ y ≤ n + 2
)

for y1 = 1, 3, . . . , n + 2 and y2 = 1, 3, . . . , n + 2, and similarly for even n, and analogously
for on. Since the paths are restricted to a rectangle which is higher than wide, no path could
ever violate the lower and upper restriction at the same time. Hence we can rewrite

D
(
(1, y1)→ (n, y2)

∣∣ 1 ≤ y ≤ n + 2
)

=

{
D
(
(1, y1)→ (n, y2)

∣∣ y ≥ 1
)
, y1 + y2 ≤ n + 1;

D
(
(1, y1)→ (n, y2)

∣∣ y ≤ n + 2
)
, otherwise.

By mirroring horizontally, we obtain

D
(
(1, y1)→ (n, y2)

∣∣ y ≤ n + 2
)

= D
(
(1, n + 3− y1)→ (n, n + 3− y2)

∣∣ y ≥ 1
)
.

By combining equal cases and by substituting y1 → 2k+1 and y2 → n+2−2`, we can write

en =

bn+1
2
c∑

k=0

(
D
(
(1, 2k + 1)→ (n, n + 2− 2k)

∣∣ y ≥ 1
)

+ 2 ·
bn+1

2
c∑

`=k+1

D
(
(1, 2k + 1)→ (n, n + 2− 2`)

∣∣ y ≥ 1
))
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and a similar expression for on. The generalized Dyck paths are counted by a difference of
binomial coefficients,

D
(
(x1, y1)→ (x2, y2)

∣∣ y ≥ 1
)

=

(
x2 − x1

1
2
(x2 − x1 + y2 − y1)

)
−
(

x2 − x1
1
2
(x2 − x1 + y2 + y1)

)
,

which follows from [21, Theorem 10.3.1], after the Dyck paths have been translated to simple
lattice paths via the substitution (x, y) → ((x + y − 2)/2, (x − y)/2) for even points, and
(x, y)→ ((x + y − 1)/2, (x− y + 1)/2) in the case of odd points. We insert this closed form
expression for D, simplify a bit, and end up with the following expressions for en and on:

en = 2n−2 + 2 ·
bn+1

2
c∑

k=0

bn+1
2
c∑

`=k+1

((
n− 1

n− k − `

)
−
(

n− 1

n + k − ` + 1

))
,

on = 2n−2 + 2 ·
bn
2
c∑

k=0

bn
2
c∑

`=k+1

((
n− 1

n− k − `− 1

)
−
(

n− 1

n + k − ` + 1

))
.

Creative telescoping delivers provably correct recurrences for en and on, which by closure
properties can be combined to a recurrence for an. Since the corresponding order-42 operator
is a left multiple of our guessed order-5 operator, we have established the correctness of our
guess.

Theorem 9. A188818 is D-finite and satisfies a recurrence of order 5 and degree 10.

4.4 Sequence A306322

Here we count n× n integer matrices ((mi,j))
n
i,j=1 with m1,1 = 0 and mn,n = 2, and all rows,

columns, and falling diagonals weakly monotonic without jumps of 2. An example for n = 7
is given by

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 2 2 2
0 0 1 1 2 2 2
0 1 1 2 2 2 2 .

The key to recognizing this sequence as D-finite is hidden in the OEIS-entry of the bivariate
sequence A323846, which is defined analogously for a k×n matrix. It is remarked there that
the problem goes back to Knuth [16] and that the labels 0, 1, and 2 divide the matrix into
three connected regions, so that counting the number of matrices is equivalent to counting
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a) n

n
j

i

b) n

n
j

i

c) n

n

i j

d) n

n

i

j

Figure 2: Case distinction used in the analysis of A306322.

pairs of non-intersecting lattice walks from the lower left to the upper right corner. It is
well-known that such pairs of lattice walks are counted by the Narayana numbers, but this is
not quite the final answer. Two adjustments need to be made: (1) there must be at least one
0 in the top-left corner and at least one 2 in the bottom-right corner, and (2) the walk-pairs
are not required to start and end in the corners.

We know that Ni,j = 1
i+j−1

(
i+j−1

i

)(
i+j−1
i−1

)
is the number of non-intersecting walk-pairs in

an i× j board, and that
(
i+j
i

)
is the total number of walks in such a board. Therefore

n∑
i,j=1

(
Ni,j −

(
i + j − 2

i− 1

))
−
(

2n

n

)
+ 1

is the number of walk-pairs of the form shown in Fig. 2 a), excluding the walk-pairs where
the upper walk passes through the upper-left corner (accounted for by the term

(
i+j−2
i−1

)
) as

well as the walk-pairs where the lower walk passes through the lower-right corner (accounted
for by the term

(
2n
n

)
; the 1 accounts for the doubly excluded walk-pair where the upper walk

passes through the top-left corner and the lower walk through the lower-right corner).
The same expression also counts the walks of the form shown in Fig. 2 b), with the

analogous exceptions removed. Taking both cases together, we count the cases i = j = n
twice, so we altogether only have

2

( n∑
i,j=1

(
Ni,j −

(
i + j − 2

i− 1

))
−
(

2n

n

)
+ 1

)
−
(
Nn,n − 2

(
2n

n

)
+ 1

)
such walk-pairs. We also have to take into account walk-pairs of the form shown in Fig. 2 c)
and d). In both cases, their number is

∑n−1
i=1

∑n−1
j=i+1 Nj−i,n, where the boundaries of the sum

are chosen so that we do not count anything that was already counted before. In conclusion,
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we find the expression

2

( n∑
i,j=1

(
Ni,j −

(
i + j − 2

i− 1

))
−
(

2n

n

)
+ 1 +

n−1∑
i=1

n−1∑
j=i+1

Nj−i,n

)
−
(
Nn,n − 2

(
2n

n

)
+ 1

)
for the nth term of A306322. Clearly this is D-finite.

Using
n∑

i,j=1

(
i + j − 2

i− 1

)
=

(
2n

n

)
− 1

and
n−1∑
i=1

n−1∑
j=i+1

Nj−i,n =
n∑

j=1

n−j−1∑
i=1

Nj,n,

the expression can be simplified to

2
n∑

j=1

n∑
i=1

Ni,j + 2
n−1∑
j=1

(n− j − 1)Nj,n − 2

(
2n

n

)
−Nn,n + 3

= 2
n∑

j=1

n∑
i=1

Ni,j + 2
n∑

j=1

(n− j − 1)Nj,n − 2

(
2n

n

)
+ Nn,n + 3

= 2
n∑

j=1

( n∑
i=1

Ni,j + (n− j − 1)Nj,n

)
− 2

(
2n

n

)
+ Nn,n + 3.

The HolonomicFunctions.m package [17] effortlessly obtains for this expression an op-
erator of order 12 and degree 87 that contains the guessed recurrence as right factor.

Theorem 10. A306322 is D-finite and satisfies a recurrence of order 4 and degree 14.

5 Further examples

5.1 Sequence A195806 and A216940

For the sequence A195806, we count triangular arrays of size 5 whose entries are chosen from
{0, . . . , n} in such a way that all rows and diagonals having the same length have the same
sums, and with 0 assigned to the corners (cf. Fig. 3). The specification of this sequence can
be easily translated into a system of linear inequalities. The nth term of the sequence is
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0

0 0

c2,1 c2,2

c3,1 c3,2 c3,3

c4,1 c4,2 c4,3 c4,4

c5,2 c5,3 c5,4

c0,0 c1,0 c2,0 c3,0 c4,0 c5,0 c6,0

c0,1

c0,−1

c1,1

c1,−1

c2,1

c2,−1

c3,1

c3,−1

c4,1

c4,−1

c5,1

c5,−1

c0,2

c0,−2

c1,2

c1,−2

c2,2

c2,−2

c3,2

c3,−2
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c4,−2

c0,3

c0,−3

c1,3

c1,−3

c2,3

c2,−3

c3,3

c3,−3

Figure 3: Illustrations of the arrays appearing in the definitions of A195806 (left) and
A216940 (right), respectively.

precisely the number of integer solutions of the following equations and inequalities:

0 ≤ ci,j ≤ n for all i, j,

c2,1 + c2,2 = c4,1 + c5,2 = c5,4 + c4,4,

c3,1 + c3,2 + c3,3 = c3,1 + c4,2 + c5,3 = c3,3 + c4,3 + c5,3,

c4,1 + c4,2 + c4,3 + c4,4 = c2,2 + c3,2 + c4,2 + c5,2 = c2,1 + c3,2 + c4,3 + c5,4,

c2,1 + c3,1 + c4,1 = c5,2 + c5,3 + c5,4 = c2,2 + c3,3 + c4,4.

Partition analysis provides theory and algorithms for dealing with such systems. From
the theory, which has its roots in the early 20th century [22], it follows immediately that
the sequence A195806 is a quasipolynomial. In particular, it must be D-finite. With the
associated algorithms [1], it is possible to compute the quasipolynomial explicitly, at least
in principle. With the implementations we had available, the computation did not complete
in a reasonable amount of time. However, the recurrence found by our LLL-based guesser
suggests the following expression.

Conjecture 11. If (an) denotes the sequence A195806, then

an =
1

1296

(
130n6 + 1560n5 + 8125n4 + 23400n3

)

+
1

1296



40788n2 + 42768n + 20736, if n ≡ 0 (mod 6);
40692n2 + 42128n + 20045, if n ≡ 1 (mod 6);
40788n2 + 42256n + 19712, if n ≡ 2 (mod 6);
40788n2 + 42768n + 20493, if n ≡ 3 (mod 6);
40692n2 + 42128n + 20288, if n ≡ 4 (mod 6);
40788n2 + 42256n + 19496, if n ≡ 5 (mod 6).
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The sequence A216940 is quite similar. Here we count hexagonal arrays of size 4 filled
with elements of {0, . . . , n} in such a way that the entries are nondecreasing towards east,
south west, and south east (cf. Fig. 3). Again, the specification can be easily translated into a
system of linear inequalities, so it follows immediately that the sequence is a quasipolynomial
and in particular D-finite. Again, we were not able to derive an expression by a rigorous
computation based on partition analysis, but we had no trouble to find a solution from our
guessed recurrence. In fact, it appears that the result is not only a quasipolynomial but a
polynomial.

Conjecture 12. If (an) denotes the sequence A216940, then

an = (n + 1)13(n + 6)3(n + 7)(74384146n20 + 10413780440n19

+ 694580474022n18 + 29345762188932n17 + 880856790135603n16

+ 19969728998781072n15 + 354853893929158096n14

+ 5062226797216352960n13 + 58900361433618244860n12

+ 564694034848365996336n11 + 4487557575514810132362n10

+ 29630015361661371290844n9 + 162382123713323392711687n8

+ 735273283907306553706472n7 + 2726904840964417033376520n6

+ 8166353315859794719296864n5 + 19314394347459920710102704n4

+ 34829846371335010335540480n3 + 45137854540680193956153600n2

+ 37557333457279933473792000n + 15118483615575730790400000)

/221424599279703105635713957232640000000,

where we use the raising factorial notation xk = x(x + 1) · · · (x + k − 1).

Incidentally, the degree of this polynomial matches the number of terms that were given
in the OEIS.

Although we were not able to prove that our guessed recurrences are correct, partition
analysis implies that the sequences are quasi-polynomials, and are therefore D-finite.

Theorem 13. A195806 and A216940 are D-finite.

5.2 Sequence A194478

For this sequence, we consider a triangular grid of varying size, and the question is how
many ways there are to arrange 6 indistinguishable points on it in such a way that no three
points are in the same row or diagonal.

For n = 5, an example for such an arrangement is

.
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The nth term of the sequence A194478 is the number of such arrangements for a triangle of
size n. The sequence is the 6th column of the bivariate sequence A194480, where guessed
polynomial expressions are given for the first five columns. According to our guessed recur-
rence, the 6th column is not a polynomial but the quasipolynomial

1

256
(−1)n(2n− 7)(n2 − 7n + 13) +

1

322560
(7n12 + 42n11 − 945n10

+ 1274n9 + 26089n8 − 128810n7 + 175693n6 + 205366n5 − 810796n4

+ 601328n3 + 354172n2 − 582180n + 114660).

Note that the degree and the leading coefficient of this quasipolynomial are consistent with
the degrees and leading coefficients of the guessed polynomials for the earlier columns.

We prove the correctness of the above expression using the principle of inclusion/exclusion.
Let a(i)(n, k) denote the number of ways to select k places from a triangle of size n in such a
way that at least i lines (rows or diagonals) contain three or more selected places, counted
with multiplicities. The number of interest is then

a(n, k) = a(0)(n, k)− a(1)(n, k) + a(2)(n, k)− a(3)(n, k)± · · · .

We have a(0)(n, k) =
((n+1

2 )
k

)
= 1

2kk!
n2k + O(n2k−1). Next, for each i ∈ {1, . . . , n} there are

altogether three lines of length i, and for each of them there are
(
i
j

)
ways to select j positions

on it, and
((n+1

2 )−i
k−j

)
ways to choose k − j positions in the remaining triangle. Thus

a(1)(n, k) = 3
6∑

j=3

n∑
i=1

(
i

j

)((n+1
2

)
− i

k − j

)
.

In order to count how many ways there are to have at least two lines with three selected
positions, we distinguish three cases. In case 1, the two lines have the same orientation (i.e.,
they are parallel). Restricting now for simplicity to k = 6, we then have to select three
places on each line, which can be done in 3

∑n
i=1

∑i−1
j=1

(
i
3

)(
j
3

)
many ways. In case 2, the

two lines have different orientation (i.e., they are not parallel), but they have no intersec-
tion point. This happens when the lengths of the lines add up to at most n, so there are
3
∑n

i=1

∑n−i
j=1

(
i
3

)(
j
3

)
such arrangements. In case 3, we have two lines that do intersect. This

case has two subcases, depending on whether the intersection point is selected or not. If it
is selected, only five positions are required to be on the two lines and the sixth position can
be selected arbitrarily from the remaining triangle (either on none of the lines or on the first
line or on the second line). This makes

3
n∑

i=1

n∑
j=n−i+1

((
i− 1

2

)(
j − 1

2

)((n+1
2

)
− i− j + 1

1

)
+

(
i− 1

3

)(
j − 1

2

)
+

(
i− 1

2

)(
j − 1

3

))
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possibilities in this case. Finally, there are

3
n∑

i=1

n∑
j=n−i+1

(
i− 1

3

)(
j − 1

3

)
arrangements where the two lines intersect but the intersection point is not among the
selected positions. Altogether,

a(2)(n, 6) = 6
n∑

i=1

n−i∑
j=1

(
i

3

)(
j

3

)
+ 3

n∑
i=1

n∑
j=n−i+1

(
i− 1

3

)(
j − 1

3

)

+ 3
n∑

i=1

n∑
j=n−i+1

((
i− 1

2

)(
j − 1

2

)((n+1
2

)
− i− j + 1

1

)
+

(
i− 1

3

)(
j − 1

2

)
+

(
i− 1

2

)(
j − 1

3

))
.

If there are three lines with at least three selected positions, then, as there are altogether only
six selected positions, three of them must belong to two lines. In particular, the three lines
must have pairwise distinct orientation, and they must not intersect in the same position.
Then each line contains two intersection points and one additional selected position. This
makes

a(3)(n, 6) =
n∑

i=3

n∑
j=n−i+1

(i− 2)(j − 2)

( 2n−(i+j)∑
`=n−min(i,j)+1

(`− 2) +
n∑

`=2n+2−(i+j)

(`− 2)

)
.

Since a(m)(n, 6) = 0 for m ≥ 4, we have

an = a(n, 6) = a(0)(n, 6)− a(1)(n, 6) + a(2)(n, 6)− a(3)(n, 6),

and while this is an expression of intimidating length, it must be observed that all the lower
arguments of the binomials are explicit integers, so the sums are in fact just polynomial
sums. It is the min(i, j) appearing in one of the summation boundaries in the expression
for a(3)(n, 6) which is responsible for the fact that the an is not a polynomial but only a
quasipolynomial.

Theorem 14. If (an) denotes the sequence A194478, then

an =
1

256
(−1)n(2n− 7)(n2 − 7n + 13) +

1

322560
(7n12 + 42n11 − 945n10

+ 1274n9 + 26089n8 − 128810n7 + 175693n6 + 205366n5 − 810796n4

+ 601328n3 + 354172n2 − 582180n + 114660).
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6 Conjectures

6.1 Sequence A215570

Now we want to count the number of permutations of n copies of {1, . . . , 5}, as in Sect. 3.1,
but with a more complicated condition: every partial sum is at most the same partial sum
averaged over all permutations. In other words, the kth partial sum of the permutation must
not exceed 3k, because the average (1 + 2 + 3 + 4 + 5)/5 is equal to 3.

The OEIS displays a dynamic programming code for enumerating such permutations.
For fixed integer n, let bv,w,x,y,z denote the number of permutations of length 5n− v−· · ·− z
with n−v 1’s, n−w 2’s, etc., and satisfying the partial-sums condition. This means that still
v 1’s, w 2’s, etc. have to be appended, to turn them into permutations of the desired form.
From the values of v, . . . , z one can deduce which numbers are allowed to be appended next,
yielding a set of rules to compute the five-dimensional sequence bv,w,x,y,z recursively. For
example, b3,2,0,1,4 means that one has to put the total amount of 3 · 1 + 2 · 2 + 1 · 4 + 4 · 5 = 31
onto the remaining 3 + 2 + 0 + 1 + 4 = 10 places, which means that we can exceed the
average of 3 by at most 31 − 3 · 10 = 1. Hence, the number 5 must be excluded, as well as
the number 3 (because the third index is equal to 0), and we get

b3,2,0,1,4 = b2,2,0,1,4 + b3,1,0,1,4 + b3,2,0,0,4.

Finally, then nth sequence term an is computed by applying this rule recursively to bn,n,n,n,n
until the termination condition b0,0,0,0,0 = 1 is reached. This procedure runs reasonably fast,
by caching intermediate values, but has high memory consumption. Computing the first
51 terms, approximately the amount of data given in the OEIS, took about 2.5 hours and
required 60 GB of memory. Obviously, more terms could only be obtained at a significant
computational cost.

The above transition rules can equivalently be encoded in a transfer matrix. The states
are given by the possible margins one has to remember when appending new numbers. In
the worst case, where the permutation starts with all 1’s and 2’s, the margin can go up to
3n, and thus we get a (3n+1)×(3n+1) matrix. As in Sect. 3, we have to introduce catalytic
variables xi for recording how often the number i has occurred. This way we can obtain the
values an with less memory consumption, but the timing is much longer (21 hours for the
first 51 terms). The transfer matrix is a Toeplitz matrix of bandwidth 2,

M =


x3 x4 1 0 · · ·
x2 x3 x4 1

. . .

x1 x2 x3 x4
. . .

0 x1 x2 x3
. . .

...
. . . . . . . . . . . .

 .

Can we now conclude that A215570 is D-finite and derive a corresponding recurrence?
No, unfortunately not. Like already seen in the example of Sect. 3.3, the matrix here does

29

https://oeis.org/A215570
https://oeis.org/A215570


not have a fixed dimension. For fixed n, the same (3n+ 1)× (3n+ 1) matrix can be used to
compute all the values a0, . . . , an, but not beyond. Hence, we leave our guessed recurrence
as a conjecture and invite the reader to prove that it is correct. We note that the recurrence
becomes simpler when we consider a related sequence, that differs from the original one by
a hypergeometric factor.

Conjecture 15. If (an) denotes the sequence A215570 then for the auxiliary sequence ãn :=
n!3(n+1)!2

(5n)!
an we have

3(3n + 8)(3n + 10)(65n3 + 398n2 + 781n + 496)ãn+3

− 4(910n5 + 11032n4 + 52047n3 + 119686n2 + 134365n + 58980)ãn+2

+ (2015n5 + 24428n4 + 114387n3 + 258294n2 + 281088n + 118368)ãn+1

− 2(n + 1)(n + 2)(65n3 + 593n2 + 1772n + 1740)ãn = 0.

The OEIS also has related entries where n copies of {1, . . . ,m} are considered, the above
discussion referring to the special case m = 5. For m = 1, 2, 3, the resulting sequences
are D-finite (in fact, hypergeometric). For m = 4 (A215562), there are 134 known terms,
but surprisingly they are not sufficient for guessing a recurrence, not even with LLL-based
guessing. The relevant average in this case is 1

4
(1 + 2 + 3 + 4) = 5

2
, which means that

the transfer matrix needs to be twice as big as expected, because the margins have to be
considered in steps of 1

2
. Equivalently, one can use two different transfer matrices, which are

multiplied in turn, depending on whether an even or odd position is filled. This somewhat
explains why the case m = 4 is harder than m = 5. In addition, the sequence terms have
much fewer small integer factors, and thus it seems unlikely that transforming the sequence
with a hypergeometric factor would simplify the guessing problem.

It remains an open problem to find a provably correct recurrence equation satisfied by
the sequence A215562.

6.2 Sequence A339987

This sequence is defined as the number of labeled graphs on 2n vertices that share the same
degree sequence as any unrooted binary tree on 2n vertices. This means that n− 1 vertices
must have degree 3 and the remaining n + 1 vertices must have degree 1. For example,
for n = 4, there are only the following two unlabeled graphs with this property (Fig. 4).
The graph shown in Fig. 4 on the left can be labeled in 8 ·

(
7
2

)
· 5 ·

(
4
2

)
= 5040 ways, and

the graph shown on the right (consisting of two connected components) can be labeled in(
8
3

)
· 5 · 4 · 3 = 3360 ways. Consequently, we have a4 = 8400.
We found a recurrence for the sequence (an) of order 5 with polynomial coefficients of

degree 10. Its polynomial coefficients contain several low-degree factors, which provides some
evidence in favor of the recurrence. It also suggests to write an = 1

n+1
(5

2
)n−2ãn for some other

auxiliary sequence (ãn). The recurrence for (an) translates into a recurrence for (ãn) which
also has order 5 but polynomial coefficients of lower degree.
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Figure 4: Two graphs with 8 vertices used for illustrating the definition of A339987.

Conjecture 16. If (an) denotes the sequence A339987 and we set ãn = an/( 1
n+1

(5
2
)n−2),

then

1024(n + 2)(328n3 + 3300n2 + 10844n + 11589)ãn

− 128(2624n4 + 30664n3 + 129460n2 + 232328n + 148119)ãn+1

− 128(2952n5 + 40852n4 + 219308n3 + 569267n2 + 712135n + 341634)ãn+2

+ 32(3936n5 + 55672n4 + 306380n3 + 818282n2 + 1057879n + 527520)ãn+3

− 4(2624n5 + 42472n4 + 264028n3 + 786236n2 + 1117119n + 601452)ãn+4

+ 3(n + 4)(328n3 + 2316n2 + 5228n + 3717)ãn+5 = 0.

Observe that the cubic factor in the coefficient of ãn can be obtained from the cubic
factor in the coefficient of ãn+5 by setting n to n+1. This is another property that we would
not expect to encounter on a wrongly guessed recurrence.

According to Maple, the linear operator corresponding to the recurrence for (ãn) is irre-
ducible. Experimentally, we find the asymptotic expansion

ãn ∼ c n!(
32

3
)n
(

1 +
7

256
n−1 − 55023

131072
n−2 − 13563843

33554432
n−3 + O(n−4)

)
for a constant

c = 0.7269505475849839203724738433453909726988076

083835242155944045267221957561211243532139 . . .

6.3 Sequence A269021

Sequences related to pattern avoiding permutations have been intensively studied [29]. In
this context, some sequences are known to be D-finite, others are known not to be D-finite,
and there are some for which the status is open. A prominent example is the sequence of
1324-avoiders (A061552), of which only 50 terms are known [6]. We have not found any
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recurrence candidate based on these terms, and recent empirical arguments [7] suggest that
the sequence is more likely not D-finite than D-finite.

It is known [9, 3] that for every fixed k, the number of permutations of length n avoiding
the pattern 123 · · · k is D-finite as a sequence in n. However, this result has no immediate
implications on sequences we obtain when n and k are coupled. For example, the sequence
A269021 is defined as the number of permutations of length 2n containing the pattern
123 · · ·n. (Obviously, counting permutations that do contain a given pattern is as easy
or difficult as counting permutations that do not.) From the 42 terms given in the OEIS,
we were able to detect a recurrence of order 4 and degree 21. This recurrence has the
hypergeometric term (n− 1)(2n)! among its solutions.

Conjecture 17. If (an) denotes the sequence A269021, and we set ãn = an/(2n)!2, then

(−64n10 − 1968n9 − 26156n8 − 198469n7 − 952323n6 − 3012795n5

− 6333869n4 − 8663374n3 − 7264534n2 − 3266000n− 549760)ãn

+ (64n13 + 2672n12 + 49788n11 + 545913n10 + 3917758n9 + 19359535n8

+ 67385886n7 + 165789363n6 + 284054698n5 + 325846005n4

+ 229526554n3 + 78563984n2 − 487964n− 5543040)ãn+1

+ (−512n15 − 21568n14 − 419248n13 − 4969164n12 − 39928763n11

− 228837227n10 − 959068672n9 − 2966908118n8 − 6753094929n7

− 11118771121n6 − 12741784568n5 − 9313604242n4 − 3271711596n3

+ 562569136n2 + 946158512n + 250467360)ãn+2

+ 2(n + 3)(512n16 + 26752n15 + 624800n14 + 8677944n13 + 80260596n12

+ 523718876n11 + 2488583381n10 + 8747566435n9 + 22820793074n8

+ 43766004538n7 + 60004107039n6 + 55047935941n5 + 27672902302n4

− 778719870n3 − 10812498240n2 − 6360099840n− 1300242000)ãn+3

− 12(n + 4)3(n + 3)(2n + 7)2(3n + 8)(3n + 10)(64n10 + 1328n9 + 11324n8

+ 52389n7 + 143536n6 + 233810n5 + 204716n4 + 48699n3 − 68928n2

− 61278n− 15900)ãn+4 = 0.

6.4 Sequence A181198 and A181199

We find a recurrence of order 2 and degree 9 for the sequence A181198 based on the 27
terms that were given in the database, but in this instance we realized that this is not too
impressive a discovery because it is easy to generate enough further terms that LA-based
guessing can find the recurrence.

The sequence is defined as the number of (4×n)-matrices filled with the numbers 1, . . . , 4n
in such a way that all rows, columns, diagonals, and antidiagonals (downwards) are increas-
ing. An example for n = 4 is
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1 2 3 4
5 6 7 8
9 10 12 14
11 13 15 16

.

Here is a way to count such matrices efficiently. Assume that we fill the 4×n array with the
numbers 1, . . . , 4n in that order. Then at each intermediate step the filled cells must form a
Young diagram (so that the condition of increasing values row- and column-wise is satisfied),
plus the extra condition that these Young diagrams must not have two rows of equal length,
unless these have length n (this is to ensure the antidiagonally-increasing condition). We
need not care about the diagonally-increasing condition, as this one is automatically implied
by the first two. We want to count the number of ways how to transform the empty Young
diagram (0, 0, 0, 0) into the rectangle (n, n, n, n), according to the above rules. Let us encode
the situation as a formal sum of terms c · xs,t,u,v, which transport the information that there
have been c ways to produce the Young diagram corresponding to the partition (s, t, u, v).
Then adding a box to the diagram corresponds to the application of the rule

xs,t,u,v → [s < n] · xs+1,t,u,v +

[t < s− 1 ∨ t = n− 1] · xs,t+1,u,v +

[u < t− 1 ∨ u = n− 1] · xs,t,u+1,v +

[v < u− 1 ∨ v = n− 1] · xs,t,u,v+1,

where [P ] denotes the Iverson bracket. For example,

x5,3,2,0 → x6,3,2,0 + x5,4,2,0 + x5,3,2,1,

assuming that n > 5. In order to compute an, we start with the expression x0,0,0,0, then apply
the above rule 4n times (i.e., in each of the 4n rounds we apply it to each occurrence of xs,t,u,v),
and we will end up with the expression anxn,n,n,n. An implementation in Mathematica takes
about 25 minutes to get the first 100 terms of the sequence. This is more than enough to
find the recurrence with LA-based guessing.

The guessed recurrence suggests a closed form expression.

Conjecture 18. If (an) denotes the sequence A181198, then for n > 1 we have

an =
(−64)n(n− 1)(−1

2
)2n(1

2
)n

4(3n)!

×
(
−1 + 3

n−1∑
k=2

(−4)k(7k2 − 1)

(k − 1)k(k + 1)2(2k − 1)2(2k + 1)3

(
3k

2k

)(
k + 1

2

k

))
As an example for guessing with little data, the related sequence A181199 is more in-

teresting. It is defined in the same way as A181198, just with (5 × n)-matrices instead of
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(4× n)-matrices. The OEIS listed only 26 terms, which was not enough for the LLL-based
guesser to find any recurrence. However, by the procedure outlined above, we were able
to produce 60 terms, and this is more than enough for the LLL-based guesser to detect a
convincing recurrence of order 3 and degree 24. The LA-based guesser would need more
than 100 terms to find this recurrence, and with our implementation it takes more than 14
hours to produce them.

According to Maple, the operator corresponding to the recurrence admits a factorization
as a product of three operators of order 1. This factorization suggests again an explicit
expression for the sequence.

Conjecture 19. If (an) denotes the sequence A181199, then

an = 1− 27

4

n−1∑
k=1

(−1)ku(k)
(5k)!

(3k)!k!2

k−1∑
i=1

(−1)iv(i)
(3i)!

i!3

where

u(k) = 8
(
25216k8 + 9888k7 − 14496k6 + 11208k5 + 23832k4 + 7383k3

− 1522k2 − 939k − 90
)/(

(2k − 1)(4k − 1)(3k + 1)3(4k + 1)4
)
,

v(i) =
(
(3i + 1)(3i + 2)(4i + 3)(137855872i11 + 860969696i10

+ 2047036856i9 + 2032587274i8 − 24192441i7 − 1894061166i6

− 1671661480i5 − 524330624i4 + 36004789i3 + 62751860i2

+ 13865604i + 927360)
)/(

(i + 1)2(i + 2)2(2i− 1)(2i + 1)(2i + 3)(25216i8 + 9888i7 − 14496i6

+ 11208i5 + 23832i4 + 7383i3 − 1522i2 − 939i− 90)(25216i8

+ 211616i7 + 760768i6 + 1543976i5 + 1973632i4 + 1683047i3

+ 971955i2 + 353502i + 60480)
)
.

6.5 Sequence A181280

For every n ∈ N, the nth term of this sequence is defined as the number of matrices M ∈ Z4×n
2

with the following properties:

• The rows of M , read as bit strings, are lexicographically strictly increasing.

• The rows of MM> ∈ Z4×4
2 , read as bit strings, are lexicographically strictly decreasing.

The OEIS entry contains the following example for n = 5:

M =


0 1 0 1 1
1 0 0 0 0
1 1 0 0 1
1 1 1 1 0

 ⇒ MM> =


1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 0

 .
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The recurrence we found for this sequence suggests the following closed form expression for
the sequence.

Conjecture 20. If (an) denotes the sequence A181280, then for n ≥ 4 we have

an = 1
3
22n−11(6n2 − 219n + 820)− 1

9
2n−5(3n + 32)− 113

3
(−1)n23n−14

+ 24n−9 − 1
3
(−1)n22n−11(13n− 164) + 1

9
23n−14(288n− 3473).

6.6 Sequence A253217

This sequence has a somewhat complicated definition. Its nth term is the number of ways
to fill an n× n array with nonnegative integers in such a way that the following conditions
are satisfied:

• The entry at position (1, 1) is 0 and the entry at position (n, n) is n− 3.

• The entry at each position (i, j) is either equal to or one more than the entries at
positions (i− 1, j), (i, j − 1), and (i− 1, j − 1).

• The entry at each position (i, j) belongs to {max(i, j)− 2,max(i, j)− 1,max(i, j)}

An example for n = 8 is the array

0 1 1 2 3 4 5 5
1 1 2 2 3 4 5 5
2 2 2 2 3 4 5 5
2 2 3 3 3 4 5 5
3 3 3 3 3 4 5 5
4 4 4 4 4 4 5 5
4 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5

.

The sequence A253217 is the diagonal of the bivariate sequence A253223, where the
counting problem is considered more generally for rectangular arrays. In the entry for this
bivariate sequence, it is conjectured that all rows and columns are ultimately quadratic
polynomials.

Conjecture 21. If (an) denotes the sequence A253217, then

32(n + 1)(2n + 1)2(1575n6 + 21285n5 + 117954n4 + 343020n3

+ 551943n2 + 465785n + 161046)an

− 8(121275n9 + 1933470n8 + 13267683n7 + 51280818n6 + 122556360n5

+ 186866686n4 + 180574335n3 + 105734340n2 + 33718283n

+ 4443102)an+1
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+ 2(294525n9 + 4763070n8 + 33170868n7 + 130145646n6 + 315713355n5

+ 488415476n4 + 478464380n3 + 283626704n2 + 91378536n

+ 12137328)an+2

+ (294525n9 + 4668570n8 + 31877118n7 + 122735586n6 + 292620525n5

+ 445804136n4 + 431097970n3 + 252913504n2 + 80866406n

+ 10688508)an+3

− (121275n9 + 1961820n8 + 13655808n7 + 53503836n6 + 129484209n5

+ 199650088n4 + 194784258n3 + 114948300n2 + 36871922n

+ 4877748)an+4

+ 2(n + 3)2(2n + 7)(1575n6 + 11835n5 + 35154n4 + 52554n3 + 41382n2

+ 16118n + 2428)an+5 = 0.

The conjectured recurrence has the exact solutions 1, (−2)n, and 4n and two further
solutions whose asymptotic expansions have the dominant terms (1

4
)nn−1/2 and 16nn−1,

respectively. For the generating function
∑∞

n=0 anx
n, we found a convincing differential

equation of order 4 and degree 15; the corresponding differential operator L can be factored
as a product L = L1L2L3 where L1 has order 2 and L2, L3 both have order 1.

6.7 Sequence A098926

The nth term of this sequence is defined as the permanent of the (n + 2) × (n + 2) matrix
where the entry at position (i, j) is zero if (i, j) belongs to the path that starts at (1, 1) and
alternatingly moves two steps to the right and two steps down. All other entries are 1. For
example, the 8th term of the sequence is the permanent of the matrix

0 0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1


.

36

https://oeis.org/A098926


Conjecture 22. If (an) denotes the sequence A098926, then

n(n + 1)(3n5 + 95n4 + 1113n3 + 5983n2 + 14907n + 14025)an

− (n + 1)(13n4 + 388n3 + 3717n2 + 13424n + 16865)an+1

− (9n7 + 294n6 + 3677n5 + 22722n4 + 76591n3 + 146304n2

+ 157554n + 81720)an+2

− (n5 − 103n4 − 2125n3 − 14395n2 − 38283n− 32845)an+3

+ (9n7 + 318n6 + 4409n5 + 30672n4 + 113879n3 + 219268n2

+ 186788n + 35600)an+4

+ (17n5 + 445n4 + 4253n3 + 17161n2 + 24893n + 1765)an+5

− (3n7 + 122n6 + 2039n5 + 18038n4 + 90333n3 + 252920n2

+ 364438n + 211080)an+6

− (3n5 + 83n4 + 833n3 + 3663n2 + 6967n + 4465)an+7

+ (3n5 + 80n4 + 763n3 + 3184n2 + 5915n + 4080)an+8 = 0.

Besides the recurrence stated above, we also found a convincing differential equation of
order 3 and degree 19 for which the corresponding differential operator L can be written
as a product of three operators of order 1. This means that L can be solved in terms of
d’Alembertian solutions. In fact, it appears that the generating function

∑∞
n=0 anx

n can be
written as

c
x2 − x− 2

x(x− 1)
exp
( x + 1

x(x− 1)

)
×
∫ x

r(y) exp
( −2y2 − 2

y(y − 1)(y + 1)

)∫ y

s(z) exp
( z − 1

z(z + 1)

)
dz dy

with

r(y) =
y5 − 3y4 + 2y3 − 2y2 − y + 1

y(y + 1)4(y − 2)2
,

s(z) =
z2(z − 2)(z8 − 2z7 − 12z6 + 28z5 − 10z4 − 22z3 + 4z2 + 4z + 1)

(z − 1)2(z5 − 3z4 + 2z3 − 2z2 − z + 1)2
,

and for a suitably chosen constant c and suitably chosen constants of integration.

6.8 Sequence A164735

The Kaprekar map A151949 is defined as follows. Given an integer n, read it as a string of
(decimal) digits, without any leading zeros. Sort the characters once in decreasing order and
once in increasing order. Read these two strings again as integers and subtract the smaller
from the larger. The resulting number is the image of n.

37

https://oeis.org/A098926
https://oeis.org/A164735
https://oeis.org/A151949


For example, n = 64308654 is mapped to

86654430− 03445668 = 83208762

by this process, n = 83208762 is mapped to 88763220 − 02236788 = 86526432, and n =
86526432 is mapped to 86654322− 22345668 = 64308654. It turns out that we have a cycle
of length three: 64308654→ 83208762→ 86526432→ 64308654.

The sequence of interest is not the Kaprekar map itself, but a sequence that counts the
number of such cycles: The nth term of A164735 is defined as the number of cycles of length
three among all the integers with n decimal digits. For n = 8, there is no other cycle besides
the one stated above, so the 8th term of A164735 is 1.

The LLL-based guesser detected a recurrence of order 15 and degree 4 from the 70 terms
listed in the OEIS. The recurrence can be solved in terms of quasipolynomials, leading to
the following conjecture:

Conjecture 23. If (an) denotes the sequence A164735, then for all n ≥ 3

a18k+i =
1

40



3(243k5 + 405k4 + 35k3 + 395k2 − 318k + 40), i = 0;

k(729k4 − 405k3 − 615k2 + 225k + 106), i = 1;

729k5 + 1620k4 + 735k3 + 1320k2 − 684k + 40, i = 2;

k(729k4 − 705k2 + 136), i = 3;

3k(243k4 + 675k3 + 515k2 + 565k − 118), i = 4;

k(729k4 + 405k3 − 615k2 − 225k + 106), i = 5;

3k(243k4 + 810k3 + 845k2 + 790k + 32), i = 6;

3k(k + 1)(243k3 + 27k2 − 142k + 12), i = 7;

729k5 + 2835k4 + 3705k3 + 3405k2 + 726k + 40, i = 8;

3k(k + 1)(243k3 + 162k2 − 127k − 18), i = 9;

729k5 + 3240k4 + 5055k3 + 4860k2 + 1636k + 160, i = 10;

3k(k + 1)(243k3 + 297k2 − 52k − 48), i = 11;

729k5 + 3645k4 + 6585k3 + 6795k2 + 2926k + 400, i = 12;

3k(k + 1)(243k3 + 432k2 + 83k − 58), i = 13;

729k5 + 4050k4 + 8295k3 + 9270k2 + 4696k + 800, i = 14;

3k(k + 1)(243k3 + 567k2 + 278k − 28), i = 15;

3(k + 3)(243k4 + 756k3 + 1127k2 + 734k + 160), i = 16;

3k(k + 1)(243k3 + 702k2 + 533k + 62), i = 17.

We are able to identify two patterns that yield numbers in Kaprekar 3-cycles. Using word
notation, e.g., 14 = 1111, the first one reads

Xm,a,b,c,d,e := 9e8m7d6m5c4m3b2m1a09m8a+17m6b5m4c3m2d1m0e−11
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(m, a, b ≥ 0, c, d, e ≥ 1). A direct calculation shows that the Kaprekar map sends Xm,a,b,c,d,e

to Xm,c−1,b,d,a+1,e, which is sent to Xm,d−1,b,a+1,c,e, which finally is sent back to Xm,a,b,c,d,e.
Hence we have a 3-cycle, except if a + 1 = c = d in which case we run into a 1-cycle. The
number Xm,a,b,c,d,e has 2(a+ b+ c+ d+ e+ 1) + 9m digits, and therefore m is forced to have
the same parity as n. For example, for odd n the number of 3-cycles is given by

1
3

∣∣{X2`+1,a,b,c,d,e

∣∣ 0 ≤ ` ≤
⌊
n−17

18

⌋
, a, b ≥ 0, c, d, e ≥ 1,

a + b + c + d + e = n−18`−11
2

, ¬(a + 1 = c = d)
}∣∣,

which indeed yields the polynomial expressions displayed above, and which explains the
period 18 of the conjectured quasi-polynomial. For even n we can write down a similar
expression, but this is not enough. There is a second pattern,

Ya,b,c := 65c43b1a08a+16b54c+1 (a, c ≥ 0, b ≥ 1),

which produces only integers with an even number of digits. Again, it is not difficult to
see that each Ya,b,c gives rise to a 3-cycle under the Kaprekar map (but note that the other
two members of each cycle are not of the form Ya′,b′,c′). The only 3-cycle of 8-digit numbers
mentioned above is generated by Y0,1,0. For even n, the two patterns give the following
number of 3-cycles:

1
3

∣∣{X2`,a,b,c,d,e

∣∣ 0 ≤ ` ≤
⌊
n−8
18

⌋
, a, b ≥ 0, c, d, e ≥ 1,

a + b + c + d + e = n−18`−2
2

, ¬(a + 1 = c = d)
}∣∣

+
∣∣{Ya,b,c

∣∣ a, c ≥ 0, b ≥ 1, a + b + c = n−6
2

}∣∣.
As before, this produces the other half of the quasi-polynomial expression that was conjec-
tured above. While these considerations shed some light on the occurrence of a complicated-
looking quasi-polynomial of period 18, they do not prove anything. In view of the number-
theoretic flavor of the construction, we could well imagine that the conjectured expression
is only valid until a certain (possibly large) limiting index n and then breaks down, because
further patterns for members of 3-cycles may appear. Among all the conjectures stated in
this paper, Conj. 23 is the one in which we believe least.
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