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Transcendence Certificates for D-finite

Functions
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Although in theory we can decide whether a given D-finite function is transcen-

dental, transcendence proofs remain a challenge in practice. Typically, transcen-

dence is certified by checking certain incomplete sufficient conditions. In this paper

we propose an additional such condition which catches some cases on which other

tests fail.

1 Introduction

An algebraic function is a quantity y for which there are polynomials u0, . . . ,ud , not all zero,

such that

u0(x)+u1(x)y+ · · ·+ud(x)y
d = 0.

A D-finite function is a quantity y for which there are polynomials p0, . . . , pr, not all zero, such

that

p0(x)y+ p1(x)y
′+ · · ·+ pr(x)y

(r) = 0.

As recognized by Abel, every algebraic function is also D-finite, and it is not hard to construct

a differential equation from a known polynomial equation. The other direction is much more

difficult, as a given differential equation may or may not have any algebraic solutions.

The problem to decide for a given differential equation whether it admits only algebraic so-

lutions has received a lot of attention since the 19th century, when Schwarz, Klein, Fuchs and

others studied the problem for equations with r = 2 [12], but even this special case was not
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fully understood until Baldassari and Dwork [1] gave a complete decision procedure in 1979.

Only a year later, Singer [18] offered an algorithm that applies to equations of arbitrary order r.

His algorithm is, however, only of theoretical interest, as it relies on solving a nonlinear system

of algebraic equations whose number of variables is determined by a group-theoretic bound in-

volving the term (49r)r2

. This is far from feasible, even for r = 2. Kovacic’s algorithm [16]

can determine the presence of algebraic solutions in a more reasonable time for r = 2, but the

problem remains difficult for r ≥ 3.

If a differential equation has only algebraic solutions, their minimal polynomials are not diffi-

cult to find. One way is to compute a truncated power series solution of the differential equation

and then use linear algebra or Hermite-Padé approximation [2] to find a candidate annihilating

polynomial. From the first N terms of a series solution, we can reliably detect annihilating

polynomials of degrees dx,dy with (dx + 1)(dy + 1) < N. The correctness of such a candidate

can be checked by computing the differential equation satisfied by the solution of the candidate

equation and comparing it with the input equation. If they do not match, or if no candidate equa-

tion is found, repeat the procedure with a higher truncation order N and higher degrees dx,dy.

Eventually, the correct minimal polynomial will be found.

In Sect. 4 we give an alternative method which can decide for a given dy whether all solutions

are algebraic with a minimal polynomial of degree at most dy, regardless of the degree dx of

the polynomial coefficients of the minimal polynomial. This method has the advantage that dx

need not be guessed in advance, but it still requires to guess dy. We are thus led to the question

how we can detect with a reasonable amount of computation time that a differential equation

has at least one transcendental solution. There are indeed several things that are worth trying.

For example, if a differential equation has a logarithmic or an exponential singularity, it cannot

only have algebraic solutions. This test was applied for example in order to prove transcendence

of the generating function for Kreweras walks with interacting boundaries [8]. Another popular

test is to determine the asymptotic behaviour of the series coefficients of a solution of the differ-

ential equation. If it is not of the form φnnα with α ∈ Q \ {−1,−2,−3, . . .}, this also proves

the presence of a transcendental solution [11]. A third possibility is to use arbitrary precision

arithmetic [17, 15] to compute eigenvalues of monodromy matrices for the differential equation.

If there is an eigenvalue that is not a root of unity, there must be a transcendental solution. As

a fourth approach, we can investigate the p-curvature of the differential equation [5, 6] and re-

sort to a conjecture of Grothendieck according to which the p-curvature is zero for almost all

primes p if and only if the differential equation has only algebraic solutions. Another idea is

to try to prove transcendence via the criterion of Harris and Sibuya [13], which says that for a

D-finite function f , the reciprocal 1/ f is D-finite as well if and only if the logarithmic derivative

f ′/ f is algebraic. Finally, there are powerful criteria for certain special differential equations,

e.g., the criterion of Beukers and Heckman for testing algebraicity of a hypergeometric differen-

tial equation [3].

All these tests have limitations. The first three tests only provide a sufficient condition for

the existence of transcendental solutions, but there are equations with transcendental solutions

on which all three tests fail. A limitation of the p-curvature test is the quantifier “almost all”:

if we encounter a prime (or several primes) for which the p-curvature is nonzero, this is strong

evidence in favor of a transcendental solution, but there remains a small chance that the prime(s)

were just unlucky. The criterion of Harris and Sibuya reduces the problem of proving that f ′/ f
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is transcendental to the problem of proving that 1/ f is not D-finite, which is typically more

difficult. In fact, this criterion is more valuable in the other direction: to prove that 1/ f is not

D-finite, it suffices to prove that f ′/ f is not algebraic. The obvious limitation of the criterion of

Beukers and Heckman is that it only applies to hypergeometric functions.

In view of this situation, additional sufficient conditions for transcendental solutions that can

be tested with reasonable computational cost are of interest. Ideally, such tests should also pro-

vide some artifacts that can serve as witness for the existence of transcendental solutions. We

propose the term transcendence certificate for such artifacts. For example, a logarithmic or

exponential singularity can be viewed as such a transcendence certificate. Observe that the al-

gorithms of Kovacic and Singer mentioned earlier do not provide any transcendence certificates

but will just report “no algebraic solution” as output.

The purpose of the present paper is to introduce a transcendence certificate based on the

following classical fact about algebraic functions:

Proposition 1. [20, 4] Every non-constant algebraic function must have at least one pole.

With our new test, we are able to prove the existence of transcendental solutions for some equa-

tions that have no logarithmic singularities, no series solutions with illegal coefficient asymp-

totics, and whose monodromy matrices have just roots of unity as eigenvalues.

2 Preliminaries

Throughout this paper, let C be an algebraically closed field of characteristic zero, and let K =
C(x) denote the field of rational functions over C. A Puiseux series at ξ ∈ C is a series of

the form cn(x− ξ )n/q + cn+1(x− ξ )(n+1)/q + · · · with n ∈ Z, q ∈ N, and cn,cn+1, . . . ∈ C; we

write C(( (x− ξ )1/q )) for the field of all Puiseux series at ξ whose exponents have a common

denominator dividing q ∈ N. Similarly, a Puiseux series at ∞ is a series of the form cnx−n/q +
cn+1x−(n+1)/q + · · · = cn(x

−1)n/q + cn+1(x
−1)(n+1)/q + · · · ; the field of all Puiseux series at ∞ is

denoted by C((x−1/q)). In both cases, we call n/q the starting exponent of the series, provided

that cn 6= 0.

An algebraic function field E = K[y]/〈m〉 is a field extension of the rational function field K

of finite degree, where m is an irreducible polynomial in K[y]. For every ξ ∈ C ∪ {∞}, the

element y∈E can be identified with any of the degy(m) many roots of the minimal polynomial m

in the field of Puiseux series at ξ ; we call them the expansions of y at ξ .

A Puiseux series is said to be integral if its starting exponent is nonnegative, i.e., if the cor-

responding function does not have a pole at the expansion point. The element y of E is called

integral at ξ ∈ C∪{∞} if all its Puiseux series expansions at ξ are integral. In order to extend

the definition of integrality to other elements of E , note that for every expansion f of y we have

a field homomorphism h f : E →C(( (x−ξ )1/q )) (or h f : E →C((x−1/q)) if ξ = ∞) which maps

y to f . Now u ∈ E is called integral at ξ if for all expansions f of y the series h f (u) is integral.

The element u is called (globally) integral if it is integral at every ξ ∈C (but not necessarily at

infinity). The set of all integral elements of E forms a free C[x]-submodule of E , and a basis of

this module is called an integral basis of E . We say that an element of E is completely integral if
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it is integral at every ξ ∈C∪{∞}. According to Proposition 1, the completely integral elements

of E are precisely the elements of C.

Let D denote the usual derivation w.r.t. x, i.e., D( f ) = f ′, which turns K = C(x) or E =
C(x)[y]/〈m〉 into differential fields. An element c of a differential field F is called a constant

if D(c) = 0; these constants always form a subfield of F . A linear differential operator is an

expression of the form L= p0+ p1D+ · · ·+ prD
r with p0, . . . , pr ∈K. If pr 6= 0, we call ord(L)=

r = degD(L) the order of the operator. The operator L is called monic if pr = 1. The set of

all linear differential operators will be denoted by K[D]; it forms a non-commutative ring in

which the multiplication is governed by the Leibniz rule Dx = xD+ 1. An operator L is called

irreducible if it cannot be written as L = L1 · L2 with ord(L1) ≥ 1 and ord(L2) ≥ 1. Every

differential field F is a K[D]-left-module via the action

(p0 + p1D+ · · ·+ prD
r) · y := p0y+ p1D(y)+ · · ·+ prD

r(y).

An element y of a differential field F is called a solution of an operator L ∈ K[D] if L ·y = 0. The

set of all solutions of L in a differential field F is denoted by V (L). It is always a vector space

over the constant field of F and hence called the solution space of L. If the constant field of F

is C, then the dimension of V (L) in F is bounded by the order of L, but in general it is smaller.

We say that L has only algebraic solutions if there is a differential field E = K[y]/〈m〉 such that

the solution space V (L) in E has dimension ord(L). If L is an irreducible operator then either all

its solutions are algebraic or none of them (except for the zero solution) [18, Prop. 2.5].

If L = p0 + · · ·+ prD
r ∈ K[D] is an operator of order r, we call ξ ∈ C a singularity of L if it

is a pole of one of the rational functions p0/pr, . . . , pr−1/pr. The point ∞ is called a singularity

if, after the substitution x 7→ x−1, the origin 0 becomes a singularity. If ξ ∈ C ∪{∞} is not a

singularity of L, then L has r linearly independent Puiseux series solutions at ξ , and they are all

integral.

The notion of integrality for differential operators is defined in a similar way as discussed

above for algebraic field extensions E = K[y]/〈m〉. Throughout this paper, we consider only

operators which have a basis of Puiseux series solutions at every point ξ ∈ C ∪{∞}. For such

an operator L ∈ K[D], we have the module K[D]/〈L〉 where 〈L〉 denotes the left ideal {P ·L |
P ∈ K[D]}. Note that K[D]/〈L〉 is not a ring but only a (left) K[D]-module. In this module,

the equivalence class [1]L has the property L · [1]L = [L]L = [0]L, so [1]L can be considered as

a solution of L in K[D]/〈L〉, very much like the element y ∈ E is a root of m. Similar as for

algebraic function fields, we can associate [1]L ∈ K[D]/〈L〉 with any solution f of L in a Puiseux

series field C(( (x−ξ )1/q )) or C((x−1/q)). The association of [1]L with f extends to K[D]/〈L〉
by mapping an equivalence class [P]L to the series P · f . The notions of integrality can now be

defined like before:

• [P]L is called (locally) integral at some point ξ ∈ C ∪ {∞} if for every Puiseux series

solution f of L at ξ , the series P · f is integral.

• [P]L is called (globally) integral if it is locally integral at every point ξ ∈ C (but not

necessarily at ∞).

• [P]L is called completely integral if it is locally integral at every point ξ ∈C∪{∞}.
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Note for the second and third point that it suffices to consider points ξ that are singularities of

L or poles of some of the coefficients of P. For any fixed L and P, these are only finitely many.

Also recall that we restrict our attention to operators L which have a basis of Puiseux solutions,

so that the quantifier “for all Puiseux series solutions” in the definitions above is equivalent to

“for all solutions”.

The set of all integral elements in K[D]/〈L〉 forms a free C[x]-left-module, and a basis of this

module is called an integral basis of K[D]/〈L〉. An integral basis {w1, . . . ,wr} is called normal

at infinity if there are integers τ1, . . . ,τr ∈ Z such that {xτ1 w1, . . . ,x
τr wr} is a basis of the C(x)∞-

left-module of all elements of K[D]/〈L〉 which are integral at infinity. Here, C(x)∞ refers to the

ring of all rational functions u/v with degu ≤ degv. Integral bases which are normal at infinity

always exist, and they can be computed [14, 10].

Finally, we recall some fundamental facts about operators. The adjoint L∗ of an operator L ∈
K[D] is defined in such a way that for any two operators L,M ∈K[D]we have (L+M)∗= L∗+M∗

and (LM)∗ = M∗L∗. We have D∗ = −D and q∗ = q for all q ∈ K. Moreover, ord(L∗) = ord(L)
for every L ∈ K[D]. The least common left multiple of two operators L,M ∈ K[D], denoted by

lclm(L,M), is defined as the unique monic operator of lowest order which has both L and M

as right factor. Its key feature is that whenever f is a solution of L and g is a solution of M,

then f + g is a solution of lclm(L,M). For the efficient computation of the least common left

multiple, see [7]. There is a similar construction for multiplication. The symmetric product

L⊗M of two operators L,M ∈ K[D] is defined as the unique monic operator of lowest order

such that whenever f is a solution of L and g is a solution of M, then f g is a solution of L⊗M

(regardless of the differential field to which f and g belong). As a special case, the sth symmetric

power of an operator L ∈ K[D] is defined as L⊗s = L⊗·· ·⊗L. For the efficient computation of

the symmetric powers, see [9].

By construction, we have V (L) +V (M) ⊆ V (lclm(L,M)), and in general, the inclusion is

proper. However, if dimV (L) = ord(L) and dimV (M) = ord(M), then we have V (L)+V (M) =
V (lclm(L,M)), i.e., the least common multiple cannot have any extraneous solutions. Likewise,

if dimV (L) = ord(L) and dimV (M) = ord(M), the solution space of the symmetric product

L⊗M is generated by all products f g with f ∈V (L) and g ∈V (M). These facts were shown by

Singer [18] in the context of complex functions, and again using more abstract machinery in the

book of van der Put and Singer [19].

3 Pseudoconstants

Let L ∈ K[D] be a linear differential operator. As mentioned before, if L has a logarithmic or

exponential singularity, it follows immediately that L does not only have algebraic solutions and

we may view the singularity as a transcendence certificate. We continue to exclude this case from

consideration, i.e., we continue to assume that L has no logarithmic or exponential singularity at

any point in C∪{∞}. In other words, we assume that L has a basis of Puiseux series solutions

at every point.

Definition 2. Let L ∈ K[D], and let [P]L ∈ K[D]/〈L〉.

1. [P]L is called a constant if D · [P]L = [0]L;
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2. [P]L is called a pseudoconstant if [P]L is completely integral but not a constant.

We will say for short that “L has a [pseudo]constant” if K[D]/〈L〉 contains a [pseudo]constant.

Proposition 3. Let L ∈ K[D], and let [P]L ∈ K[D]/〈L〉. Let E be an extension of K such that the

solution space V (L) of L in E has dimension ord(L).

1. [P]L is a constant if and only if P · f is a constant for every f ∈V (L).

2. If [P]L is a nonzero constant and ord(P)< ord(L), then ord(P) = ord(L)−1.

3. The set of all constants forms a C-vector space of dimension at most ord(L).

Proof. 1. Clearly, if [P]L is a constant, then for all f ∈V (L), D · (P · f ) = (D · [P]L) · f = 0.

Conversely, let r be the order of L and P be the representative of order at most r− 1 of

[P]L. Assume that P · f is a constant for all f ∈V (L), i.e., D · (P · f ) = 0. This means that

V (L) ⊂ V (D ·P). Since V (D ·P) has dimension at most r and V (L) has dimension r, it

follows that V (L) = V (D ·P). This implies that L and D ·P are equal up to an invertible

factor in K, and therefore that D · [P]L = [D ·P]L = [0]L.

2. If ord(P) < ord(L)− 1, then ord(DP) < ord(L), so the assumption D · [P]L = [DP]L = 0

forces DP = 0, which in turn forces P = 0 in contradiction to the assumption that [P]L is

not zero.

3. It is clear that the constants form a C-vector space. In order to prove the bound on the

dimension, consider a P ∈ K[D] with ord(P) < ord(L) such that [P]L is a constant. Then

D · [P]L = [DP]L = 0, so there is a q ∈ K with DP = qL. It is clear that q is uniquely

determined and that the function which maps every constant [P]L to the corresponding

q is C-linear and injective. Now DP = qL implies (DP)∗ = (qL)∗, so P∗D∗ = L∗q∗, so

−P∗D = L∗q. Since 1 is a solution of the left hand side, it must be a solution of the right

hand side, so 0 = (L∗q) · 1 = L∗ · q, so q ∈V (L∗). We have thus constructed an injective

C-linear map from the space of all constants to the solution space of L∗ in K. Since the

dimension of the latter is at most ord(L), the claim follows.

If [P]L is a constant, then it is completely integral, but unlike in the case of algebraic functions,

the converse is not true in general. This means that pseudoconstants may exist.

Example 4. Let L = 3x(x2 − 1)D2 + 2(3x2 − 1)D. All its solutions are integral at every place

including infinity, therefore [1]L is completely integral. However, D · [1]L = [D]L 6= [0]L, so it is

not a constant. Alternatively, one can observe that L has a non-constant solution, and therefore

[1]L cannot be a constant. So [1]L is a pseudoconstant.

In view of Prop. 1, we can regard pseudoconstants as transcendence certificates.

Theorem 5. Let L ∈ K[D] be such that there exists a pseudoconstant [P]L ∈ K[D]/〈L〉. Then L

admits at least one transcendental solution.
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Proof. For a contradiction, assume that L has only algebraic solutions. Let E be an algebraic

extension of K such that the solution space V (L) in E has dimension ord(L). Since algebraic

functions are closed under application of linear operators, P · f is algebraic for all f ∈ V (L).
Since [P]L is completely integral, P · f does not have a pole at any ξ ∈C∪{∞}. By Prop. 1, this

implies that P · f is constant. Therefore, by Prop. 3, [P]L is a constant, which is a contradiction.

Example 6. Consider the operator

L =
(

x2 − x
)

D2 +
(

31
24

x− 5
6

)

D+ 1
48
,

annihilating the function x1/6(x− 1)13/24
2F1

(

7
8
, 5

6
; 7

6
;x
)

. The operator is irreducible, and there-

fore all its solutions have the same nature. By Schwarz’ classification and closure properties,

they must be transcendental, but let us ignore this argument for the sake of the example.

The singularities of the operator are 0, 1 and ∞, and a basis of solutions at each singularity is

given by

y0,1 = x1/6
(

1+ 1
12

x+O(x2)
)

y0,2 = 1+ 1
40

x+O(x2)

y1,1 = (x−1)13/24
(

1− 34
111

(x−1)+O((x−1)2)
)

y1,2 = 1− 1
22
(x−1)+O((x−1)2)

y∞,1 = (1/x)1/6
(

1+ 4
75
(1/x)+O((1/x)2)

)

y∞,2 = (1/x)7/8
(

1+ 7
184

(1/x)+O((1/x)2)
)

Therefore, [1]L is a pseudoconstant, and thus the operator L has no nonzero algebraic solution.

As noted in the introduction, we could also compute the monodromy matrices of L around 0,

1 and ∞. If one of them was not a root of unity, this would give another proof of transcendence.

However, numeric computations suggest that all eigenvalues are roots of unity in this example.

More precisely, the monodromy group around 0 is generated by two matrices M1 and M2 with

M3
1 =

(

1 0

0 1

)

±10−17

(

0 0

0 7.38±6.75i

)

and

M24
2 =

(

1 0

0 1

)

±10−13

(

1.45±1.42i 3.44±3.42i

0.758±0.757i 1.96±1.96i

)

At 1, the monodromy group is generated by two 6th roots of unity, and at ∞, by two 24th roots

of unity.

Example 7. Consider the operator

L = (x−1)3x3(x+1)3D3

+ 19
5
(x−1)2x2(x+1)2

(

x2 + 22069
9576

x− 195
152

)

D2

− 99
80
(x−1)x(x+1)

(

x4 − 117001919
37422

x3 − 105923
5346

x2 + 16795789
5346

x+ 205
66

)

D

− 9
20

x6 + 517319279
68040

x5 + 256382531
27216

x4 − 19723513
4320

x3 − 2560752251
272160

x2 − 828238469
272160

x− 3
32
.
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This operator has the singularities 0,1,−1,∞, with respective initial exponents

(0) − 1
8

− 3
4

−1

(1) 5
7

4
9

−2

(−1) 5171
630

3
8

− 2
3

(∞) 4
5

3
4

− 3
4

The operator is irreducible, and therefore all its solutions have the same nature. L has the pseu-

doconstant [P]L, with

P = (x+1)−6x3(x−1)2D2

+(x+1)−7x2(x−1)α(x)D

+(x+1)−8xβ (x),

where α(x) and β (x) are certain polynomials of degree 3 and 6 respectively, with coefficients in

Q. So all the solutions of L are transcendental.

For operators with at most 3 singularities, the nature of the solutions and the existence of

pseudoconstants are determined by the initial exponents of the solutions. Indeed, the operator is

then uniquely determined up to a scalar factor by its singularities and initial exponents. Changing

the position of the singularities is equivalent to applying a rational change of variables by a

Möbius transform, which preserves the nature of the solutions and the pseudoconstants.

This property does not hold for operators with more singularities, as the next example shows.

Example 8. Consider the operator

L = (x−2)3(x−1)3x3D3

+ 19
5
(x−2)2(x−1)2x2

(

x2 − 16547
9576

x+ 2420
1197

)

D2

+ 99
80
(x−2)(x−1)x

(

x4 + 8816399
112266

x3 − 8566381
37422

x2 + 7980386
56133

x− 3200
6237

)

D

− 9
20

x6 + 5640547
68040

x5 − 20050393
136080

x4 − 2904319
30240

x3 + 5167531
54432

x2 + 1144387
19440

x+ 320
63

.

It has the singularities 0,1,2,∞, with respective initial exponents:

(0) 5
7

4
9

−2

(1) 5171
630

3
8

− 2
3

(2) − 1
8

− 3
4

−1

(∞) 4
5

3
4

− 3
4

The initial exponents are the same as those in Example 7, but the position of the singularities

differ. Unlike the operator in Example 7, the operator L does not admit a pseudoconstant. We

do not know whether this operator has transcendental solutions.

There are at least two ways to search for pseudoconstants for a given L. The first one uses inte-

gral bases. It is shown in Lemma 8 of [10] that a basis of the C-vector space of all completely in-

tegral elements of K[D]/〈L〉 is given by {x jwi : i = 1, . . . ,r; j = 0, . . . ,τi } whenever {w1, . . . ,wr}
is an integral basis that is normal at infinity and τ1, . . . ,τr ∈ Z are such that {xτ1 w1, . . . ,x

τr wr} is

a local integral basis at infinity. This motivates the following algorithm.
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Algorithm 9. Input: L ∈ K[D]
Output: a pseudoconstant of L if there is one, otherwise ⊥.

1 Compute an integral basis w1, . . . ,wr of K[D]/〈L〉 which is normal at ∞, and the correspond-

ing τ1, . . . ,τr ∈ Z

2 If there are i ∈ {1, . . . ,r} and j ∈ {0, . . . ,τi} with [Dx jwi]L 6= 0, return such an x jwi

3 Otherwise, return ⊥

Theorem 10. Algorithm 9 is correct.

Proof. It is clear that the algorithm is correct if it does not return ⊥. It remains to show that L has

no pseudoconstant if the algorithm does return ⊥. In view of the remarks before the algorithm,

every completely integral element of K[D]/〈L〉, and thus in particular every pseudoconstant, is

a C-linear combination of the x jwi. But if all the x jwi were constants, then, since the constants

also form a C-vector space, so would be all their linear combinations. Therefore, if there are

pseudoconstants at all, there must be one among the x jwi.

An implementation of Algorithm 9 is available in the latest version of the SageMath package

ore_algebra1. Otherwise, in an environment where no functionality for computing integral

bases is available, we can use linear algebra to search for pseudoconstants by brute force. This

has the advantage of being conceptually more simple, but the disadvantage that we cannot easily

recognize the absence of pseudoconstants. Let ξ1, . . . ,ξm ∈ C be the singularities of L, and

assume that ∞ is not a singularity. At each singularity ξi, let pi

q
∈ Q be the smallest exponent

appearing in one of the solutions at ξi. Let u = (x−ξ1)
max(0,⌈−p1/q⌉) · · · (x−ξm)

max(0,⌈−pm/q⌉), so

that [u]L is globally integral.

For each singularity ξi, choose a bound Ni ∈ N on the degree of the denominator of a local

integral basis at ξi, and let N = N1 + · · ·+Nm.

We form the ansatz

(x−ξ1)
max(0,⌈−p1/q⌉) · · · (x−ξm)

max(0,⌈−pm/q⌉)

(x−ξ1)N1 · · · (x−ξm)Nm

r−1

∑
j=0

N

∑
i=0

ci, jx
iD j.

with unknowns ci, j . Evaluating it at all solutions at ξ1, . . . ,ξm,∞ gives series whose coefficients

are linear combinations of the unknowns ci, j , and setting those coefficients with negative valu-

ations to 0 yields a system of linear equations to solve. Each solution is an operator which is

completely integral.

However, if no non-zero solution is found, or if all solutions are constants, this is not enough

to conclude that the operator does not have a pseudoconstant. It could just mean that the guessed

bounds on the denominator were too conservative.

If L does not have a pseudoconstant, we could try to apply some transformation to L that does

not change the nature of the solutions of L but may affect the existence of pseudoconstants. For

example, applying a gauge transform to L does not change the nature of its solutions. However,

gauge transforms do not affect the existence of pseudoconstants either. Indeed, let L ∈ K[D]
be a linear operator, M ∈ K[D] be another one and L′ be the gauge transform of L such that

1https://github.com/mkauers/ore_algebra
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V (L′) = {M · f : f ∈ V (L)}. Assume that [P]L′ is a pseudoconstant in K[D]/〈L′〉. Then PM · f

does not have a pole for any f ∈ V (L), and there exists an f ∈ V (L) such that PM · f is not a

constant. By definition, this implies that [PM]L is a pseudoconstant in K[D]/〈L〉. In conclusion,

gauge transforms are not strong enough to create pseudoconstants. We will see next that we may

have more success with other operations.

4 Symmetric powers

Symmetric powers are useful for proving identities among D-finite functions and find applica-

tions in algorithms for factoring operators [19]. They can also be used to decide for a given

operator L and a given d ∈ N whether all solutions of L are algebraic functions of degree at

most d. For, if f is an algebraic solution of L with a minimal polynomial m ∈ K[y] of de-

gree d, then m has d distinct solutions f1, . . . , fd in an algebraic closure K̄ of K and we can write

m = (y− f1) · · · (y− fd). The solutions f1, . . . , fd of m are conjugates of f , and since L has coef-

ficients in K, we have L ·σ( f ) = σ(L · f ) = 0 for every automorphism σ that fixes K. Therefore,

f1, . . . , fd are also solutions of L. For every i, the ith coefficient of m = (y− f1) · · · (y− fd) is the

(d− i)th elementary symmetric polynomial of f1, . . . , fd and therefore an element of L⊗(d−i). As

the coefficients of m belong to K = C(x), they must thus show up among the rational solutions

of L⊗(d−i). This observation motivates the following algorithm.

Algorithm 11. Input: L ∈C(x)[D] and d ∈ N.

Output: if all solutions of L are algebraic functions of degree at most d, the minimal polyno-

mial of one such solution; otherwise ⊥.

1 for i = 1, . . . ,d, compute the symmetric power L⊗i.

2 for i = 1, . . . ,d, compute basis elements qi,1, . . . ,qi,Ni
of the solution space of L⊗i in C(x).

3 form an ansatz yd +∑d
i=1 ∑

Ni

j=1 ci, jqi, jy
d−i with undetermined coefficients ci, j

4 substitute a truncated series solution f of L into the ansatz, equate coefficients, and solve the

resulting system for the undetermined coefficients ci, j.

5 if the system has no solution, return ⊥.

6 let m be the polynomial corresponding to one of the solutions of the linear system.

7 if all roots of m are solutions of L, return m

8 otherwise, go back to step 4 and try again with a higher truncation order.

Compared to the guess-and-prove approach mentioned in the introduction, the algorithm

above has the advantage that only one of the degrees of the minimal polynomials has to be

guessed.

Algorithm 11 indicates that symmetric powers know something about algebraicity of solu-

tions. The next result points in the same direction. It says that the symmetric powers of an

operator L are larger if L has a transcendental solution.

Theorem 12. Let L ∈C(x)[D].

1. If L has only algebraic solutions, then ord(L⊗s) = O(s) as s → ∞.
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2. If L has at least one transcendental solution and D2 is a right factor of L, then ord(L⊗s) =
Ω(s2) for s → ∞.

Proof. Let r be the order of L.

1. Let f1, . . . , fr be a basis of V (L), and let m1, . . . ,mr ∈C(x)[y] be their respective minimal

polynomials. Furthermore, let Irat = { p ∈C(x)[y1, . . . ,yr] : p( f1, . . . , fr) = 0} be the ideal

of algebraic relations among f1, . . . , fr. Since mi(yi) ∈ Irat, we have dim(Irat) = 0. There-

fore, the ideal Ipol = Irat∩C[x][y1, . . . ,yr] has dimension 1. As eliminating a variable cannot

increase the dimension, we find that the ideal Iconst := Ipol ∩C[y1, . . . ,yr] has dimension at

most 1. By definition of the dimension, this means that the dimension of the C-vector

space generated in C[y1, . . . ,yr]/I by the power products y
e1

1 · · ·yer
r with e1, . . . ,er ∈N such

that e1 + · · ·+ er ≤ s has dimension O(s1), as s → ∞. Therefore, the dimension of the

C-vector space generated by f
e1

1 · · · f er
r with e1, . . . ,er ∈ N such that e1 + · · ·+ er = s has

dimension O(s1), as s → ∞. This space is the solution space of L⊗s, and the order of L⊗s

matches the dimension of this space.

2. Since D2 is a right factor of L, we have 1 and x among the solutions of L. If there is also

at least one transcendental solution f , then the solution space of L⊗s contains all elements

1e1 xe2 f e3 with e1,e2,e3 ∈N such that e1 + e2 + e3 = s, and the transcendence of f implies

that they are all linearly independent over C. As these are
(

s+2
s

)

= Ω(s2) many, the claim

follows again from dimCV (L⊗s) = ord(L⊗s).

This theorem provides yet another heuristic test for the existence of transcendental solutions:

simply compute L⊗s for the first few s and see how their orders grow. As the theorem only makes

a statement for asymptotically large s, looking at specific values of s will not allow us to make

any definite conclusion, but it can provide convincing evidence.

Example 13. Consider the operators

L1 =
(

256x5 −3125
)

D4 +3200x4D3 +9840x3D2 +6120x2D−504x

L2 = lclm
(

D2,
(

x2 − x
)

D2 +
(

31
24

x− 5
6

)

D+ 1
48

)

.

The operator L1 is the annihilator of the roots of y5 + xy+ 1 in K[y], so it only has algebraic

solutions. The operator L2 is the lclm of the operator from Example 6 and D2, so it has a

transcendental solution and it has D2 as a right factor. The order of the symmetric powers of the

operators is growing as follows:

s 1 2 3 4 5

ord(L⊗s
1 ) 4 9 15 21 27

ord(L⊗s
2 ) 4 10 20 35 56

As predicted by the theorem, for L1 the growth is linear, and for L2 the growth is at least quadratic

(cubic).

The assumption on having D2 as a right factor in the second part of the theorem cannot be

dropped, as can be seen for example with L = D2 −1, whose solutions are exp(x) and exp(−x).
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The solution space of L⊗s is spanned by the terms exp(x(i − (s− i))) for i ∈ {0, . . . ,s}, and

therefore has dimension s+1 = O(s). More generally, for any operator of order r ≤ 2, the order

of L⊗s is bounded by
(

s+r−1
s

)

≤ s+1. The divisibility condition says that 1 and x are solutions

of L, and in order to have in addition a transcendental solution, the order of L must be at least 3.

If L does not have D2 as a right factor, apply the theorem to lclm(L,D2) instead of L. Note that

L has only algebraic solutions if and only if lclm(L,D2) has only algebraic solutions.

More generally, if M is any operator that has only algebraic solutions, then L has only alge-

braic solutions if and only if lclm(L,M) has only algebraic solutions. This is because, as re-

marked at the end of Sect. 2, the least common multiple does not have any extraneous solutions.

Nevertheless, as we show next, there is no hope that lclm(L,M) could have any pseudoconstants

if not already L has any.

Lemma 14. Let L,M ∈ K[D] and N = lclm(L,M). If [P]N is a nonzero completely integral

element (resp. a pseudoconstant) in K[D]/〈N〉, then at least one of [P]L or [P]M is a non-zero

completely integral element (resp. a pseudoconstant) in the respective module.

Proof. Let [P]N be a completely integral element of K[D]/〈N〉. Let E be an extension of K such

that V (N)⊆ E has dimension ord(N).
Note that by definition of the lclm, both equivalence classes [P]L and [P]M are well-defined.

Since V (N) =V (L)+V(M), both [P]L and [P]M are completely integral.

If [P]N is non-zero, there exists h ∈V (N) such that P · h 6= 0. Therefore there exist f ∈V (L)
and g ∈V (M) such that h = f +g and P · f +P ·g 6= 0. So at least one of P · f and P ·g is nonzero,

implying respectively that [P]L or [P]M is nonzero.

The additional property that P is not a constant similarly propagates to at least one of the

summands.

In view of this negative result, it is remarkable that taking symmetric products can produce

pseudoconstants. For example, the function considered in Example 6 is a product of an algebraic

function and a hypergeometric function. The linear operator which annihilates only the hyper-

geometric function (without the algebraic function multiplier) does not have a pseudoconstant.

If the given operator L has no pseudoconstants, we can thus ask whether there is an operator M

with only algebraic solutions such that L⊗M has pseudoconstants. Of course, as long as nobody

tells us how to choose M, this observation is not really helpful. What we can easily do however

is to multiply the solutions of L with each other. It turns out that this is sometimes sufficient.

Example 15. Consider the operator

L =
(

x2 − x
)

D2 +
(

49
6

x− 7
3

)

D+12

annihilating the hypergeometric function 2F1

(

9
2
, 8

3
; 7

3
;x
)

. The operator does not have a pseudo-

constant. However, the operator L⊗2 does have a pseudoconstant

α(x)D2 +β (x)D+ γ(x)

where α , β and γ are polynomials in x, with respective degree 11, 10 and 9. By Theorem 17

below, this implies that L has at least one transcendental solution.
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Example 16. Consider the operator

L =
(

x2 − x
)

D2 +
(

65
24

x− 7
6

)

D+ 35
48

annihilating the hypergeometric function 2F1

(

7
8
, 5

6
; 7

6
;x
)

. This is the hypergeometric function

appearing in Example 6.

The operator does not have a pseudoconstant. However, the operator L⊗5 does have the pseu-

doconstant [x(x− 1)3]. By Theorem 17 below, this implies that all nonzero solutions of L are

transcendental.

The exponents of the solutions of L at its singularities are:

(0) − 1
6

0

(1) − 13
24

0

(∞) 5
6

7
8

Multiplying all the solutions by x1/6(x− 1)13/24 allows to clear the poles at 0 and 1, without

creating a pole at infinity: the exponents at infinity become 5
6
− 1

6
− 13

24
= 1

7
and 7

8
− 1

6
− 13

24
= 1

8
,

both non-negative. This confirms the observation in Example 6.

The presence of rational exponents in x1/6(x− 1)13/24 means that it does not qualify as a

pseudoconstant with our definition. However, considering symmetric powers allows to clear

those denominators. First, observe that the lowest exponents of the solutions of L⊗s are − 1
6
s at

0, − 13
24

s at 1 and 5
6
s at infinity. We are looking for a pseudoconstant of the form [xa(x− 1)b]

with a,b integers. Multiplying by such an element adds a to the exponent at 0, b to the exponent

at 1, and subtracts a+ b from the exponent at infinity. The complete integrality condition thus

translates into the following inequalities:

0 ≤− 1
6
s+a; 0 ≤− 13

24
s+b; 0 ≤ 5

6
s−a−b.

The solutions, for s in {1, . . . ,6}, are represented in Figure 1. The smallest value of s for which

there is an integer solution is 5, and we recover the pseudoconstant [x(x − 1)3] = [x4 − 3x3 +
3x2 − x] for L⊗5.

Theorem 17. Let L ∈K[D] be a differential operator. Suppose that for some s∈N the symmetric

power L⊗s has a pseudoconstant. Then L has at least one transcendental solution.

Proof. The solution space of L⊗s is spanned by all products of s solutions of L. The existence

of a pseudoconstant in K[D]/〈L⊗s〉 proves that at least one solution of L⊗s is transcendental, and

therefore at least one solution of L is transcendental.

In other words, a pseudoconstant for L⊗s can be viewed as a transcendence certificate for L.

As shown by the previous examples, such a certificate may exist even if L itself does not have

pseudoconstants. So it is worthwhile to search for pseudoconstants of symmetric powers. As

shown by the following theorem, we cannot increase our chances to find a pseudoconstant any

further by adding some rational solutions to the solution space of L.
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a

b

1 2 3

1

2

3

4

0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

Figure 1: Solutions of the system (1) for s in {1, . . . ,6}

Proposition 18. Let M ∈ K[D] be an operator that has only solutions in K, let L ∈ K[D], and let

s ∈ N. If lclm(L,M)⊗s has a pseudoconstant then there is a d ∈ {1, . . . ,s} such that L⊗d has a

pseudoconstant.

Proof. First note that

Ls := lclm(L,M)⊗s = lclm
(

L⊗s,L⊗(s−1)⊗M, . . . ,M⊗s
)

.

By Lemma 14, if [P]Ls
is a pseudoconstant, then there exists d ∈{1, . . . ,s} such that [P]L⊗d⊗M⊗(d−s)

is also a pseudoconstant.

This means that for every Puiseux series solution f of L at some point ξ ∈C∪{∞} and every

solution r ∈C(x) of M we have that P · (rd−s f d) is integral, and that for at least one r and one f ,

the quantity P · (rd−s f d) is not a constant. Fixing one such solution r ∈ C(x) \ {0} of M, it

follows that Prd−s is a completely integral element of K[D]/〈L⊗d〉 and that [Prd−s]L⊗d is not a

constant. Thus L⊗d has the pseudoconstant [Prd−s]L⊗d .

We have not been able to answer the following question:

Question 19. Is it true that for every operator L with at least one transcendental solution there

exists an s ∈N such that L⊗s has a pseudoconstant?

If the answer to Question 19 is yes, then this fact in combination with Alg. 11 would yield a

new decision procedure for the existence of transcendental solutions. We could simply search in

parallel for s = 1,2,3, . . . for an algebraic solution of L of degree s and a pseudoconstant of L⊗s.

Exactly one of these parallel threads would have to terminate after a finite number of steps.

A natural idea to prove the existence of pseudoconstants of L⊗s for sufficiently large s is to

show the linear system that emerges from a search for pseudoconstants via the linear algebra

approach has more variables than equations for sufficiently large s. Unfortunately, this does not

seem to be the case.

The following example can perhaps be considered as some piece of empirical evidence that

the answer to Question 19 is no. On the other hand, we can show (Prop. 22) that for an operator

L with only algebraic solutions there is always an s such that L⊗s has a constant (but of course
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no pseudoconstant), and this could be considered as some piece of evidence that the answer to

Question 19 may be yes.

Example 20. Consider the operator

(

x2 − x
)

D2 +
(

164
15

x− 16
3

)

D+ 1403
60

,

which annihilates the hypergeometric function 2F1

(

61
10
, 23

6
; 16

3
;x
)

. Thanks to Schwarz’ classifica-

tion, we know that the operator has no algebraic solutions. However, an exhaustive search using

integral bases could not find a completely integral element for L⊗s for any s ≤ 6, and a heuristic

search using linear algebra could not find one for any s ≤ 30.

Lemma 21. Let M ∈ K[D] and let q ∈ K be such that M ·q 6= 0. Then L := lclm(qD−q′,M) has

a nonzero constant.

Proof. Note V (L) = span(q)+V (M) and u := M ·q 6= 0. Consider P := u−1M. Every f ∈V (L)
can be written as f = cq+m for a c ∈ C and an m ∈ V (M). So P · f = u−1(M ·m+ cM · q) =
u−1cu = c. By Prop. 3 part 1, it follows that [P] is a nonzero constant of L.

Proposition 22. If L ∈ K[D] has only algebraic solutions and d is such that all the solutions of

L have a minimal polynomial of degree at most d, then L⊗d has a nonzero constant.

Proof. Since L has only algebraic solutions, also L⊗d has only algebraic solutions. Moreover,

L⊗d has at least one nonzero rational function solution q (e.g., the product of all the conjugates

of some algebraic solution of L). If f is a solution of L⊗d, then so are all the conjugates of f ,

because L⊗d has coefficients in K. The solution space of the minimal order annihilating operator

of f is generated by f and its conjugates and therefore a right factor of L⊗d.

Let f1 be a solution of L⊗d which does not belong to span(q), and let M1 be a minimal order

annihilating operator of f1. For n = 1,2, . . . , let fn be a solution of L⊗d which does not belong

to span(q)+V (M1)+ · · ·+V (Mn−1), and let Mi be a minimal order annihilating operator of fn,

until we have V (L⊗d) = span(q)+V (M1)+ · · ·+V (Mn). At this stage, we have

L⊗d = lclm(qD−q′, lclm(M1, . . . ,Mn)),

and since lclm(M1, . . . ,Mn) · q 6= 0 by the choice of M1, . . . ,Mn, Lemma 21 applies. The claim

follows.

5 Conclusion

We propose the notion transcendence certificate for any kind of artifact whose existence implies

that a given differential operator has at least one transcendental solution. Simple transcendence

certificates are logarithmic and exponential singularities. Pseudoconstants introduced in Def. 2

can also serve as transcendence certificates. We have given examples of operators that have no

logarithmic or exponential singularities but that do have pseudoconstants.

We have also given examples of operators that have no pseudoconstants even though they have

transcendental solutions. To such operators, we can try to apply transformations that preserve
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the existence of transcendental solutions but may lead to the appearance of pseudoconstants. In

particular, as shown in Sect. 4, it can happen that an operator L has no pseudoconstants but

some symmetric power L⊗s of L does. A pseudoconstant of L⊗s suffices to certify the existence

of a transcendental solution of L. An open question (Question 19) is whether the existence of

transcendental solutions of L implies the existence of an s such that L⊗s has pseudoconstants.

We would be very interested in an answer to this question.

There are further possibilities to transform an operator with no pseudoconstants to one that

may have some. For example, we could try to exploit that the composition of a D-finite function

with an algebraic function is always D-finite. If f is D-finite and g is algebraic, then f ◦ g is

algebraic if and only if f is algebraic, thus a pseudoconstant for an annihilating operator of f ◦g

could serve as a transcendence certificate for an annihilating operator of f . Note that unlike the

transformations considered in this paper, the composition can not only remove singularities but

also create new ones. We have not found an example where this process reveals new pseudocon-

stants.

In another direction, we could try to weaken the requirements of Def. 2. According to our

definition, [P]L is a pseudoconstant if every local solution f of L is such that P · f has nonnegative

valuation. For a transcendence certificate, it would suffice to have one global solution f of L (a

complex function defined on a Riemann surface) which is not constant and has no pole. If

we relax Def. 2 accordingly, it may be that additional operators would have pseudoconstants.

However, we would no longer know how to decide the existence of pseudoconstants for a given

operator.
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