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Abstract

In an automatic search, we found conjectural recurrences for some
sequences in the OEIS that were not previously recognized as being D-
finite. In some cases, we are able to prove the conjectured recurrence.
In some cases, we are not able to prove the conjectured recurrence but
we can prove that a recurrence exists. In some remaining cases, we do
not know where the recurrence might come from.

1 Introduction

The On-Line Encyclopedia of Integer Sequences [25] contains more than
360000 sequences of all kinds of different flavors. A prominent flavor is the
class of D-finite sequences, i.e., sequences which satisfy a linear recurrence
equation with polynomial coefficients. Such sequences are interesting from
the point of view of experimental mathematics because extensive computer
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algebra support for detecting and proving relations among such sequences
is available. It has been estimated in 2005 [23] and again in 2022 [29] that
about 25% of the sequences in the OEIS fall into this category.

There is a popular technique for searching for potential recurrence equa-
tions satisfied by a sequence of which only the first few terms are known. This
technique is known as “automated guessing” and is implemented in various
computer algebra systems [24] [10, 9] [12]. If this method detects a candidate
recurrence, it is almost always correct, although the method does not provide
the slightest hint how the relation could be proven. If the method detects
no recurrence, this proves that there is no recurrence of order r and degree d
for certain r,d such that (r + 2)(d + 1) is smaller than the number N of
available terms. This might mean that the sequence satisfies no recurrence
at all or that all recurrences it satisfies are too large to be recognized from
the available data.

For the latter situation, we have recently [13] introduced a refined variant
of the guessing methodology that is sometimes able to detect recurrences
that are beyond the reach of the classical approach, hereafter referred to as
LA-based guessing (LA for ‘linear algebra’). For the present paper, we have
scanned the OEIS for sequences where this new method, hereafter referred to
as LLL-based guessing (LLL for the lattice reduction algorithm used within
the method), produces interesting output. Applying LLIL-based guessing to
all entries of the OEIS where LA-based guessing finds no equation and where
at least 25 and at most 150 terms are available, we detected recurrences in
around 600 cases. Going through these cases one by one, many were easily
recognized as correct, and many were easily recognized as wrong, or at least
highly implausible. Others were such that it was easy to compute enough
additional terms that LA-based guessing could find the recurrence.

Here we present the remaining cases in which we found the guessed recur-
rence trustworthy enough to take a closer look at the sequence. An overview
is given in Table Using classical techniques, we managed to prove some
of the guessed recurrences, or at least that some recurrence must exist, or
we were able to generate some further terms. These cases are discussed in
Sects. BH5} In Sect. [6] we list the sequences for which we have found a con-
vincing guess but no convincing explanation. We invite our readers to take a
chance on these sequences, which we have updated according to our findings.
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A187990 2011
A177317 2010
A199250 2011
A250556 2014
A264947 2015
A265234 2015
A172572 2010
A172671 2010
A188818 2011
A306322 2019
A195806 2011
A216940 2012
A194478 2011
A215570 2012
A339987 2020
A269021 2016
A181198 2010
A181199 2010
A181280 2010
A253217 2014
A098926 2004
A164735 2009
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Table 1: N is the number of terms available in the OEIS at the time of

writing.

First terms N M L r d

117,181, 260, 355,467 50 - - 1 3 P
1,2,48,2288,135040 29 60 22 3 14 P
1,1,14,21,424,571 56 98 56 8 18 P
8,60,302,1516, 7126 47 58 47 9 8 P
1,60, 3201, 184740 20 ? 7 7 7 D
1,43, 2592, 184740 31 56 27 6 6 P
90, 67950, 90291600 33 44 17 3 9 D
90, 202410, 747558000 33 75 25 4 13 D
2,9,48, 256, 1360 32 55 26 5 10 P
1,0,0, 25, 386, 4657 41 63 30 4 14 P
16,105,496,1759,5052 32 41 30 4 10 D
260, 27768, 1664244 37 44 29 1 23 D
0,0,0,1,337,8733 32 35 19 2 12 P
1,35,18720,19369350 48 68 27 3 15 O
1,4,90,8400,1426950 40 70 24 5 10 O
1,2,23,588, 24553 42 108 28 4 21 O
1,1,8,169,6392 27 33 14 2 9 O
1,1,16,985, 141696 26 103 34 3 24 O
0,0,0, 58,1629 27 32 26 10 1 O
0,0,1,19,268, 3568 37 53 27 5 9 O
0,2,12,90, 556, 5242 34 55 26 &8 7 O
0,0,0,0,0,0,0,1,0,4 70 8 66 15 4 O

M is the minimal number of terms that LA-based guessing, as implemented
in the command GuessMinRE of [10], needs in order to detect the recurrence.
L is the minimal number of terms that LLL-based guessing, as introduced

in [I3], needs in order to detect the recurrence.

r and d are the order and the degree of the recurrence we found.
In the rightmost column, ‘P’ indicates that the guessed recurrence is proven,
‘D’ means that we can prove D-finiteness but not the guessed recurrence, and
‘O’ means that the case is open.
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1.1 A237684 and A039836

Conjectures produced by automated guessing can often be trusted, but not
always. Before we get to trustworthy discoveries, let us mention some irreg-
ular cases.

For example, the sequence A237684 is defined as

where p(n) denotes the nth prime number. It is known that p(n) is not
D-finite [7], and there is no reason why (a,) should be. Nevertheless, our
LLL-based guesser finds the astonishingly simple recurrence

(n—"Ta,+ (12 = 2n)a,11 + (2n — 8)ay2 + (3 —n)a,.3 2.

To see what is going wrong here, observe that the first few terms of the
sequence are

1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2.

For at least the next few thousand terms, the sequence continues with 2’s,
and the guessed recurrence is correct if and only if the sequence continues
with 2’s forever. The guesser did not discover any interesting pattern but only
resonates the obvious observation that the sequence appears to be ultimately
constant. It just chose the coefficients of the recurrence in such a way that
it matches the finitely many irregular terms in the beginning.

Another example for the same phenomenon is the sequence A039836,
whose nth term is defined as the maximal number m of integers s; with
1 <51 <8y<--- <8y, <nsuch that all sums s; + s; with 7 # j are pairwise
distinct. The LLL-based guesser finds a recurrence of order 2 and degree 36
which we do not reproduce here because there is not reason to believe that
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it is correct. The initial terms of the sequence are
1,2,3,3,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,
7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,
9,9,9,9,9,10, 10, 10,10, 10, 10, 10, 10, 10, 10,
10,10,11, 11,11, 11,11, 11, 11,11, 11,11, 11,
11,11,11,12,12,12,12, 12,12,

and again, the recurrence only seems to express that the sequence is constant
except at some (finitely many) exceptional indices. This is not convincing.

1.2 A187990

If a guesser returns a recurrence whose polynomial coefficients encode that
there are some exceptional indices, then it is a good idea to be skeptical. But
we should not be too skeptical either. For example, consider the sequence
A187990, which counts the number of nondecreasing arrangements x; <
- < wg with 1, 2 € {—n —4,...,n+4} and 30 sign(x;) - 211 = 0
where sign(0) = 1. LLL-based guessing delivers the recurrence

(n —27)(n — 26)(n® + 39n* + 260n + 402)a, 1
= (n —27)(n — 26)(n® + 42n* + 341n + 702)a,,

which looks suspicious, because it indicates that n = 27 is an outlier. We
would probably not expect such an isolated outlier for the sequence, and so
we might be tempted to discard the recurrence as probably wrong.

But there is another possible explanation. It could also be that the value
a7 is incorrect. Indeed, we can derive a closed form for the number of 6-
tuples by case distinction. In Table 2] we assume x; > 0 but not that the
entries appear in the correct order, and in each line we count only those cases
that were not counted in some previous line.

Putting everything together yields a, = %(n3 + 39n? + 260n + 402) and
therefore ay; = 9256, in contrast to the value 9168 that was given in OEIS.

2 Basics about D-finiteness
We give a quick summary of some basic facts and terminology about D-finite

sequences. Most of this is probably known to most readers, the others are
referred to [26], 30], 311, 24, [3 22], 27, 14, 17, (1], 4] for further information.
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case ranges number
—Z1, —T2, —T3,T3,T2,T1 1 S x S X2 S €3 S n+4 (n;r6)
_I17_I27I2_17x2_17 n+5
o =10 —1 1<z <1 <n+4 (2)
—ZL’17—LE‘2,—IL’2,$2+1, 1§x1§n+4,1§x2§n+3, (n+3>2
ZL’l—]_,Il—l ZE17£ZE2+1
—.’,Ul,_xl,_xQ,_xQ,xQ—i‘l, n+4
o141 1<z <z <n+3 ("3
—I1,—T9,To, 1 — 2,01 — 2, |2<x1<n+41<xzy<n+4, 9
) ) 7 ) 7 ) 3
ZEl—l fEl?’éZEQ—f—l (n+ )
_xla_x1+17_x1+17_x27 2§£1S”+371§x2§n+47 n+3
2("")
To,T1 + 1 Ty F Ty 2
—xr1— 3,21, 21,21,21, 21+ 2| 0< 21 <n+1 n—+ 2
—ZE1—3(L’1 T $1+1
Y ) ) ) < < 1 2
S | 0<z<n+ n+
—ZE1—4 I1,T1 $1+1
Y ) ) ) < < 1
v+ 2.2 43 0<z1<n n -+
—$1—2,_$1,—$1,—I‘1, 1§$1§n+1 n+1
—x1, 21+ 3
—Zﬁl—].,—l’l—]_,—l'l—l, 1§[E1§’I’L+1 TL—|—]_
—$17—$1,$1+3
—[)31—3,—5(]1—2,—1'1—17 1<ZE1§TZ n
_x17_$17x1+4

Table 2: Case distinction for |A187990.
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1. A power series a(z) = >~ a,z" is called D-finite if it satisfies a
linear differential equation with polynomial coefficients, i.e., if there
are polynomials py, ..., p., not all zero, such that

po(z)a(z) + pi(z)d (z) + - - + pp(x)a™ (z) = 0.

2. A sequence (a,,) is called D-finite if it satisfies a linear recurrence with
polynomial coefficients, i.e., if there are polynomials py, ..., p., not all
zero, such that

pO(n)a'n +p1(n)an+1 + - +pr(n)an+7‘ =0

for all n € N. Some authors say P-finite or P-recursive instead of
D-finite.

3. A sequence (a,) is D-finite if and only if the corresponding power se-
ries Y ° , a,x™ is D-finite. D-finiteness of sequences and power series is
preserved by addition and multiplication. If (a,) and (b,) are D-finite
sequences, then so is their interlacing sequence ayg, by, a1, by, as, bo, . . ..
If a(z) is D-finite and b(x) is algebraic, then a(b(x)) is D-finite. All
these facts are known as closure properties of the class of D-finite se-
quences/series. Closure properties are constructive in the sense that,
for example, a (provably correct) recurrence for (a, + b,) can be com-
puted from known recurrences for (a,) and (b,).

4. Tt can be useful to view differential equations and recurrence equations
as operators. For example, we may write a differential equation in the
form

(po(z) +p1(x)D + -+ p(2)D") - a(x) = 0,

where D denotes the derivation. The operator py(x) + p1(x)D + -+ - +
p-(x)D" belongs to a certain non-commutative ring in which the mul-
tiplication is defined in such a way that it amounts to the composition
of operators, i.e., we have (ML) -a(x) = M - (L - a(z)) for any two
operators M, L. Note, for example, that we have Dz = xD + 1 in this
ring.

An analogous construction is possible for recurrence equations. Instead
of the derivation D we then use the forward shift S, which acts via
S - (an) = (an+1). In this case we have the noncommutativity relation

Sr=(zx+1)S.



5. If L and M are two operators, we say that L is a right factor of M L and
that ML is a left multiple of L. The operator L is called irreducible if
it does not have any nontrivial right factor. Note that if a is a solution
of an operator L, then it is also a solution of every left multiple of L,
because L-a = 0 implies (ML)-a = M-(L-a) = M -0 = 0 for every M.
Conversely, if a is a solution of ML, it may or may not be a solution
of L, but it can be checked algorithmically whether it is.

6. A bivariate series a(x,y) is called D-finite if it is D-finite w.r.t. « and

D-finite w.r.t. y, i.e., if there are polynomials py,...,p,, not all zero,
and polynomials ¢y, ..., qs, not all zero, such that
d d"
pO(xa y)CL(x? y) +p1($, y)%a(:m y) +oe +p7‘(x7 y)@a(az, y) - 07
d d’
wo(z, y)a(z,y) + (=, y)d—ya(x, y)+- o+ sz, y)d—ysa(:ﬂ, y) = 0.

The definition extends in the obvious way to series in any (finite) num-
ber of variables. The definition also applies to series that may involve
negative or fractional exponents.

7. Sums and products of multivariate D-finite series are again D-finite
(“closure properties”). Taking residues also preserves D-finiteness.
For example, if a(x,y) is a bivariate D-finite series, then the series
res, a(z,y) := (7 a(z,y) is a univariate D-finite series in y. Also, if
we write a(z,y) = Y, ; anxz™y", then the diagonal (a,n)5e, is a uni-
variate D-finite sequence. These operations extend to more variables
and they are constructive. Differential equations satisfied by residues
or a recurrence equation satisfied by the diagonal can be computed by
a technique known as creative telescoping.

8. Creative telescoping is also used for summation. If (a, ) is a bivariate
sequence such that its generating function a(z,y) = >, anrz"y" is
D-finite, then the definite sum » ), any is a univariate D-finite se-
quence, and we can compute a recurrence for it from a known system
of differential equations for a(z,y). This applies in particular when a,, x
can be written as a product of polynomials and binomial coefficients,
and it extends to the case of more variables and multiple sums.



3 Transfer Matrix Method

3.1 Al77317

Our first candidate sequence (a,) counts the number of permutations of n
copies of {1,...,5} such that any two neighboring entries differ by at most
one. For example, for n = 1, there are exactly two such permutations

(1,2,3,4,5) and (5,4,3,2,1),
while for n = 2 there are more interesting instances like
(2,1,1,2,3,3,4,5,4,5) or (4,5,5,4,3,2,3,2,1,1),

in total a; = 48 many. From the 29 given terms, the LLL-based guesser
finds a recurrence of order 3 with polynomial coefficients of degree 14, which
roughly looks as follows:

(n+2)%(n+ 3)*(13113n° + - - - 4+ 10512) 13

—2(n +2)*(668763n"* + - - - 4 20370096 a2

+ (n+1)*(878571n' + - - - 4 14722560) 4,41

—3n*(n +1)(3n + 1)(3n + 2)(13113n° + - - - + 3281160)a, = 0.

The same recurrence can actually be found by using only 22 terms, giving
us some confidence that it is meaningful. In contrast, LA-based guessing
requires at least 60 terms, and therefore could not find it from the available
data.

The sequence A177317 is the 5th row of the bivariate sequence A331562,
whose ith row counts the described permutations with entries in {1,...,4}.
Only the first four rows were already known to be D-finite. The argument
below shows that actually every row is D-finite.

The sequence entries can be computed by dynamic programming, more
specifically by the transfer matrix method [I8, 19, 27]. This method is ap-
plicable whenever the possible choices at a certain position (here: the kth
position in the permutation) depend only locally on the previous state (here:
the (k — 1)st position in the permutation), so that the transition can be
modeled by a finite-state machine. The global condition that each number
must appear exactly n times is taken care of by introducing catalytic vari-
ables: for each i, the variable x; records the number of occurrences of i.

9
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Let p, € Z[x1, %2, 3, z4] be the permutation-counting polynomial, whose co-
efficient of the monomial x¢z%z5x? equals the number of permutations of
length n with @ many 1’s, b many 2’s, etc., and n —a — b — ¢ — d many 5’s,
with entries in {1,...,5} and satisfying the gap condition. Since we know
that the total length is n, we do not need a variable x5 to count the 5’s. We
use the following transfer matrix M, together with the start vector v,;; and
the accepting-state vector vgpai,

r1T I 0 0 0
To Xg x9 0 0
M=|0 23 3 23 0|, vni=(21,22,23,24,1), Vgina =
0 0 x4 x4 x4
O 0 0 1 1

— = = = =

to express the permutation-counting polynomial as a matrix-vector product:

n—1
pn<$17 X2, XT3, I‘4) = Unit ° M * Ufinal -

Now, the sequence entries can be obtained by a simple coefficient extraction:

ay = <x’fm§x§x2>p5n(x1, To, T3, Tq) = <:c?:c§a:§x2 (Uinit ML 'Uﬁnal).
Although the matrix is of small size, and despite the fact that we have already
saved one variable, it is quite time-consuming to compute the values a,, in this
way, because the four-variable polynomials grow very rapidly. For example,
computing a5 takes about four minutes and produces a vector of more that
one gigabyte in size.

The method could be optimized, e.g., by truncating the intermediate
polynomials and omitting all terms with exponents greater than n. However,
instead of using the transfer matrix method to compute a,, for specific values
of n, it is more interesting to employ it for deriving a closed form for the five-
variable generating function F(z1,xa, x5, 24,t) = >~ Pa(@1, T, T3, T4)t".

For this purpose, recall the explicit formula [27, Thm. 4.7.2] for the gen-
erating function of the sequence appearing in the (i, 7)th entry of a matrix
power M™

= o det (I, —t M)
M™) "= (1) 1
> ()= 0 S g

where the exponent [j, ] indicates the removal of the jth row and the ith
column of the matrix I, — tM. Hence, the generating function F' is just

10



a certain linear combination of such rational functions, determined by the
vectors vy, and vgna. An explicit computation gives
F(x1, 19,23, 24,1) = (2t3x3(x1x2 + 21 24T0 + 2420 + T124) — P 23(207 — 374
+ Toxy + my) — 2t(x371 + 2411 + 1 + To+ T3+ ToTy) + T+ X0+ T3+ T4+ 1)
/(—t4x3(931:r2 + 212429 + 4T + T124)
+ 313(20m1 — 11 + Toy + 74) + (2371 + 2471 + 21 + To + 13

+x2x4)—t(x1~|—a:2+:v3~|—x4—|—1)~|—1).

Using this generating function, the sequence terms can be expressed as a
residue

F(xla X9, X3, Ty, t)

o n_n_n.ngbhn—1 _
Ap = <x1 TyXz Tyt >F($17 L2, XT3, L4, t) = 18z m9,03,24,t (x1x2x3x4)"+1 on
A recurrence equation for the residue can be derived by creative telescoping.
Here, we have to apply it five times (once for each variable), which takes
about 10 minutes in total, using HolonomicFunctions [16]. The result is ex-
actly the guessed order-3 recurrence, which proves that the guess was indeed
correct.

Theorem 1 A177317 is D-finite and satisfies a recurrence of order 3 and
degree 14.

3.2 A199250

The next sequence deals with a similar counting problem, but now for two-
dimensional arrangements. Its description in the OEIS reads as follows:
“number of n x 2 arrays with values {0,...,3} introduced in row major
order, the number of instances of each value within one of each other, and
no element equal to any horizontal or vertical neighbor.”

Using the 56 terms given in the OEIS, a linear recurrence of order 22 and
coefficient degree 3 can be guessed. We realize that this is not the minimal
one: when more terms are used (they can conjecturally be produced, e.g., by
applying the guessed order-22 recurrence), then a recurrence of order 8 and
degree 18 can be found, which happens to be a right factor of the previous

11
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one, when viewed as operators. It is very unlikely that an artifact recurrence
has such a right factor, and thus our guess appears to be trustworthy.

Also this sequence can be computed with the transfer matrix method.
Since horizontal neighbors must be different, there are 12 possible rows that
can appear in such arrays:

(0,1),(0,2),(0,3), (1,0), (1,2), (1,3), (2,0), (2,1),(2,3),(3,0), (3, 1), (3,2),

each of which represents a state. The condition that vertical neighbors must
be unequal determines a finite-state machine that encodes which rows can
potentially follow any given row. As in the previous section, one introduces
catalytic variables to implement the global condition that each number must
appear equally often in the array (resp. “almost equally often” if the number
of rows is odd). This yields the following 12 x 12-matrix M:

0 0 O zy yz y zz 0 =z z 0 =z
0 0 0 2y 0 y 2z yz z = y O
0 0 0 z2zy y2 0 2z yz 0 =z y =z
zy zz x 0 0 0 0 yz z 0 y =z
zy 0 0 0 0 zz yz 2z =z y 0O
Mo | o 0 0 0 O 2z yz 0 =z y =z
zy zz x 0 yz y 0 O 0 0 y =z
0O zz z zy y2y 0 0 0 = 0 =z
zy zz 0 zy y2 0 0 0 O z y =z
zy zz x 0 yz y 0 yz 2z 0 0 O
0 2z =z zy yz y zz 0 =z 0 0 O
zy 0 x 2y 0 y 2z yz z 0 0 O

Its (i,7)-entry equals O if state i and state j agree on their first or second
position. Otherwise the (4, j)-entry of M equals x%y°2¢, where a (resp. b resp.
c) counts the number of 0’s (resp. 1’s resp. 2’s) in state j. The condition that
numbers are introduced in row-major order forces the first row to be (0, 1),
so this is the only initial state, while all states can be accepting states, and
thus we define

Uinit = (xya 07 07 07 07 Oa 07 07 07 Oa O) 0)7
Vfinal = (L 17 17 17 1a 17 17 17 1a 17 17 1)T

Then, for each n > 1, the polynomial p,(z,y,2) = Vi - M - vgna counts
the number of such arrays, disregarding the balancing of the number of oc-
currences of 0’s, 1’s, 2’s, and 3’s. Hence, we are interested in the coefficient

12



of (zyz)™? in p,(x,y,z) if n is even, or in the sum of the six coefficients

of (zy)m=D/2x(41/2 0 (gy)(n+D/2,(0=1/2 0 Vif pis odd. Finally, this
number has to be divided by 2, in order to discard all solutions where a 3 is
introduced before a 2 (in row-major order).

With this method it takes less than half an hour to compute the first 100
terms of the sequence, allowing us to verify our conjecture with terms that
were not used for the guessing. Moreover, the transfer-matrix construction
implies that the sequence is D-finite, and it enables us to deduce a provably
correct recurrence. For the generating function of the full counting sequence,
F(z,y,z,t) =Y " pu(z,y, 2)t", several applications of yield the follow-
ing closed form:

tey S22 (—1) det (g — tM)1
det([lg — tM)
B try(tz + 1)
1 —tr —ty —tay — tz — twz — tyz — Tt2xyz’

F(z,y,2,t) =

The desired recurrence can now be obtained via creative telescoping. For
example, for even n, we compute a recurrence for

1 F(x,y,z,1t)
zyzt (vyz)" 2

reS:p,y,z’t

The result, which is an order-6 and degree-17 recurrence for as,, is obtained
in about a minute. Slightly more complicated is the case of odd n, for which
we deduce a recurrence of order 6 and degree 22. Both are not minimal-order,
but combining them results in a recurrence of order 24 and degree 79 for a,,.
The latter is a left multiple of the guessed recurrence operator, therefore
allowing us to prove that the guess is correct.

Theorem 2 A199250 is D-finite and satisfies a recurrence of order 8 and
degree 18. The subsequence formed by the even (resp. odd) indices satisfies a
recurrence of order 4 and degree 8 (resp. 10).

3.3 |A250556

It is not always easy to see whether the transfer matrix method can be applied
and if so, what is a suitable set of states. Consider for example the sequence
A250556, which is defined as follows:

a, = [{v€{0,1,2,3}"* [ s € {-1,+1}" : A*(v) - s = 0}

Y
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where A(vy,...,v,) = (v —v1,...,0, — v,_1) is the forward difference op-
erator. It is not completely obvious how to translate the conditions on the
arrays v into states, because we have to consider all possible sign vectors
for combining their second differences to 0. To address this problem, we
introduce states that encode the following information:

1. The last two entries of the array, since they are needed to compute the
second difference when appending another entry to the array.

2. The set of numbers that can be produced by taking the scalar product
of the second differences with all possible sign vectors.

Note that for the second item, it suffices to store only the absolute values of
these numbers, since the corresponding negative numbers could be produced
by switching all signs in the sign vector.

For example, consider the state (3,1,{1,5}), which means that the array
that was produced so far is of the form (...,3,1) and that all signed sums
of its second differences sum up to either 1 or 5 (or, of course, to —1 or —5).
We wish to extend the array by a 1. The new second difference that we can
build is 3 —2-1+ 1 = 2. Hence we add or subtract 2 to each number in the
list, yielding the new state (1,1,{1,3,7}). Note that 1 —2 = —1 has turned
into a +1 by our nonnegativity convention.

The problem is that the signed sums of the second differences can get
arbitrarily large as the arrays get longer. Of course, if we bound the number
of sequence terms we wish to compute, then we could devise an upper bound
for these signed sums. Then with a fixed transfer matrix we could compute
a certain finite number of sequence terms. Fortunately, we can do better: we
derive a global upper bound B and show that it is sufficient to store only
signed sums up to B, independent on the length of the arrays. This bound B
must have the property that for any sequence of signed second differences
that add up to 0 and whose partial sums exceed B, there must exist another
sign vector, that combines these second differences to 0 without exceeding B.
Here is an example showing that B > 19: the array

(1,3,0,2,0,3,0,3,0,3,1)
has the second differences

(_5a 5a _4a 57 _67 67 _67 67 _5)

14



which combine to 0 using the sign vector
(-1,1,-1,1,1,-1,1,—-1,-1)

(or its additive inverse). Note that there are no other sign vectors that
produce 0. The partial sums in the signed sum 5+54+4+5—6—6—6—6+5 =0
go all the way up to 19 before they finally descend to 0.

We argue that actually B = 19, i.e., that there is no example like the one
above where the partial sums are forced to exceed 19. For this purpose, we
have to identify all pairs (S1,.S2) of multisets with values in {1,...,6} such
that > (S7) = > (S2) > 19, but such that there are no nontrivial subsets
T, C Sy and Ty, C Sy with > (71) = D> (T»). Hence, the only way that a
signed sum of S7 U S5 equals 0 is that all elements in S; have the same sign,

and all elements in Sy have the opposite sign. Here are all possible choices
for S; and Ss:

Sy ={1,1,6,6,6}, Sy ={55,55}, or
Sy ={2,6,6,6}, S, =1{55,55}, or
Sy ={5,5,5,5}, Sy =1{4,4,4,4,4}, or
Sy ={6,6,6,6}, Sy =1{4,5,555}, or
Sy ={6,6,6,6,6}, S, ={5,5,5,5,5,5}.

The first two possibilities can be excluded, because in the array of second
differences a +6 can never be followed by a £1 or by a £2. For the remaining
three possibilities, we can do an exhaustive search: build all permutations
of S U (—S3) that have a partial sum > 19, for each of them apply suit-
able sign vectors (it is easy to see that an array of second differences with
values in {4, £5, £6} must have alternating signs), and then construct all
corresponding arrays v. The final outcome is that there are no such arrays v,
proving that B = 19 is the desired bound.

Next, a suitable set of states has to be defined. Naively, one could expect
that 16,777,200 states are necessary, since there are 16 possibilities for the
last two entries of the array and 22° — 1 nontrivial subsets of {0,...,19}. A
closer inspection reveals that we can work with much fewer states. From the
transition rule between the states it is apparent that the reachable numbers in
each state are either all even or all odd. Hence it suffices to take all nontrivial
subsets of {1,3,5,...,19} and of {0,2,4,...,18}, yielding 16- (2! —1) -2 =
32,736 states. Still, this set contains many unreachable states, for example

15



when the set of possible signed sums has a gap greater than 12. Eliminating
all such useless states results in a set of 2484 states.

Using the corresponding 2484 x 2484 transfer matrix, which contains only
0’s and 1’s, one can easily compute hundreds or thousands of sequence terms
in almost no time (0.6s for the first 1000 terms, for example). The matrix
formulation also implies directly that the sequence is D-finite. Since there are
no catalytic variables, we can directly derive a rational function expression for
its generating function. Hence, the sequence is even C-finite, i.e., it satisfies
a linear recurrence with constant coefficients. The start vector vi,; has 60
nonzero entries and the accepting-state vector vg,, has 720 many. Instead
of applying the determinant formula 60 - 720 = 43,200 times (each case
taking about three seconds), we compute the signed sum of all (7, j)-minors,
where j is a fixed nonzero position in vy, and ¢ runs through all nonzero
positions of vg,a, by taking the determinant of the matrix I, —t M with the
jth column being replaced by vgna (for each j this takes about 30 seconds).
Putting everything together, we obtain the generating function

(—64¢7" + 1126*° — 1016£> + 600t** — 1368t* + 2592t* + 2648t*" + 404¢>
— 806t — 8346t'® — 3970t'" — 1806¢'® 4+ 9008¢"° + 8356¢'* + 722813

— 3332¢1% — 4174t — 7194410 — 812¢7 — 76t% + 2462t7 4 906t + 278¢°

— 230t* — 146t + 6t> — 4t — 8)

J((t =12t +1)%(2t — 1)(4t — 1)(¢* + 1)*(2t° — 1)?).

The C-finite recurrence for |A250556/ can be read off from its denominator:

Apt17 — TQpt16 + 14an415 — 1205414 + 260113 — 420,412
+ 8111 — 4an110 + Ango + T3ang8 — 587 + 44an, 16
— 84an,15 + 8apiq + 360,13 — 28ay,19 + 560,11 — 32a, = 0.

This recurrence can be found with guessing from aqs, . . ., as7; the first values
ai,...,a; are exceptional and do not satisfy this recurrence (note that the
numerator degree exceeds the denominator degree by 10). Without this
additional knowledge it is not possible to find anything with classical linear
algebra guessing. In contrast, the LLL-based guesser finds a recurrence of
order 22 and degree 1, which is a right factor of the order-27 operator. The
minimal recurrence however is of order 9 and degree 8.

Theorem 3 A250556 is D-finite and satisfies a recurrence of order 9 and
degree 8.
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3.4 A264947

Even for innocent-looking sequences it can sometimes be very hard to com-
pute their terms and find a recurrence. |A264947 enumerates 4 X n arrays
containing n copies of {0, 1, 2,3} with no equal horizontal neighbors. (More-
over, new values in the array should be introduced sequentially from 0, but
this condition is not so relevant, as it just divides the final count by 4! = 24.)
The OEIS lists only 20 terms. Can’t we compute more, and/or derive
a recurrence equation, since this problem is an obvious application of the
transfer matrix method? From what we have seen in the previous sections, it
is clear that the states are the 4* = 256 possible columns and that we have to
introduce three catalytic variables z,y, z to count the occurrences of 0,1, 2,
respectively. Therefore, we know for sure that A264947 is D-finite.
However, things are computationally expensive, because the matrix has
considerable dimensions (256 x 256) and because it contains three variables.
With quite some effort we were able to compute 80 terms of the sequence:
after about one month (of non-parallelized computation) our compute server
with 256 GB ran out of memory. Unfortunately, this data is still not enough
to guess a recurrence (which we know for sure must exist). To get an idea of
the difficulty of this problem, compare with the simpler case of 3 x n arrays
with n copies of {0,1,2} (A264946): here the recurrence has order 9 and
degree 13, and we need 63 terms to find it with LLIL-based guessing. The
104 terms given in the OEIS are just sufficient to find the recurrence with
LA-based guessing (and that’s why it didn’t make it into our collection).
Likewise, we didn’t succeed to compute the rational function expression
for the four-variable generating function: computing the determinants ap-
pearing in turned out to be prohibitively expensive. We tried to compute
one of the 256 determinants, but aborted the computation after five days.

Theorem 4 A264947 is D-finite.

It remains an open problem to find a provably correct recurrence for the
sequence A264947.
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4 Lattice Walks

4.1 A265234

Changing a small detail can sometimes make a big difference. For example,
if we change the condition “no equal horizontal neighbors” in |A264947 from
the previous section into “no equal vertical neighbors”, then the problem
becomes significantly simpler.

This time, the condition on neighbors can be satisfied by making a suit-
able selection of admissible columns—there are 108 many which do not have
equal neighbors. There are no further restrictions concerning which column
can follow another one. In principle, one could again model this process by a
transfer matrix, but it is more efficient to take a slightly different viewpoint.
Consider the integer lattice Z* and interpret the point (z,y,z) as having
seen r many 0’s, y many 1’s, and z many 2’s, when filling the array from
left to right. Adding a column to the array then corresponds to making a
step in this lattice. Note that different columns may correspond to the same
step: for example, (1,0,1,3)" and (3,1,1,0)" both correspond to the step
(1,2,0). In this interpretation, the nth sequence term counts the number
of walks of length n, starting at the origin (0,0,0) and ending at (n,n,n).
By construction, these walks will never leave the first octant, and hence, se-
quence A265234 can be viewed as an unrestricted walk enumeration problem
in 3D. Using the set of admissible columns, we define the following stepset
polynomial:

s(z,y, 2) = 22° + 6y + 62y + 2y* + 62y* + 22%y* + 622
+ 6272 + 6yz + 24xyz + 62°yz + 6y°2 + 6xy’2
+ 227 4+ 6227 + 22727 + 6y2? + 6ayz? + 2227

The generating function of A265234 can then be obtained as the diagonal of

the rational function )

1—ts(z,y,2)’
divided by 24 to mod out permutations of the numbers 0,1,2,3. Creative

telescoping delivers exactly the guessed order-6 recurrence, taking less than
a minute. The sequence terms could also be computed via
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which takes about 100s for 56 terms (this is the amount of data necessary
for LA-based guessing).

Theorem 5 A265234 is D-finite and satisfies a recurrence of order 6 and
degree 6.

4.2 Al172572 and A172671

These two sequences count the number of {0, 1}-arrays (resp. {0, 1, 2}-arrays)
of dimension 3n x 6 with row sums 2 and column sums n. Hence, for A172572
the row-sum condition yields exactly (g) = 15 possibilities for what a row
can look like:

Rl = (17 1707 07070)7 RQ = (1707 170707())7 cry R15 = <07070707 17 1)

Let ¢; denote the number of occurrences of R; in the final array. The condition
on the column sums translates into

15
E ciRi = (n7 n,n,n,n, n)a
=1

which yields six linear equations for the ¢;. Their general solution is

Cs =T — C1 — C2 — C3 — (4,

Cg =N —C —C — C7 — Cg,

Cig =N — C2 — Cg — C10 — C11,

C13 =2n— ] —Cy — C3 — €4 — Cg — C7 — Cg — C19 — C11,
614201+CQ+C4+CG+68+C11—n,

C15 = €1 + Ca + €3+ Cg + C7 + C10 — N

Note that the condition on the number of rows, 211; c¢; = 3n, is a conse-
quence of these equations. For each admissible choice of the ¢;, the number
of arrays that can be built by permuting the corresponding numbers of rows
is given by the multinomial coefficient

(e )
Cl,...,615'
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The total number of arrays a, is then obtained by summing over the nine
remaining free variables among the ¢;, and by replacing the other ones by
the linear expressions displayed above:

3n
ayn = E .
C1,C2,C3,C4, T — C1 — Cg — C3 — C4,Cg, ...

€1,€2,€3,C4,C6,C7,€8,C10,C11

We have omitted the summation ranges here, since the sum has natural
boundaries. Instead, one could fix the range 0 < ¢; < n for each variable, or
even more refined summation ranges, implied by the condition that all lower
entries of the multinomial coefficient must be nonnegative and at most 3n.
This nine-fold sum can be reduced by means of the Chu-Vandermonde iden-

)

Instantiating it with k =cj1, r=n—cy —cg — cro, m =2n — ¢y — g — 3 —
€y — Cg — C7 — Cg — C10, and n = ¢ + ¢4 + cg — ¢19, we can eliminate the last
summation. This can be done similarly for the summations w.r.t. cg and ¢y,
so that we obtain the following six-fold sum:

n n—cy n—ci—cg min{n—ci,n—ce} min{n—ci1—ce,n—cs} min{n—co—cg,n—cz—cr}
c1=0c2=0 ¢3=0 cg=0 c7=0 cio=max{0,n—c1 —ca—cg—cg—cr}

((3”)' (4n — 2C1 — 2C2 — 2C3 — 266 — 2C7 — 2610)!>/<Cl! CQ! Cg! C6! 07! 010!
mn—cg—ca—e3)l(n—c1—cg—cr)(n—co—cg—cr0)! (n — 3 — ¢z — ¢1p)!

((2n—01—02—03—cﬁ—c7—clo)!)Q(cl+cg+cg+c6+07+clo—n)!)

At this point it is clear that A172572 is D-finite. However, deriving a recur-
rence from this sum representation via creative telescoping is still a challeng-
ing task. We were not able to complete it in reasonable time.

Instead, one can utilize this formula to compute some further terms of the
sequence. Implementing it in Mathematica, and taking into account some of
the symmetries that follow from permuting the columns of the array, we get
the following timings for computing the nth term of the sequence:

n‘ 12 14 16 18 20 --- 28 30 32 ... 4
time (s ‘0.49 1.02 191 3,53 6.09 --- 40.1 57.1 816 --- 518
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The computation of the first 33 terms that were given in OEIS took 549s in
total, while the computation time for the first 44 terms that are needed for
LA-based guessing was 3566s. Note also that the above formula allows one
to compute the nth term of the sequence, without computing all the previous
ones.

Alternatively, the {0, 1}-arrays counted by A172572 can be interpreted as
walks in the first orthant N° of the six-dimensional integer lattice, starting
at the origin, and with allowed step set S = {Rj,..., Ri5}. The column
sum condition implies that we are interested in the number of walks that end
on the diagonal point (n,n,n,n,n,n). To determine this number, we gen-
erate a six-dimensional array A, such that the entry A, ., ngnsns.ne records
the number of walks ending at position (n1,ns, n3, n4, ns, ng) and using only
steps from S. The entries of this array can be computed by means of the
multivariate C-finite stepset recurrence

Amm2,ﬂ3m4,ﬂ5me = Z Am—81,n2—527n3—83,n4—54,n5—85,%—86’ (2)
seS

with the initial condition A 0000 = 1 and with the boundary condition
that Ay, nymgmansne = 0 Whenever at least one of the indices n; is negative.
Note that each walk ending at (ny, ng, n3, ny, ns, ng) consists of exactly (n; +
ng+ns+ny+ns+ng)/2 steps, and thus the length of the walks does not need
to be recorded separately. Several optimizations can make this enumeration
more time- and memory-efficient. First, we exploit the symmetry that follows
from permuting the columns of the {0, 1}-array, i.e., the coordinates of the
array A, which means that it suffices to record only values for n; > ny >
.-+ > ng. Second, since for computing the walks with k& steps one only needs
the information about walks with k£ —1 steps, we can discard the data related
to shorter walks, which has the effect that only a five-dimensional array has
to be kept in memory. Of course, whenever k is divisible by 3, the diagonal
entry should be saved, as it contains the sequence term ay/3. If one aims at
computing ag, ..., a, for prescribed fixed n, then one can confine the array
to {0,1,...,n}° because walks that have left this hypercube can never come
back to a diagonal position inside the hypercube. With this approach, we
obtained the first 33 terms in 232s, while the 44 terms that are required for

LA-based guessing took 1053s.
We see that this procedure is faster than the previous one, at least when
one wants to compute all terms of the sequence up to a certain index. The
disadvantage is that extending the sequence requires a complete restart of

21


https://oeis.org/A172572

the computation (or one has to omit some of the optimizations described
above).

In any case, the walk viewpoint allows us to express the generating func-
tion of the sequence A172572 as the diagonal of a six-variable rational func-
tion whose denominator is the stepset polynomial, given as the characteristic
polynomial of the recurrence :

o0

1
g a,x’" = diag .
0 1-— L1 — 13 — XL1Xg — ** — T4y — TyXg — T5Tg

From this representation it again follows immediately that the generating
function is D-finite. A recurrence for a,, can in principle be derived by apply-
ing creative telescoping to the corresponding six-fold integral, but similar to
the six-fold sum before, we did not manage to complete this task in reasonable
time (the computation was aborted after one month). We therefore propose
our guessed recurrence as a conjecture to the reader, which we present in
compact form by dividing out a hypergeometric factor.

Conjecture 6 If (a,) denotes the sequence A172572 then for a, := ﬁan

n

we have

(n +3)4(62n? + 2170 + 191)dy .3
— 6(5084n° + 68634n° + 3837560 + 1137319n°
+ 1884032n2 + 16539601 + 601185)d,, 1
— 4(2n + 3)(31372n° 4 313720n" + 1227805n°
+ 2354425n* + 22209887 + 827860)d,,1 1
+6000(n + 1)%(2n + 1)(2n + 3)(62n* + 341n + 470)a, = 0.

The sequence A172671 is very similar, the only difference being that now
also 2’s are allowed as entries in the array. This increases the number of
possible rows to (g) + (f) = 21. Performing a similar analysis as for A172572,
we find an eleven-fold hypergeometric sum representation, which however is
not useful for any practical purposes. Here, it is much more advantageous
to treat the corresponding walk counting problem, which is still in the six-
dimensional integer lattice, but now with a stepset of size 21. Again, we
only succeeded to compute some more sequence terms (the already available
terms aq, ..., ass took 298s, while aq,...,a7; that are needed for LA-based
guessing took about 9h), but we failed to derive a recurrence by creative
telescoping, which would prove our guess.
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Conjecture 7 If (a,) denotes the sequence |A172671 then for a, := (gf)!an
we have

3(n +3)(n +4)3(3784n* + 32164n> 4+ 100749n* + 137862n + 69678)d, 44
— (n 4+ 3)(3799136n" + 72183584n° + 579689880n° + 2548427912n*
+ 66175617021 4+ 101415030961 + 84873498211 + 2991586122)a,, + 3
— 3(10844944n°® 4 222321352n" + 1973930222n° + 9916013134n°
4 30831383530n* + 60768378830n> + 74160044251n>
+ 51243135187n + 15352797306)d,,
+ (n 4 2)(29681696n" + 504588832n° + 3602458816n° + 14001842392n*
+ 32010306742n° + 43078657918n* + 31639900193
+ 9799573455) a1
+ 15435(n + 1)3(n + 2)(3784n* + 47300n° 4 21994502
+ 450988n + 344237)a,, = 0.

Although we cannot prove that the conjectured recurrences for A172671
and A172572 are correct, it follows from the sum expressions that some
recurrences for these sequences must exist.

Theorem 8 A172671 and A172572| are D-finite.

4.3 Al88818

This sequence counts the number of n X n binary arrays without the pattern
01 diagonally or antidiagonally. The OEIS lists 32 terms, from which the
LLL-based guesser finds a recurrence of order 5 and degree 10. With LA-
based guessing one needs at least 55 terms to find this recurrence. Although
it is not obvious at first glance, also here lattice paths turn out to be the key
to the solution.

The fact that the forbidden patterns are considered along (anti-) diagonals
allows us to decompose the problem: the even positions in the array, i.e.,
positions (z,y) with x + y even, and the odd positions can be filled with 0’s
and 1’s independent of each other. Hence, the nth sequence term, a,,, can be
written as

ap = €y * Op,

where ¢,, and o,, count the number of admissible {0, 1}-arrangements on the
even (resp. odd) positions in the n x n array. See Fig. [I] where a particular

23


https://oeis.org/A172671
https://oeis.org/A172671
https://oeis.org/A172572
https://oeis.org/A172671
https://oeis.org/A172572
https://oeis.org/A188818

Figure 1: A particular 12x 12 array for A188818|(left), where dots and bullets
represent 0’s and 1’s, respectively. The middle (resp. right) image shows the
even (resp. odd) positions, where 0’s and 1’s are separated by a generalized
Dyck path.

solution (left) is decomposed into an even part (middle) and an odd part
(right).

If we focus only on positions of the same parity, then we see that the
array contains a region with 1’s on the top, and at the bottom a region with
0’s. Both regions are separated by a path that starts somewhere on the
left border, ends somewhere on the right border, and uses steps (1,1) and
(1,—1) (see Fig. . Let D((a,b) — (c,d) { R) denote the number of such
generalized Dyck paths that start at (a,b), end at (c,d), and satisfy certain
restrictions R.

In our setting, we certainly have the restriction y > 1 to avoid that the
path leaves the n x n array through its bottom side. For the upper side, we
have to allow the path to leave the square a little bit, in order to enable 0’s
to appear in the top row, but the path must not go above n+2 (see the right
part of Fig. . For example, to compute e,, for odd n, we add up

D((l,yl)—>(n,y2) ‘ 1 §y§n+2)

foryy = 1,3,...,n+2and y, = 1,3,...,n + 2, and similarly for even n,
and analogously for o,,. Since the paths are restricted to a rectangle which is
higher than wide, no path could ever violate the lower and upper restriction
at the same time. Hence we can rewrite

D((1,y1) = (n,y) | 1 <y <n+2)

_ D((1791)—>(n7y2)|921)7 y1+y2 <n+1,
D((1,41) = (n,32) | y <n+2), otherwise.

24


https://oeis.org/A188818

By mirroring horizontally, we obtain
D((L?Jl) — (N, 2) ‘ y < n—1—2) = D((la”+3—y1) — (n,n+3—1y2) ’ y > 1)-

By combining equal cases and by substituting y; — 2k+1 and ys — n+2—2¢,
we can write

en = <D((1,2k—|—1)—>(n,n+2—2k3)|y21)
k=0
L=
+2- Z D((1,2k+1)—>(n,n+2—2£)\yz1))

l=k+1

and a similar expression for o,. The generalized Dyck paths are counted by
a difference of binomial coefficients,

D((z1,11) = (2,1) | y > 1)

gl SRR R CTF)
%(5172—561—1‘3/2—3/1) %(552—5131‘1‘3/24‘2/1) 7

which follows from [20, Theorem 10.3.1], after the Dyck paths have been
translated to simple lattice paths via the substitution (z,y) — ((x +y —
2)/2, (x —y)/2) for even points, or (z,y) = ((z+y—1)/2,(x —y+1)/2) in
the case of odd points. We insert this closed form expression for D, simplify
a bit, and end up with the following expressions for e, and o,:

|25 1)

e () (AT ),

k=0 f=k+1
1zl 5]
n—1 n—1
n:2n—2 2 B |
i " kZ:Oé:kJrl((n_k_g_l) (n—l—k—f—i—l))

Creative telescoping delivers provably correct recurrences for e,, and o,,, which
by closure properties can be combined to a recurrence for a,. Since the
corresponding order-42 operator is a left multiple of our guessed order-5
operator, we have established the correctness of our guess.

Theorem 9 A188818 is D-finite and satisfies a recurrence of order 5 and
degree 10.
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4.4 A306322

Here we count n x n integer matrices ((1m;;))7,—; with m;; = 0 and m,, , = 2,
and all rows, columns, and falling diagonals weakly monotonic without jumps
of 2. An example for n = 7 is given by

0/0/0]0J0]0]0
0/0[0]0J0]0]1
0/0j01 1|11
0Oj0jOJT 111
0/0/0|1]|2]2]2
001 ]1]2]2]2
0]1[1]2]2]2]2

The key to recognizing this sequence as D-finite is hidden in the OEIS-entry
of the bivariate sequence A323846, which is defined analogously for a k x n
matrix. It is remarked there that the problem goes back to Knuth [15] and
that the labels 0, 1, and 2 divide the matrix into three connected regions,
so that counting the number of matrices is equivalent to counting pairs of
non-intersecting lattice walks from the lower left to the upper right corner.
It is well-known that such pairs of lattice walks are counted by the Narayana
numbers, but that is not quite the final answer. Two adjustments need to
be made: (1) there must be at least one 0 in the top-left corner and at least
one 2 in the bottom-right corner, and (2) the walk-pairs are not required to
start and end in the corners.

We know that IV; ; = Zﬂ%l (i+i_1) (”:ﬂ Il) is the number of non-intersecting
walk-pairs in an ¢ X 7 board, and that (’Jl”) is the total number of walks in
such a board. Therefore

S (wa- () - ()

is the number of walk-pairs of the following form:

26


https://oeis.org/A306322
https://oeis.org/A323846

excluding the walk-pairs where the upper walk passes through the upper-left
corner (accounted for by the term (Zﬁ 12)) as well as the walk-pairs where the
lower walk passes through the lower-right corner (accounted for by the term
(2:); the 1 accounts for the doubly excluded walk-pair where the upper walk
passes through the top-left corner and the lower walk through the lower-right
corner).

The same expression also counts the walks of the following form, with the

analogous exceptions removed:

n

Taking both cases together, we count the cases i = 7 = n twice, so we
altogether only have

(- (0707) - G ) - (23 1)

such walk-pairs. We also have to take into account walk-pairs of the following
form:

n n

In both cases, their number is > 7" "> 7" " N;_;,, where the boundaries

of the sum are chosen so that we do not count anything that was already
counted before. In conclusion, we find the expression

(S0 (1)) B )

ij=1 i=1 j=i+1
9
_ (Nm _ 2( n) + 1)
n
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for the nth term of A306322. Clearly this is D-finite.

Using
- (z—l—j—Q) (Qn) )
Z 71— 1 \n
2,7=1
and
n—1 n—1 n n—j—1

the expression can be simplified to

n n n—1
2> Y Ny +2Z(n—j - 1)Nj,n—2<2:> — Npn +3

j=1 i=1

=2) "> "N, +2Z —j—1)N —2(n)+Nn,n+3

j=1 i=1
n n 2

— 2Z<ZNZ~J +(n—j— 1)Nj,n) ~ 2<:> + Npp + 3.
j=1 Ni=1

The HolonomicFunctions package [16] effortlessly obtains for this expression
an operator of order 12 and degree 87 that contains the guessed recurrence
as right factor.

Theorem 10 A306322 is D-finite and satisfies a recurrence of order 4 and
degree 14.

5 Further Examples

5.1 |A195806 and A216940

For the sequence A195806, we count triangular arrays of size 5 whose entries
are chosen from {0,...,n} in such a way that all rows and diagonals having
the same length have the same sums, and with 0 assigned to the corners:
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0

C2,1|C2,2

C3,1|C32(C33

C41|C42(C4,3(Csa

0 [cs2|cs3|c5a| O

The specification of this sequence can be easily translated into a system of
linear inequalities: the nth term of the sequence is precisely the number of
integer solutions of the following equations and inequalities:

0<¢,;<n foralli,yj,

Co1+ Coo =Ca1 + C50=C54+ Cyu,

C31 T C32+C33=1C31+Ca2+C53=C33+Cq3+C53,

€41+ Cap+Ca3+C44 =Coo+C32+Ca2+C50=0Co1+C32+ Ca3+ C54,

Coq1+C31+Ci1 =Cs52+C53+ C54=Co2+C33+ Cayq.

Partition analysis provides theory and algorithms for dealing with such sys-
tems. From the theory, which has its roots in the early 20th century [21],
it follows immediately that the sequence A195806 is a quasipolynomial. In
particular, it must be D-finite. With the associated algorithms [I], it is pos-
sible to compute the quasipolynomial explicitly, at least in principle. With
the implementations we had available, the computation did not complete in a
reasonable amount of time. However, the recurrence found by our LLL-based
guesser suggests the following expression.

Conjecture 11 If (a,) denotes the sequence A195806, then

1
an = ——(130n° + 1560n° + 8125n™ + 23400n°)

1296
[ 40788n2 + 42768n + 20736, if n = 0 mod 6
40692n? + 42128n + 20045, if n =1 mod 6
1 40788n2 4 42256n + 19712,  if n = 2 mod 6
1296 | 40788n? + 42768n + 20493, ifn =3 mod 6
40692n? + 42128n + 20288, if n = 4 mod 6
40788n? + 422561 + 19496, if n =5 mod 6
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The sequence A216940 is quite similar. Here we count hexagonal arrays
of size 4 filled with elements of {0,...,n} in such a way that the entries are
nondecreasing towards east, south west, and south east.

€03 | C13 | C23 | C33

Co2 | C12 | C22 | C32 | C42

Co1 | C1,1 | C21 | €31 | C41 | C51

Co0 | C1,0 | €20 | €30 | C40 | C5,0 | C6,0

Co,—1|C1,—-1|C2,—1|C3,—1|C4,—1|C5,—1

Co,—2|C1,-2|C2,—2|C3 —2|C4,—2

€0,—3|C1,-3|C2,—-3|C3,-3

Again, the specification can be easily translated into a system of linear in-
equalities, so it follows immediately that the sequence is a quasipolynomial
and in particular D-finite. Again, we were not able to derive an expression
by a rigorous computation based on partition analysis, but we had no trouble
to find a solution from our guessed recurrence. In fact, it appears that the
result is not only a quasipolynomial but a polynomial.

Conjecture 12 If (a,) denotes the sequence A216940, then

an = (n 4 1)®(n + 6)>(n + 7)(74384146n>° + 104137804400
+ 6945804740221 + 29345762188932n'7 4 8808567901356031.
+ 19969728998781072n" + 354853893929158096n'
+ 5062226797216352960n'% + 58900361433618244860n '
+ 564694034848365996336n ' + 4487557575514810132362n°
+ 29630015361661371290844n° + 162382123713323392711687n°
+ 735273283907306553706472n" + 2726904840964417033376520n°
+ 8166353315859794719296864n° + 19314394347459920710102704n*
4 34829846371335010335540480n° + 45137854540680193956153600n°
4 37557333457279933473792000n + 15118483615575730790400000)
/221424599279703105635713957232640000000.

30


https://oeis.org/A216940
https://oeis.org/A216940

Incidentally, the degree of this polynomial matches the number of terms that
were given in the OEIS.

Although we were not able to prove that our guessed recurrences are
correct, partition analysis implies that the sequences are quasi-polynomials,
and are therefore D-finite.

Theorem 13 A195806 and A216940 are D-finite.

5.2 A194478

For this sequence, we consider a triangular grid of varying size, and the

question is how many ways there are to arrange 6 indistinguishable points

on it in such a way that no three points are in the same row or diagonal.
For n =5, an example for such an arrangement is

The nth term of the sequence |A194478 is the number of such arrangements
for a triangle of size n. The sequence is the 6th column of the bivariate
sequence A194480, where guessed polynomial expressions are given for the
first five columns. According to our guessed recurrence, the 6th column is
not a polynomial but the quasipolynomial

1
—(=1)"(2n — 7)(n* — 1
o5~ @n = D7 =T+ 18) + ooy

+1274n° 4 26089n® — 1288101 + 175693n° + 205366n° — 810796n*
+ 601328n° 4 354172n% — 582180n + 114660).

(Tn'? + 42n'' — 945n1°

Note that the degree and the leading coefficient of this quasipolynomial are
consistent with the degrees and leading coefficients of the guessed polynomi-
als for the earlier columns.

We prove the correctness of the above expression using the principle of
inclusion /exclusion. Let a”(n,k) denote the number of ways to select k
places from a triangle of size n in such a way that at least ¢ lines (rows or
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diagonals) contain three or more selected places, counted with multiplicities.
The number of interest is then

a(n, k) = aO(n, k) —aV(n, k) + a®P(n, k) —a®(n, k) £--- .

We have a®(n, k) = ((ngl)) = %" + O(n®*1). Next, for each i €
{1,...,n} there are altogether three lines of length ¢, and for each of them

. n+1)_ -
there are (;) ways to select j positions on it, and (( 137)3 Z) ways to choose

k — 7 positions in the remaining triangle. Thus

6 =n i (n+1) .
=335 ()0 7)
=3 im1 ™ k—J

In order to count how many ways there are to have at least two lines
with three selected positions, we distinguish three cases. In case 1, the two
lines have the same orientation (i.e., they are parallel). Restricting now for
simplicity to k = 6, we then have to select three places on each line, which
can be done in 3" | Z;;ll (:) (3) many ways. In case 2, the two lines have
different orientation (i.e., they are not parallel), but they have no intersection
point. This happens when the lengths of the lines add up to at most n, so
there are 337 | 37771 (3)(3) such arrangements. In case 3, we have two
lines that do intersect. This case has two subcases, depending on whether
the intersection point is selected or not. If it is selected, only five positions
are required to be on the two lines and the sixth position can be selected
arbitrarily from the remaining triangle (either on none of the lines or on the

first line or on the second line). This makes

N« i—W\ G-\ —i—j+1
2 2 ()00
=1 j=n—i+1
1—1\[7—1 1—1\ (7 —1
()02 -(0)05)
possibilities in this case. Finally, there are

2y ()04

i=1 j=n—i+1
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arrangements where the two lines intersect but the intersection point is not
among the selected positions. Altogether,

0@ (n,6) = Ginzi (;) (‘;) +3iz:;j:nz";ﬂ (z;l) (j R 1)

i=1 j=1

SR i—WN\ G-\ /(") —i—j+1
3 2
=2 2 ()00
i=1 j=n—i+1
1—1\ [(j—1 1—1\/j—1

(5)02)-()05)
If there are three lines with at least three selected positions, then, as there
are altogether only six selected positions, three of them must belong to two
lines. In particular, the three lines must have pairwise distinct orientation,

and they must not intersect in the same position. Then each line contains
two intersection points and one additional selected position. This makes

n n 2n—(i+j) n
aP(n,6)=>" > (i—2)(j—2)< PN EIE (5—2))
)

i=3 j=n—i+l {=n—min(i,5)+1 0=2n+2—(i+j
Since a(™ (n,6) = 0 for m > 4, we have
an = a(n,6) = a@(n,6) — a(n,6) + a?(n,6) — a®(n,6),

and while this is an expression of intimidating length, it must be observed
that all the lower arguments of the binomials are explicit integers, so the
sums are in fact just polynomial sums. It is the min(é, j) appearing in one of
the summation boundaries in the expression for a® (n, 6) which is responsible
for the fact that the a, is not a polynomial but only a quasipolynomial.

Theorem 14 If (a,) denotes the sequence A194478|, then

1
= —(—1)"2n —7)(n* - 1
o5V (20 = )7 =T+ 13) + oo

+ 1274n° + 26089n® — 128810n" + 175693n° + 205366n° — 810796n*
+ 601328n> + 354172n% — 582180n + 114660).

(Tn'? + 42n't — 945n1°

an
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6 Conjectures

6.1 A215570

Now we want to count the number of permutations of n copies of {1,...,5},
as in Sect. [3.1 but with a more complicated condition: every partial sum
is at most the same partial sum averaged over all permutations. In other
words, the kth partial sum of the permutation must not exceed 3k, because
the average (1 +2 43+ 4+ 5)/5 equals 3.

The OEIS displays a dynamic programming code for enumerating such
permutations. For fixed integer n, let by 4 5. denote the number of permu-
tations of length 5n —v — --- — z with n — v many 1’s, n —w many 2’s, etc.,
and satisfying the partial-sums condition. This means that still v many 1’s,
w many 2’s, etc. have to be appended, to turn them into permutations of
the desired form. From the values of v, ..., z one can deduce which numbers
are allowed to be appended next, yielding a set of rules to compute the five-
dimensional sequence by, 4y . recursively. For example, b320 14 means that
one has to put the total amount of 3-1+2-2+1-4+4-5= 31 onto the
remaining 3 + 2 + 0 + 1 + 4 = 10 places, which means that we can exceed
the average of 3 by at most 31 — 310 = 1. Hence, the number 5 must be
excluded, as well as the number 3 (because the third index equals 0), and we
get

b3.2,0,1,4 = b220,1,4 + 031,014 + 032004

Finally, then nth sequence term a, is computed by applying this rule re-
cursively to by, nn,n until the termination condition by 0,00 = 1 is reached.
This procedure runs reasonably fast, by caching intermediate values, but has
high memory consumption. Computing the first 51 terms (which is approx-
imately the amount of data given in the OEIS) took about 2.5 hours and
required 60 GB of memory. Obviously, more terms could only be obtained at
a significant computational cost.

The above transition rules can equivalently be encoded in a transfer ma-
trix. The states are given by the possible margins one has to remember
when appending new numbers. In the worst case, where the permutation
starts with all 1’s and 2’s, the margin can go up to 3n, and thus we get a
(3n + 1) x (3n + 1) matrix. As in Sect. [3, we have to introduce catalytic
variables x; for recording how often the number ¢ has occurred. This way
we can obtain the values a, with less memory consumption, but the timing
is much longer (21 hours for the first 51 terms). The transfer matrix is a
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Toeplitz matrix of bandwidth 2:

T3 T4 1 0 -
Lo T3 T4 1

M = 1 g T3 X4 '
0 1 T2 T3 '

Can we now conclude that A215570 is D-finite and derive a corresponding
recurrence? No, unfortunately not. Like already seen in the example of
Sect. [3.3] the matrix here does not have a fixed dimension. For fixed n,
the same (3n + 1) x (3n + 1) matrix can be used to compute all the values
ap, - - ., a,, but not beyond. Hence, we leave our guessed recurrence as a
conjecture and invite the reader to prove that it is correct. We note that the
recurrence becomes simpler when we consider a related sequence, that differs
from the original one by a hypergeometric factor.

Conjecture 15 If (a,) denotes the sequence A215570 then for the auxiliary

n!3(n+1)1?
(5n)!

3(3n + 8)(3n + 10)(65n° + 398n* + 781n + 496)dn 3

— 4(910n° 4 11032n* + 520470 + 119686n> + 1343651 + 58980)d,, 42
+ (2015n° + 24428n* + 1143870 + 258294n? + 281088n + 118368)d, 1
—2(n+ 1)(n + 2)(65n°* + 593n* + 1772n + 1740)a,, = 0.

The OEIS also has related entries where n copies of {1, ..., m} are consid-
ered, the above discussion referring to the special case m = 5. Form = 1,2, 3,
the resulting sequences are D-finite (in fact, hypergeometric). For m = 4
(A215562), there are 134 known terms, but surprisingly they are not suf-
ficient for guessing a recurrence, even not with LLL-based guessing. The
relevant average in this case is %1(1 +24+3+4) = g, which means that the
transfer matrix needs to be twice as big as expected, because the margins
have to be considered in steps of % Equivalently, one can use two different
transfer matrices, which are multiplied in turn, depending on whether an
even or odd position is filled. This somewhat explains why the case m =4 is
harder than m = 5. In addition, the sequence terms have much fewer small
integer factors, and thus it seems unlikely that transforming the sequence
with a hypergeometric factor would simplify the guessing problem.

It remains an open problem to find a provably correct recurrence equation

satisfied by the sequence A215562.

sequence Q, := a, we have
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6.2 |A339987

This sequence is defined as the number of labeled graphs on 2n vertices that
share the same degree sequence as any unrooted binary tree on 2n vertices.
This means that n — 1 vertices must have degree 3 and the remaining n + 1
vertices must have degree 1. For example, for n = 4, there are only the
following two unlabeled graphs with this property:

O——O

The first graph can be labeled in 8 - (;) -5 (;1) = 5040 many ways, and the

second can be labeled in (2) -5-4 -3 = 3360 many ways. Consequently, we
have a4 = 8400.

We found a recurrence for the sequence (a,) of order 5 with polynomial
coefficients of degree 10. Its polynomial coefficients contain several low-
degree factors, which provides some evidence in favor of the recurrence. It

also suggests to write a,, = %ﬂ(g)”*lén for some other auxiliary sequence

(Gn,). The recurrence for (a,) translates into a recurrence for (a,) which also
has order 5 but polynomial coefficients of lower degree.

Conjecture 16 If (a,) denotes the sequence A339987 and we set a, =
an/(%ﬁ(g)”_l), then
1024(n + 3)(328n® + 4284n? + 18428n + 26061)a,,
— 128(2624n* 4 41160n> + 2371961 + 59373671 + 543195)d,,41
— 128(2952n° + 55612n* + 412236n° + 1501823n
+ 26867611 + 1886148)d, 12
+ 32(3936n° + 75352n" + 568428n° + 2110814n>
+ 3855951n + 2769669)a,, 3
— 4(2624n° + 55592n* + 460156n° + 1859392n>
+ 3664683n + 2813931)dy 14
+ 3(n + 5)(328n° + 3300n* + 10844n + 11589)d,,45 = 0.
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Observe that the cubic factor in the coefficient of a,, can be obtained from
the cubic factor in the coefficient of a,.,5 by setting n to n + 1. This is
another property that we would not expect to encounter on a wrongly guessed
recurrence.

According to Maple, the linear operator corresponding to the recurrence
for (a,) is irreducible. Experimentally, we find the asymptotic expansion

o)

o 32)n<1 7, 55023 _, 13563843

Zoenl(22 L 19905025
an ~ el 256" 131072 33554432

for a constant

¢ = 0.7269505475849839203724738433453909726988076_
_083835242155944045267221957561211243532139 . . .

6.3 A269021

Sequences related to pattern avoiding permutations have been intensively
studied [2§]. In this context, some sequences are known to be D-finite, others
are known not to be D-finite, and there are some for which the status is open.
A prominent example is the sequence of 1324-avoiders (A061552), of which
only 50 terms are known [5]. We have not found any recurrence candidate
based on these terms, and empirical arguments stated in [6] suggest that the
sequence is more likely not D-finite than D-finite.

It is known [, 2] that for every fixed k, the number of permutations of
length n avoiding the pattern 123 - - - k is D-finite as a sequence in n. However,
this result has no immediate implications on sequences we obtain when n and
k are coupled. For example, the sequence A269021 is defined as the number
of permutations of length 2n containing the pattern 123---n. (Obviously,
counting permutations that do contain a given pattern is as easy or difficult
as counting permutations that don’t.) From the 42 terms given in the OEIS,
we were able to detect a recurrence of order 4 and degree 21. This recurrence
has the hypergeometric term (n — 1)(2n)! among its solutions.

Conjecture 17 If (a,) denotes the sequence A269021, and we set a, =
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a,/(2n)!, then

(—64n'® — 1968n° — 26156n° — 198469n" — 952323n° — 3012795n°
— 63338690 — 8663374n> — 7264534n> — 3266000n — 549760)d,,
+ (64n" + 2672n" + 49788n'" + 545913n'° + 3917758n" + 19359535n°
+ 67385886n" 4 165789363n° + 284054698n° 4 3258460051
+ 22952655403 + 78563984n2 — 487964n — 5543040)d,11
+ (=512n"® — 21568n'* — 419248n" — 4969164n'? — 39928763n '
— 228837227n'° — 9590686721 — 2966908118n® — 675309492977
— 1111877112115 — 12741784568n° — 9313604242n* — 327171159613
+ 56256913602 + 9461585121 + 250467360) a2
+2(n + 3)(512n'% 4 26752n'° + 6248000 + 8677944n' + 80260596n 2
+ 523718876n'! 4 2488583381n'Y + 8747566435n° + 22820793074n°
+ 43766004538n" + 60004107039n° + 55047935941n° + 27672902302n*
— 77871987003 — 10812498240n% — 6360099840n — 1300242000)d,,+ 3
—12(n +4)*(n +3)(2n + 7)*(3n + 8)(3n + 10)(64n'° + 1328n° + 11324n°
+ 52389n" + 143536n° + 233810n° + 204716n* 4 48699n° — 68928n>
— 612780 — 15900)é,, 14 = 0.

6.4 Al181198 and A181199

We find a recurrence of order 2 and degree 9 for the sequence A181198 based
on the 27 terms that were given in the database, but in this instance we real-
ized that this is not too impressive a discovery because it is easy to generate
enough further terms that LA-based guessing can find the recurrence.

The sequence is defined as the number of (4 x n)-matrices filled with
the numbers 1,...,4n in such a way that all rows, columns, diagonals, and
antidiagonals (downwards) are increasing. An example for n =4 is

112134
516 | 7|8
9 |10 12| 14
13115 16

1

—_

Here is a way to count such matrices efficiently. Assume that we fill the 4 x n
array with the numbers 1,... 4n in that order. Then at each intermediate
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step the filled cells must form a Young diagram (so that the condition of
increasing values row- and column-wise is satisfied), plus the extra condition
that these Young diagrams must not have two rows of equal length, unless
these have length n (that is to ensure the antidiagonally-increasing condi-
tion). We need not care about the diagonally-increasing condition, as this
one is automatically implied by the first two. We want to count the number
of ways how to transform the empty Young diagram (0,0, 0,0) into the rect-
angle (n,n,n,n), according to the above rules. Let us encode the situation
as a formal sum of terms c - x5;,,, which transport the information that
there have been ¢ ways to produce the Young diagram corresponding to the
partition (s,¢,u,v). Then adding a box to the diagram corresponds to the
application of the rule

Ts tu,w — [S < n] * Ls41,tu,w +
[t< s—l\/t:n—l] “Tspi1uw T
u<t—1Vu=n—1] Tstu10+
[

v<u—1Vo=n—1] Tsrypt1s
where [P] denotes the Iverson bracket. For example,

5320 — 6320 T T5420 T L5321,

assuming that n > 5. In order to compute a,,, we start with the expression
%0,0,0,0, then apply the above rule 4n times (i.e., in each of the 4n rounds we
apply it to each occurrence of x5, ), and we will end up with the expression
AnTnnnn- An implementation in Mathematica takes about 25 minutes to get
the first 100 terms of the sequence. This is more than enough to find the
recurrence with LA-based guessing.

The guessed recurrence suggests a closed form expression.

Conjecture 18 If (a,) denotes the sequence A181198, then for n > 1 we
have

(=64)"(n - 1)(=3)*"(5)"
4(3n)!

. (_1 * 325 = 1)1{(15141);((72]{; - 11))2(% T (2:) (k i %))
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As an example for guessing with little data, the related sequence A181199
is more interesting. It is defined in the same way as A181198, just with (5xn)-
matrices instead of (4 x n)-matrices. The OEIS listed only 26 terms, which
was not enough for the LLL-based guesser to find any recurrence. However,
by the procedure outlined above, we were able to produce 60 terms, and
this is more than enough for the LLL-based guesser to detect a convincing
recurrence of order 3 and degree 24. The LA-based guesser would need more
than 100 terms to find this recurrence, and with our implementation it takes
more than 14 hours to produce them.

According to Maple, the operator corresponding to the recurrence admits
a factorization as a product of three operators of order 1. This factorization
suggests again an explicit expression for the sequence.

Conjecture 19 If (a,) denotes the sequence A181199, then

97 =4 BE)! i (30)!
an=1= 7 D (1) ulk) (3(1«)!3{12 2_(=1)w() (z'!3)

i=1
where

u(k) = 8 (25216k° + 9888k" — 14496k° + 11208k + 23832k + 7383k

— 1522k% — 939k — 90) /((2k — 1)(4k — 1)(3k + 1)*(4k + 1)),
v(i) = ((3i + 1)(3i + 2)(4i + 3)(137855872i"" + 8609696967 '

4 20470368567° + 20325872744 — 24192441:7 — 18940611667°

— 1671661480:° — 524330624i" + 36004789:° 4 62751860:°

+ 138656047 + 927360))

J((+1)%(i +2)*(2i — 1)(20 4+ 1)(2i + 3)(252164° + 9888i" — 14496

+ 112084 4 23832i* + 7383i% — 1522:% — 939 — 90)(252164°

+ 211616i" + 760768:° 4 15439764° + 1973632i* + 16830474

+ 971955i% + 353502i 4 60480)).

6.5 A181280

For every n € N, the nth term of this sequence is defined as the number of
matrices M € Zy*™ with the following properties:
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e The rows of M, read as bit strings, are lexicographically strictly in-
creasing.

e The rows of MM € Z3*, read as bit strings, are lexicographically
strictly decreasing.

The OEIS entry contains the following example for n = 5:

= MM' =

)

1
0
1
1

_ o O O
_— o O
O = O =
SO O =
— == O
O = = O
o O = O

The recurrence we found for this sequence suggests the following closed form
expression for the sequence.

Conjecture 20 If (a,) denotes the sequence A181280, then for n > 4 we
have

an, = $2*"71(6n° — 2190 + 820) — $2"7(3n 4 32) — B2 (—1)"2*" 1 4 24

— 1(=1)"2*" " (13n — 164) + £2°"7(288n — 3473).

6.6 A253217

This sequence has a somewhat complicated definition. Its nth term is the
number of ways to fill an n x n array in such a way with nonnegative integers
that the following conditions are satisfied:

e The entry at position (1, 1) is 0 and the entry at position (n,n) is n—3.

e The entry at each position (i, j) is either equal to or one more than the
entries at positions (i — 1,7), (i,5 — 1), and (i — 1,5 — 1).

e The entry at each position (i, j) belongs to {max(i,j) — 2, max(i, j) —
1, max(i, j) }

An example for n = 8 is the array
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=R WO
QY WD~
QY | | | &~

GO | W W W W w
Ot Ot O O O Ot O] O
| Ot Ot Ot O O] O] O

QY O x| W W NN DN

OO | W W NN~

2195 2

The sequence A253217 is the diagonal of the bivariate sequence A253223,
where the counting problem is considered more generally for rectangular
arrays. In the entry for this bivariate sequence, it is conjectured that all
rows and columns are ultimately quadratic polynomials.

Conjecture 21 If (a,) denotes the sequence A253217, then

32(n + 1)(2n + 1)*(1575n° + 21285n° + 117954n" + 343020n°
+ 551943n? + 465785n + 161046)a,,

— 8(121275n° + 1933470n® 4 13267683n" 4 51280818n° + 122556360n°
+ 1868666861 + 1805743350 + 105734340n* + 33718283n
+ 4443102) @y 41

+ 2(294525n° 4 4763070n° + 33170868n" + 130145646n° + 315713355n°
+ 488415476n" + 4784643801 + 283626704n” + 913785360
+ 12137328) a0

+ (2945251 + 4668570n° + 31877118n" + 122735586n° + 292620525n°
+ 445804136n" + 431097970n° + 252913504n° + 80866406n
4 10688508)a, 43

— (12127507 + 1961820n° + 13655808n" + 53503836n° + 129484209n°
+199650088n" + 194784258n° + 1149483000 + 36871922n
+ 4877748) 14

+2(2n + 7)(1575n° + 11835n° + 35154n" + 52554n® + 41382n°
+ 16118n + 2428)(n + 3)%a,45 = 0.

The conjectured recurrence has the exact solutions 1, (—2)", and 4" and
two further solutions whose asymptotic expansions have the dominant terms
n~'2(1" and n='16", respectively. For the generating function Y o ; a,z",
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we found a convincing differential equation of order 4 and degree 15; the cor-
responding differential operator L can be factored as a product L = LyLoLs
where L, has order 2 and Ly, L3 have order 1.

6.7 A098926

The nth term of this sequence is defined as the permanent of the (n + 2) x
(n+2) matrix where the entry at position (i, j) is zero if (4, j) belongs to the
path that starts at (1,1) and alternatingly moves two steps to the right and
two steps down. All other entries are 1. For example, the 8th term of the
sequence is the permanent of the matrix

=}
=}

e e e e el
e e e e e =)
— === OO

=R R RO
— === OO O
_ = = = O =
_ == O OO
— == O = = e
— O OO R = =
e R R R S e e e

Conjecture 22 [f (a,) denotes the sequence A098926, then

n(n +1)(3n° + 95n* + 1113n® + 5983n? + 14907n + 14025)a,,

— (n+ 1)(13n* + 388n° + 3717n* + 13424n + 16865)a,, 41

— (90" + 294n5 + 3677n® + 22722n* + 76591n® 4 146304n?
+ 157554n + 81720) a1

— (n® — 103n" — 2125n° — 14395n> — 38283n — 32845)a, .3

+ (9n" 4 31805 + 4409n° + 30672n" + 11387903 + 219268n>
+ 1867881 + 35600) a4

+ (1705 + 445n* + 425303 + 17161n> + 24893n + 1765) a5

— (3n" 4 122n° + 2039n° + 18038n* + 90333n° + 252920n>
+ 364438n + 211080)an 16

— (3n° 4 83n* 4 833n® + 3663n? + 6967n + 4465)a, 47

+ (3n° + 80n* 4+ 763n> + 3184n? 4 5915n + 4080)a,4s = 0.
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Besides the recurrence stated above, we also found a convincing differen-
tial equation of order 3 and degree 19 for which the corresponding differential
operator L can be written as a product of three operators of order 1. This
means that L can be solved in terms of d’Alembertian solutions. In fact, it
appears that the generating function ) ° ja,z" can be written as

2

Cxx(g_v iz)Q eXP(mEEij—llﬂ

< J e (g g) [ e (s e

Y =3yt 2 -2 —y+ 1
yy+ Dy -2
22(2 —2)(2% — 227 — 1226 42825 — 102* — 2223 + 422 + 42 + 1)
(2 —1)%(25 — 324 + 223 — 222 — 2 + 1)2 ’

r(y)

s(z) =

and for a suitably chosen constant ¢ and suitably chosen constants of inte-
gration.

6.8 A164735

The Kaprekar map A151949 is defined as follows. Given an integer n, read it
as a string of (decimal) digits, without any leading zeros. Sort the characters
once in decreasing order and once in increasing order. Read these two strings
again as integers and subtract the smaller from the larger. The resulting
number is the image of n.

For example, n = 64308654 is mapped to

86654430 — 03445668 = 83208762

by this process, n = 83208762 is mapped to 88763220—02236788 = 86526432,
and n = 86526432 is mapped to 86654322 — 22345668 = 64308654. It
turns out that we have a cycle of length three: 64308654 — 83208762 —
86526432 — 64308654.

The sequence of interest is not the Kaprekar map itself, but a sequence
that counts the number of such cycles: The nth term of A164735 is defined
as the number of cycles of length three among all the integers with n decimal
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digits. For n = 8, there is no other cycle besides the one stated above, so the
8th term of |A164735 is 1.

The LLL-based guesser detected a recurrence of order 15 and degree 4
from the 70 terms listed in the OEIS. The recurrence can be solved in terms
of quasipolynomials, leading to the following conjecture:

Conjecture 23 If (a,) denotes the sequence A164735, then

3(243k° + 405k* + 35Kk% + 305K% — 318k +40),  n=18k,
k(729K — 405k® — 615k + 225k + 106), n=18k+1,
T20k5 + 1620k + T35k + 1320k — 684k + 40,  n=18k+2,
k(720K — T05K? + 136), n=18k+3,
3K (243Kk* + 675k + 515k + 565k — 118), n=18k+4,
k(729K + 405k — 615k2 — 225k + 106), n=18k+5,
3K (243k" + 810k3 + 845k + 790k + 32), n=18k+6,
3k(k + 1)(243K% + 27k — 142k + 12), n=18k+7,
1| 720k5 + 2835k* 4 3705K® + 3405k2 + 726k + 40,  n—18k+8,
U700 ) Bk(k + 1)(243K3 + 162k2 — 127k — 18), n=18k+9,
720k5 + 3240k* + 5055k + 4860k2 + 1636k + 160, n=18k+10,
Sk(k + 1)(243%3 + 297k? — 52k — 48), n=18k+11,
7T20k° + 3645k + 6585k + 6TO5k2 + 2026k + 400, n=18k+12,
3k(k + 1)(243k3 + 432Kk2 + 83k — 58), n=18k+13,
720k5 + 4050k* + 8205k% + 9270k2 + 4696k + 800, n=18k-+14,
3k(k + 1)(243k3 + 567k? + 278k — 28), n=18k+15,
3(k + 3)(243k* + 756k% + 11272 + 734k + 160),  n=18k-+16,
| 3k (k + 1)(243K% + T02k2 + 533k + 62), n=18k+17.

We are able to identify two patterns that yield numbers in Kaprekar 3-cycles.
Using word notation, i.e., 1* = 1111, the first one reads
Xonabede = 9°8mTI6m54m3b2m1209m e 7mbsm4egmod moe—t

(m,a,b > 0,c¢,d,e > 1). A direct calculation shows that the Kaprekar
map sends X,, g p.cde t0 X c—1bda+1.e, Whichis sent to X, 41 a+1,ce, Which
finally is sent back to X, 4pca.. Hence we have a 3-cycle, except if a + 1 =
¢ = d in which case we run into a l-cycle. The number X,, .44 has
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2a+b+c+d+e+ 1)+ 9m digits, and therefore m is forced to have the
same parity as n. For example, for odd n the number of 3-cycles is given by

%‘{X2Z+1,a,b,c,d,e ’0 < ¢ < Ln1817J7 a, b > 07 ¢, d,€ > 17

atb+ct+dt+e=""BE0 S(g+1=c=d)}

)

which indeed yields the polynomial expressions displayed above, and which
explains the period 18 of the conjectured quasi-polynomial. For even n we
can write down a similar expression, but that is not enough. There is a
second pattern,

Ype i= 6543210871654 (a,¢ >0, b > 1),

which produces only integers with an even number of digits. Again, it is
not difficult to see that each Y, . gives rise to a 3-cycle under the Kaprekar
map (but note that the other two members of each cycle are not of the form
Y. ). The only 3-cycle of 8-digit numbers mentioned above is generated
by Yo.1,0. For even n, the two patterns give the following number of 3-cycles:

i{Xavabeae |0 <<, 0,020, cde > 1,
atbtetdte="2 (at+1=c=d)}|
+‘{Ya,b,c ’ a,c >0, bZl,a+b+C:nT—6}"

As before, this produces the other half of the quasi-polynomial expression
that was conjectured above. While these considerations shed some light
on the occurrence of a complicated-looking quasi-polynomial of period 18,
they do not prove anything. In view of the number-theoretic flavor of the
construction, we could well imagine that the conjectured expression is only
valid until a certain (possibly large) limiting index n and then breaks down,
because further patterns for members of 3-cycles may appear. Among all
the conjectures stated in this paper, Conj. [23|is the one in which we believe
least.
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