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Abstract

A sequence is called C-finite if it satisfies a linear recurrence with constant coefficients. We
study sequences which satisfy a linear recurrence with C-finite coefficients. Recently, it was
shown that such C2-finite sequences satisfy similar closure properties as C-finite sequences.
In particular, they form a difference ring.

In this paper we present new techniques for performing these closure properties of C2-finite
sequences. These methods also allow us to derive order bounds which were not known before.
Additionally, they provide more insight in the effectiveness of these computations.

The results are based on the exponent lattice of algebraic numbers. We present an iterative
algorithm which can be used to compute bases of such lattices.

1 Introduction

Infinite objects that can be represented by a finite amount of information and that can be effectively
computed with, e.g., by means of closure properties, are natural objects of study in symbolic
computation. This includes in particular sequences that can be defined by linear recurrences
with coefficients that, in turn, have a finite description. If these coefficients are polynomials, the
sequences are called holonomic or D-finite and the special case of constant coefficients is referred
to as C-finite sequences.

It is well known [13, 17] that these form classes that are closed under several operations such
as addition, multiplication, interlacing, taking subsequences, etc. These closure properties are
algorithmic, have been implemented in several computer algebra systems, and contribute to the
“holonomic toolkit” [11] for automatically proving and deriving identities.

It has been shown [8, 9, 24, 22] that many of these closure properties also hold and can be im-
plemented for sequences that are defined by linear recurrences with C-finite coefficients, also called
C2-finite. To our knowledge, C2-finite sequences have first been introduced formally by Kotek
and Makowsky [14] in the context of graph polynomials. Thanatipanonda and Zhang [29] give an
overview on different properties of polynomial, C-finite and holonomic sequences and consider the
extension under the name X-recursive sequences. A survey on closure properties of linear recur-
rence sequences including C2-finite sequences is given by Krityakierne and Thanatipanonda [15].

The main computational issue when dealing with this new class of C2-finite sequences is the
presence of zero divisors. Even though it was shown that C2-finite sequences form a difference
ring, so far it was not clear whether their closure properties can be effectively computed, see also
the discussion in Section 2.2 below.

In this paper, we introduce a new method for executing closure properties that, in particular,
comes with order bounds. A key ingredient for this technique is the computation of a basis for
the exponent lattice for the eigenvalues of the coefficient recurrences. For the computation, we
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introduce an iterative version of Ge’s algorithm [7] described in Section 3. The resulting order
bounds for the ring operations, interlacing, and taking subsequences are presented in Section 5.

2 Preliminaries

In this section we introduce some basic notation and definitions which are used throughout the
paper. We denote the set of natural numbers by N = {0, 1, 2, . . . }. Furthermore, K ⊇ Q denotes
an algebraic number field. The K-algebra of sequences under termwise addition and termwise
multiplication is denoted by KN. For the sake of a cleaner notation, c(n) can denote both a
sequence (c(n))n∈N and the term at index n. The meaning is always clear from the context. The
shift operator σ acts as σ((a(n))n∈N) = (a(n + 1))n∈N on a sequence (a(n))n∈N. A difference
subring R ⊆ KN is a subring which is additionally closed under taking shifts, i.e., σ(a) ∈ R for
all a ∈ R. The ring of recurrence operators R[σ] is, in general, non-commutative and an element
A :=

∑r
i=0 ciσ

i ∈ R[σ] with ci ∈ R acts on a sequence a = (a(n))n∈N as Aa =
∑r
i=0 ci(n)a(n+ i).

If Aa = 0, we say that the operator A annihilates the sequence a. If cr 6= 0, then r is called the
order of the operator A. The minimal order of an operator which annihilates a is called the order
of the sequence a and is denoted by ord(a).

2.1 C-finite sequences

Sequences c ∈ KN which are annihilated by an operator C =
∑r
i=0 γiσ

i ∈ K[σ] are called C-finite.
Equivalently, these are sequences that satisfy a linear recurrence with constant coefficients

γ0c(n) + · · ·+ γrc(n+ r) = 0 for all n ∈ N.

The set of C-finite sequences over K forms a K-algebra which we denote by RC . Suppose
c, d, c1, . . . , cm ∈ RC . Then, the following closure properties are well known (e.g., [13]):

1. c+ d ∈ RC with ord(c+ d) ≤ ord(c) + ord(d),

2. cd ∈ RC with ord(cd) ≤ ord(c) ord(d),

3. c`,k := (c(`n+ k))n∈N ∈ RC with ord(c`,k) ≤ ord(c) for all `, k ∈ N.

4. Let e be the interlacing of c1, . . . , cm, i.e., e(n) = cr(q) for all n = qm + r with 0 ≤ r < m.
Then, e ∈ RC and ord(e) ≤ m

∑m
j=1 ord(cj).

The same closure properties and order bounds hold for D-finite sequences, i.e., sequences which
are annihilated by an operator A ∈ K[x][σ] [17, 12].

Let C :=
∑r−1
i=0 γiσ

i + σr be the unique monic minimal annihilating operator of c ∈ RC .

The polynomial
∑r−1
i=0 γix

i + xr ∈ K[x] is called the characteristic polynomial of c. Over the
splitting field L the polynomial completely factors as xn0

∏m
i=1(x − λi)di with pairwise different

λ1, . . . , λm ∈ L and n0, d1, . . . , dm ∈ N. We call these λi the eigenvalues of the sequence c. The
sequence can also be written as polynomial-linear combination of exponential sequences λni : In
particular, there are polynomials p1, . . . , pm ∈ L[x] with deg(pi) = di−1 for i = 1, . . . ,m such that

c(n) =

m∑
i=1

pi(n)λni for all n ≥ n0. (1)

This is called the closed form of c [13, 19].
A C-finite sequence c is called degenerate if it has eigenvalues λ 6= µ such that λ

µ is a root of
unity. Otherwise, the sequence is called non-degenerate.

Theorem 1 ([1, 5]). Let c be a non-degenerate C-finite sequence. Then, c is either the zero
sequence or it only has finitely many zeros, i.e., there is an n0 ∈ N such that c(n) 6= 0 for all
n ≥ n0.
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Suppose c, d are C-finite sequences with eigenvalues λ1, . . . , λm1 and µ1, . . . , µm2 , respectively.
From the closed form of c and d, it is clear, that c + d has eigenvalues λ1, . . . , λm1

, µ1, . . . , µm2

and cd has eigenvalues λiµj with 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. The sequence (c(`n + k))n∈N has
eigenvalues λ`1, . . . , λ

`
m.

2.2 C2-finite sequences

A generalization of C-finite sequences are C2-finite sequences. These extend C-finite and D-finite
sequences and include many more sequences which appear in combinatorics.

Definition 2. A sequence a ∈ KN is called C2-finite over K if there are C-finite sequences c0, . . . , cr
over K with cr(n) 6= 0 for all n ≥ n0 for some n0 ∈ N such that

c0(n)a(n) + · · ·+ cr(n)a(n+ r) = 0, for all n ∈ N. (2)

Several examples for C2-finite sequences are given in [29, 9]. Throughout this article, additional
examples are given.

A C-finite sequence c can be uniquely described by a minimal recurrence and ord(c) many
initial values. Similarly, a C2-finite sequence can be described uniquely by its recurrence and by
finitely many initial values. The number of initial values which is needed to uniquely determine
the sequence depends on the zeros of the leading coefficient cr of the recurrence. It can be decided
whether the leading coefficient only has finitely many zeros [1]. However, it is not known if these
finitely many zeros can be computed. This is known as the Skolem problem [26].

Previously, it was shown that C2-finite sequences, analogously to C-finite sequences, form a
K-algebra and they are furthermore closed under taking subsequences at arithmetic progressions
and interlacing [8, 9]. So far, it was not known whether these closure properties can be com-
puted effectively. In this article we show a method how these closure properties can be performed
effectively. As a caveat, these computations might introduce finitely many zeros in the leading
coefficient which can yield to problems when one has to decide how many initial values are needed
to uniquely define the sequence. In practice we have, however, observed that even though the
Skolem problem is very difficult in general it can usually be solved for most examples that appear
in practice [23].

Note that in [8, 9] it is assumed that the leading coefficient cr in (2) has no zero terms at all.
The two definitions are equivalent. If a sequence satisfies a C2-finite recurrence as in Definition 2,
then shifting the recurrence yields a recurrence where the leading coefficient has no zero terms.
The definition here allows us to derive bounds for the orders of closure properties similar to the
C-finite case that cannot be derived otherwise (see Example 17).

If cr(n) 6= 0, then the recurrence (2) can be used to compute the term a(n+ r) provided that
the previous terms a(n), . . . , a(n+ r − 1) are known:

a(n+ r) = − c0(n)cr(n)
a(n)− · · · − cr−1(n)

cr(n)
a(n+ r − 1).

This is also captured by the companion matrix Ma of a which is defined as

Ma :=


0 0 . . . 0 −c0/cr
1 0 . . . 0 −c1/cr
0 1 . . . 0 −c2/cr
...

...
. . .

...
...

0 0 . . . 1 −cr−1/cr

 .

If cr(n) 6= 0 for all n ∈ N, then

(σa, σ2a, . . . , σra) = (a, σa, . . . , σr−1a)Ma.

In the special case that a is a C-finite sequence, we have Ma ∈ Kr×r. Since the recurrence of a
sequence is not unique, neither is the companion matrix.
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In the recurrence (2) we can assume that n0 = 0 holds in the closed form (1) for all coefficients
c0, . . . , cr. This can be achieved by extending the closed form representation to all n ∈ N and
introducing polynomial factors n(n − 1) · · · (n − n0) in all coefficients ci. This only increases the
order of the coefficients ci and leaves the order of the overall recurrence intact.

2.3 Lattices

A Z-submodule L of Zm is called a lattice. Every lattice L admits a finite basis v1, . . . , v` ∈ Zm,
i.e., a set of linearly independent generators of the module L. We call ` the rank of the lattice L.

The LLL algorithm can be used to compute a basis of “short” vectors for the lattice L [16, 3].
Such a basis is called a reduced basis. Let L = 〈v1, . . . , v`〉 ⊆ Zm, i.e., L is the lattice generated
by v1, . . . , v` ∈ Zm. Let b1, . . . , br be a reduced basis of L and b̄1, . . . , b̄r the corresponding Gram-
Schmidt vectors. The reduced basis is “short” in the sense that (cf. (1.7) in [16] or Theorem 2.6.2
in [3])

‖bj‖22 ≤ 2k−1
∥∥b̄k∥∥22 for all 1 ≤ j ≤ k ≤ r. (3)

Suppose V ∈ Zm×` and r = min(m, `). Then, we can compute unimodular (i.e., invertible)
matrices P ∈ Zm×m, Q ∈ Z`×` and a diagonal matrix D = diag(d1, . . . , dr) ∈ Zm×` with di | di+1

for all i = 1, . . . , r − 1 such that PV Q = D. The unique matrix D is called the Smith normal
form of V and the largest diagonal entry dr is called the invariant factor of V . If ei denotes the
i-th determinantal divisor of V , i.e., the greatest common divisor of all i-by-i minors of V , then
dr = er

er−1
[21, 20].

3 The exponent lattice of algebraic numbers

Let λ1, . . . , λm ∈ Q. The set of relations of these algebraic numbers

L := L(λ1, . . . , λm) := {(e1, . . . , em) ∈ Zm | λe11 · · ·λemm = 1}

forms a lattice. In his PhD thesis [7] Ge gave an algorithm for computing a basis of L. It is a
combination of LLL with a bound on the size of the basis vectors and the fact that membership
of L is easy to decide. Variants of Ge’s algorithm were given in [10, 6, 35, 33, 34]. Here we
present another variant. Our version is inspired by how LLL is applied in van Hoeij’s algorithm
for polynomial factorization [30, 32, 31]. One feature of this version is that it uses approximations
that are only as good as necessary for the particular input, rather than approximations whose
accuracy is determined by the worst case behavior. Another advantage of our version is that its
correctness admits a very concise proof.

Like Ge, we start by observing that

(e1, . . . , em) ∈ L(λ1, . . . , λm) ⇐⇒ λe11 · · ·λemm = 1 ⇐⇒
m∑
i=1

ei log(λi) ∈ 2πiZ.

Hence, instead of finding a basis for L = L(λ1, . . . , λm), we can compute a basis of the lattice

L+ =

{
(e1, . . . , em+1) ∈ Zm |

m∑
i=1

ei log(λi) + em+12πi = 0

}
and drop the last coordinates to find a basis of the original lattice L. If we agree to always choose
the standard branch of the logarithm, the last coordinate will be bounded by md, where d is
the degree of the field extension of λ1, . . . , λm. By a result by Masser [18], we can compute a
constant M ≥ md such that L and therefore L+ have a basis of vectors b with ‖b‖∞ ≤M .

It remains to provide an algorithm which can compute a basis of

L+ = {(e1, . . . , en) ∈ Zn | e1x1 + · · ·+ enxn = 0}
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where x1, . . . , xn ∈ C \ {0}. Due to the special shape of the xi in our case, we can compute
rational approximations ξi ∈ Q(i) of arbitrary precision [2]. In particular, for every ε > 0 we can
compute ξ1, . . . , ξn ∈ Q(i) such that |<(xi)−<(ξi)| < ε and |=(xi)−=(ξi)| < ε for all i = 1, . . . , n.
Furthermore, we can use the fact that membership (e1, . . . , en) ∈ L+ can be checked and that we
know that a basis with vectors bounded by M exists.

Algorithm 3: Computing a basis for L+

Input: Computable numbers x1, . . . , xn ∈ C \ {0} and M ∈ Q such that the lattice

L+ =

{
(ei)i=1,...,n ∈ Zn |

n∑
i=1

eixi = 0

}

has a basis of vectors b ∈ Zn with ‖b‖∞ ≤M
Needs: One can decide whether b ∈ L+ for any b ∈ Zn
Output: A basis of L+

1 w ← 1
2 B ← {(1, 0, . . . , 0, 0, 0), . . . , (0, . . . , 0, 1, 0, 0)} ⊆ Zn+2

3 while ∃ (e1, . . . , en, ∗, ∗) ∈ B : (e1, . . . , en) 6∈ L+ do
4 w ← 2w

5 find ξ1, . . . , ξn ∈ Q(i) with |<(ξi)−<(xi)| < 1
nw and |=(ξi)−=(xi)| < 1

nw for
all i = 1, . . . , n

6 replace every vector (e1, . . . , en, ∗, ∗) ∈ B by(
e1, . . . , en, w

n∑
i=1

ei<(ξi), w

n∑
i=1

ei=(ξi)

)

7 apply LLL to B, call the output vectors b1, . . . , br and the corresponding
Gram-Schmidt vectors b̄1, . . . , b̄r

8 while r > 0 and
∥∥b̄r∥∥2 > √n+ 2M do r ← r − 1

9 B ← {b1, . . . , br}
10 end
11 return {(e1, . . . , en) : (e1, . . . , en, ∗, ∗) ∈ B}

For proving the correctness of Algorithm 3 we will employ the following lemma:

Lemma 4. [32, Lemma 2] If b1, . . . , br is a lattice basis and b̄1, . . . , b̄r is the corresponding Gram-
Schmidt basis, then for every v ∈ 〈b1, . . . , br〉 with ‖v‖2 <

∥∥b̄r∥∥2 we have in fact v ∈ 〈b1, . . . , br−1〉.

Proof. Let v ∈ 〈b1, . . . , br〉 be such that ‖v‖2 <
∥∥b̄r∥∥2, say v = α1b1 + · · · + αrbr for certain

α1, . . . , αr ∈ Z. We have to show that αr = 0. Let µi,j be such that bi =
∑
j≤i µi,j b̄j for all i, j;
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note that µi,i = 1. Now

∥∥b̄r∥∥22 > ‖v‖22 =

∥∥∥∥∥
r∑
i=1

αibi

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
r∑
i=1

i∑
j=1

αiµi,j b̄j

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
r∑
j=1

( r∑
i=j

αiµi,j

)
b̄j

∥∥∥∥∥∥
2

2

Pythagoras
=

r∑
j=1

∣∣∣∣∣∣
r∑
i=j

αiµi,j

∣∣∣∣∣∣
2 ∥∥b̄j∥∥22

=

r−1∑
j=1

∣∣∣∣∣∣
r∑
i=j

αiµi,j

∣∣∣∣∣∣
2 ∥∥b̄j∥∥22︸ ︷︷ ︸

≥0

+ |αr|2
∥∥b̄r∥∥22 ≥ |αr|2 ∥∥b̄r∥∥22

together with αr ∈ Z forces αr = 0, as claimed.

Theorem 5. Algorithm 3 is correct and terminates.

Proof. It is clear that every output vector is an element of L+. To see that the output vectors
generate L+, we need to justify the removals in line 9. By assumption, we know that L+ has a
basis whose elements have components bounded by M . For every vector (e1, . . . , en) ∈ L+ with
|ei| < M for all i we have

w

∣∣∣∣∣
n∑
i=1

ei<(ξi)

∣∣∣∣∣ = w

∣∣∣∣∣
n∑
i=1

ei<(ξi)− ei<(xi)

∣∣∣∣∣ ≤ w
n∑
i=1

|ei| |<(ξi)−<(xi)|

≤ w
n∑
i=1

|ei| /(nw) < M

and likewise for the imaginary parts. Therefore, we are only interested in vectors b = (e1, . . . , en, ∗, ∗)
in the lattice generated by B with

‖b‖2 ≤
√
M2 + · · ·+M2 +M2 +M2 =

√
n+ 2M.

By Lemma 4, these vectors are still in the lattice after the removals in line 9.
It remains to show that the algorithm terminates. Suppose it does not terminate, i.e., the

set B eventually contains r vectors in every iteration which are not all in the lattice L+. We show
that from some point on in the algorithm (i.e., for big enough w), this cannot be the case because
vectors which are not in L+ are too long and are therefore removed in line 9 of the algorithm.

There are only finitely many vectors (e1, . . . , en) ∈ Zn with |ei| ≤
√
n+ 2M for all i = 1, . . . , n.

Therefore, there exists an ε > 0 such that

max(|e1<(x1) + · · ·+ en<(xn)| , |e1=(x1) + · · ·+ en=(xn)|) > ε

for all (e1, . . . , en) ∈ Zn \ L+ with |ei| ≤
√
n+ 2M for all i. Choose such an ε. Suppose we are in

line 3 of the algorithm with w ≥
√
n+2M(1+2(r−1)/2)

ε and bj ∈ B \ L with j ∈ {1, . . . , r}. Let

bj =

(
e1, . . . , en, w

n∑
i=1

ei<(ξi), w

n∑
i=1

ei=(ξi)

)
.

Since bj has not been removed in line 9 in the previous iteration, we have |ei| ≤
√
n+ 2M for all

i = 1, . . . , n. By the choice of ε for either f = < or f = = we have

w

∣∣∣∣∣
n∑
i=1

eif(ξi)

∣∣∣∣∣ = w

∣∣∣∣∣
n∑
i=1

ei(f(ξi)− f(xi) + f(xi))

∣∣∣∣∣ = w

∣∣∣∣∣
n∑
i=1

ei(f(ξi)− f(xi)) +

n∑
i=1

eif(xi)

∣∣∣∣∣
≥ w

(∣∣∣∣∣
n∑
i=1

eif(xi)

∣∣∣∣∣−
∣∣∣∣∣
n∑
i=1

ei(f(ξi)− f(xi))

∣∣∣∣∣
)
> w

(
ε−

∣∣∣∣∣
n∑
i=1

ei(f(ξi)− f(xi))

∣∣∣∣∣
)
.
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Furthermore, we have∣∣∣∣∣
n∑
i=1

ei(f(ξi)− f(xi))

∣∣∣∣∣ ≤
n∑
i=1

|ei| |f(ξi)− f(xi)| <
n∑
i=1

√
n+ 2M 1

nw =
√
n+2M
w .

Using this and the condition on w in the inequality above yields

w

∣∣∣∣∣
n∑
i=1

eif(ξi)

∣∣∣∣∣ > we−
√
n+ 2M ≥ 2(r−1)/2

√
n+ 2M.

Therefore, ‖bj‖2 > 2(r−1)/2
√
n+ 2M . In particular, using (3),∥∥b̄k∥∥2 ≥ 2−(k−1)/2 ‖bj‖2 > 2(r−k)/2

√
n+ 2M ≥

√
n+ 2M

for all k = j, . . . , r. Hence, bj , . . . , br would have been removed already in the past iteration and
cannot be in the set B anymore, a contradiction.

An implementation of the algorithm is part of the rec sequences package1 and is publicly
available [22].

4 Torsion number

For proving the order bounds for C2-finite sequences, we will heavily rely on the fact that a C-
finite sequence c can be written as interlacing of non-degenerate sequences c(dn), . . . , c(dn+ d− 1)
[5, Theorem 1.2]. More generally, if we have a finitely generated difference algebra of C-finite
sequences, we will determine a number d ∈ N (which we will call the torsion number) such that
every sequence in the algebra can be written as the interlacing of d non-degenerate subsequences.

Let c0, . . . , cr ∈ RC with eigenvalues λ1, . . . , λm and let Rd := Kσ[c0(dn), . . . , cr(dn)] be the
smallest difference algebra which contains the sequences c0(dn), . . . , cr(dn). Suppose c ∈ Rd. Then,
every eigenvalue λ of c is of the form λ = λe11 · · ·λemm for some e1, . . . , em ∈ N. We want to find a d
such that every sequence c ∈ Rd is non-degenerate. Equivalently, we want to find a d such that(

λ
de1
1 ···λdem

m

λ
df1
1 ···λ

dfm
m

)k
= 1 =⇒ λde11 · · ·λdemm = λdf11 · · ·λdfmm

for all k, e1, . . . , em, f1, . . . , fm ∈ N. In order to write this more concisely we define the multiplica-
tive group G := 〈λ1, . . . , λm〉 ≤ (C×, ·). Then, this condition reads as

∀k ∈ N≥1∀λ ∈ G : λkd = 1 =⇒ λd = 1.

The following lemma shows that this number d also has a purely group-theoretical and a purely
lattice-theoretical description.

Lemma 6. Let G := 〈λ1, . . . , λm〉 ≤ (C×, ·). The following conditions on d ∈ N≥1 are equivalent:

1. The number d satisfies

∀k ∈ N≥1∀λ ∈ G : λkd = 1 =⇒ λd = 1.

2. Let T (G) := {λ ∈ G | ord(λ) <∞} be the torsion subgroup of G. Then, d satisfies

ord(λ) | d for all λ ∈ T (G).

1The code is available at https://github.com/PhilippNuspl/rec_sequences in the IntegerRelations class.
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3. Let
L := L(λ1, . . . , λm) := {(e1, . . . , em) ∈ Zm | λe11 · · ·λemm = 1}

be the lattice of integer relations among λ1, . . . , λm. Then, d satisfies

∀k ∈ N≥1 ∀v ∈ Zm : kdv ∈ L =⇒ dv ∈ L. (4)

Proof. 1 =⇒ 2: Let λ ∈ T (G) and let m ∈ N≥1 be minimal with λm = 1. Then, clearly λmd = 1.
By assumption, λd = 1. As m was chosen minimal, we have m | d.

2 =⇒ 3: Let k ∈ N≥1, v = (e1, . . . , em) ∈ Zm and kdv ∈ L. Let λ = λe11 · · ·λemm . By definition
of L,

λkd = λkde11 · · ·λkdemm = 1.

Hence, λ ∈ T (G). Therefore, by assumption, ord(λ) | d, so λd = 1 and dv ∈ L.
3 =⇒ 1: Let k ∈ N≥1, λ = λe11 · · ·λemm ∈ G and λkd = 1. Defining v := (e1, . . . , em) ∈ Zm

yields kdv ∈ L. By assumption, dv ∈ L, i.e., λd = 1.

Considering condition 2 of Lemma 6, we can see that the smallest d which satisfies the condition
is the exponent of the torsion group.

Definition 7. The torsion number d ∈ N≥1 of λ1, . . . , λm ∈ Q is defined as

d := exp(T (G)) := lcm(ord(λ) | λ ∈ T (G))

where G := 〈λ1, . . . , λm〉 ≤ (C×, ·).

We also call d the torsion number of the lattice L if it is the smallest number satisfying (4).
Using the terminology of pure modules, (4) is equivalent to {v ∈ Zm | dv ∈ L} being a pure lattice
[4, III.16].

Lemma 8. Let d be the torsion number of the lattice L. Then, d′ satisfies the conditions from
Lemma 6 if and only if d | d′.

Proof. =⇒ : By definition, d is the smallest number satisfying the conditions from Lemma 6.
Hence, d′ > d and we can write d′ = dq + r with 0 ≤ r < d. Let G := 〈λ1, . . . , λm〉 and λ ∈ T (G).
Then, ord(λ) | d and ord(λ) | d′. Hence,

ord(λ) | (d′ − dq) = r.

Since d > r is the smallest number with this property we have r = 0, so d | d′.
⇐=: Clear from condition 2 of Lemma 6.

Now, we want to show that the torsion number of algebraic numbers λ1, . . . , λm ∈ Q can actually
be computed. First, we have devised an algorithm in Section 3 which computes a basis v1, . . . , v` ∈
Zm for the lattice L := L(λ1, . . . , λm). Then, the invariant factor of the matrix built by the basis
is precisely the torsion number of the lattice:

Theorem 9. Let v1, . . . , v` ∈ Zm be a basis of the lattice L = 〈v1, . . . , v`〉 ⊆ Zm. Let V :=
(v1, . . . , v`) ∈ Zm×`. Then, the invariant factor of V is the torsion number of L.

Proof. We write

PV Q =

(
D
0

)
=: D ∈ Zm×`

whereD = diag(d1, . . . , d`−1, d) is the Smith normal form and P ∈ Zm×m, Q ∈ Z`×` are unimodular
matrices.

First, we show that the invariant factor d of the matrix V satisfies (4): Let k ∈ N≥1 and v ∈ Zm
with kdv ∈ L. Then, there is a w = (w1, . . . , w`) ∈ Z` such that

kdv = w1v1 + · · ·+ w`v` = V w.
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Therefore,
kdPv = PV w = PV QQ−1w = Dw

with w = Q−1w. The `-th row yields kd(Pv)` = dw` where (Pv)` denotes the `-th entry of the
vector Pv. Hence, k | w`. For the i-th row with i < ` we have kd(Pv)i = diwi. By the property
of the Smith normal form, we have di | d and therefore k | wi. As Q is unimodular, [20, Corollary
158] yields

k | gcd(w) = gcd(Q−1w) = gcd(w).

Hence, w
k ∈ Z` and

dv = 1
kkdv = V w

k ∈ L.

Secondly, we show that the invariant factor d is the smallest number: Suppose d′ is the smallest
number which satisfies (4). By Lemma 8 there is a k such that d = d′k. Let P−1 = (p1, . . . , pm) ∈
Zm×m. As the columns of V are a basis of L and Q is unimodular we have

L = V Z` = P−1DQ−1Z` = P−1DZ`.

Therefore,
{d1p1, . . . , d`−1p`−1, dp`}

is also a basis of L. Let v := dp` = d′kp` ∈ L. By assumption, d′p` ∈ L. Hence,

{d1p1, . . . , d`−1p`−1, d′p`}

is a basis of L as well. Therefore, there is a unimodular change-of-basis matrix U ∈ Zm×m with

U(d1p1, . . . , d`−1p`−1, dp`) = (d1p1, . . . , d`−1p`−1, d
′p`).

In particular, the last column yields Udp` = d′p`. As U is unimodular, we have

d gcd(p`) = gcd(Udp`) = gcd(d′p`) = d′ gcd(p`).

As gcd(p`) 6= 0, we have d = d′.

Example 10. Let
λ1 = 21/2, λ2 = (−2)1/3, λ3 = i, λ4 = −i.

The columns of

V :=


0 0 −2
0 0 3
1 2 −1
1 −2 1

 = P−1


1 0 0
0 1 0
0 0 4
0 0 0

Q−1

are a basis of L(λ1, λ2, λ3, λ4). Hence, d = 4 is the torsion number of λ1, . . . , λ4.

Let c0, . . . , cr ∈ RC with eigenvalues λ1, . . . , λm. Then, we have seen that we can compute a
number d ∈ N≥1 (namely the torsion number) such that the algebra

R := Kσ[c0(dn), . . . , cr(dn)]

only contains sequences which are non-degenerate, i.e., sequences which contain only finitely many
zeros. A non-degenerate sequence might still be a zero divisor in the ring KN. However, we can
still define the localization Q(R) := { cd | c ∈ R, d ∈ R \ {0}}. This localization Q(R) is a field. An
element of Q(R) can, however, only be interpreted as a sequence in KN from some term on (cf.
the discussion in Section 8.2 in [27] or [28]). For instance, the sequence 3n

2n−1 cannot be evaluated
at the term n = 0. This is not a problem for our applications as we will see in Section 5. We
summarize the discussions of the section in the following theorem:
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Theorem 11. Let c0, . . . , cr ∈ RC with eigenvalues λ1, . . . , λm. Then, we can compute a num-
ber d ∈ N≥1 (namely the torsion number) such that the localization Q(R) of the algebra

R := Kσ[c0(dn), . . . , cr(dn)]

is a field. The elements of the field Q(R) can be considered as sequences which are non-zero from
some term on.

From the closed form of C-finite sequences it is clear that these sequences can be seen as special
cases of sums of single nested product expressions. The torsion number can be used to find a certain
algebraic independent basis of these sequences [28].

5 Order bounds

In this section we will derive order bounds for the ring operations and additional closure properties
of C2-finite sequences.

The computation of closure properties of C2-finite sequences can be reduced to solving linear
systems of equations [8, 9]. A C2-finite recurrence

x0(n) + x1(n)σ + · · ·+ xs(n)σs

with xi ∈ R for some suitable ring R of sequences is obtained by computing an element (x0, . . . , xs)
in the kernel of a matrix (

w0, w1, . . . , ws
)
∈ Q(R)r×(s+1). (5)

The wi can be computed iteratively using wi+1 = Mσ(wi) for a suitable matrix M ∈ Q(R)r×r

(where the shift operator σ is applied componentwise).

• In the case a recurrence for a+ b is computed, we use w0 = e0⊕ ẽ0 and M = Ma⊕Mb where
Ma,Mb are the companion matrices of a, b and e0, ẽ0 are the first unit vectors of appropriate
sizes.

• In the case a recurrence for ab is computed, we use w0 = e0 ⊗ ẽ0 and M = Ma ⊗Mb.

• In the case a recurrence for a(`n) is computed, we use w0 = e0 and M = Ma(`n) · · ·Ma(`n+
`− 1).

• In the case a C2-finite recurrence for c(jn2 +kn+`) with j, k, ` ∈ N and a C-finite sequence c
(which does not have 0 as an eigenvalue) is computed, we use

w0 = Mkn+`−r+1
c er−1 and M = M j(2n+1)

c (6)

where Mc is the companion matrix of c and er−1 the last unit vector.

The underlying ring R is the difference algebra Kσ[c0, . . . , cr] generated by the C-finite sequences
c0, . . . , cr appearing in w0 and M .

5.1 Interlacing and subsequence

Theorem 12. Let a1(n), . . . , ad(n) be C2-finite sequences of maximal order r. Let b be the
interlacing of these sequences. We can compute a C2-finite recurrence of order at most dr for b.

Proof. By shifting the recurrences of the as appropriately, we can assume that they all satisfy a
C2-finite recurrence of order r of the form

cs,0(n)as(n) + · · ·+ cs,r(n)as(n+ r) = 0
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for s = 1, . . . , d for C-finite sequences cs,i where the cs,r only have finitely many zeros. Let edi be
the interlacing of c1,i, . . . , cd,i for i = 0, . . . , r. These edi are then C-finite and edr only has finitely
many zeros. Then, b satisfies the recurrence

e0(n)b(n) + ed(n)b(n+ d) + · · ·+ edr(n)b(n+ dr) = 0.

As seen in the proof of Theorem 12, computing the interlacing of C2-finite sequences is simpler
than in the case of C-finite and D-finite sequences. This is because the coefficients of the recurrence,
namely C-finite sequences, are closed under interlacing themselves.

Example 13. Let c be C-finite satisfying

c(n)− c(n+ r) = 0, c(0) = 1, c(1) = · · · = c(r − 1) = 0.

Furthermore, let a be the interlacing of c and d − 1 times the zero sequence. Theorem 12 shows
that a is C2-finite of order at most dr. The sequence a is cyclic and has rd− 1 consecutive zeros.
Hence, the sequence a also has to have order at least rd as otherwise, the sequence would be
constantly zero. The bound in Theorem 12 is therefore tight in general.

Lemma 14. Let a be C2-finite of order r and let d be the torsion number of the eigenvalues
appearing in the recurrence of a. Let ` ∈ N. We can compute a C2-finite recurrence of order at
most r which is satisfied by all sequences a(d`n+ i) for i = 0, . . . , d`− 1.

Proof. The sequences a(n+ i) for i = 0, . . . , d− 1 all satisfy the same recurrence. By the choice of
d, all sequences in the ring R generated by the sequences appearing in

M = Ma(d`n) · · ·Ma(d`n+ d`− 1)

are non-degenerate. By Theorem 11, Q(R) is a field. Therefore, if s = r, then the linear system (5)
is underdetermined and we can compute an element (after clearing denominators) (x0, . . . , xr) ∈
Rr+1 in the kernel with xt 6= 0 and xt+1 = · · · = xr = 0 for some t ≤ r. This gives rise to a
C2-finite recurrence

x0(n) + x1(n)σ + · · ·+ xt(n)σt

as xt only has finitely many zeros by the choice of d.

To extend Lemma 14 to subsequences at arbitrary arithmetic progressions we write such an
arbitrary subsequence as the interlacing of certain subsequences for which Lemma 14 can be applied.

Theorem 15. Let a be C2-finite of order r and let d be the torsion number of the eigenvalues
appearing in the recurrence of a. Let ` ∈ N. We can compute a C2-finite recurrence of order at
most dr which is satisfied by the sequence a(`n).

Proof. By Lemma 14 we can compute a recurrence of order at most r satisfied by a(d`n + i) for
i = 0, . . . , d`− 1. Let b be the interlacing of the d sequences

a(d`n), a(d`n+ `), . . . , a(d`n+ (d− 1)`).

By Theorem 12, b has order at most dr. We show that b(n) = a(`n): Let n = qd+s with 0 ≤ s < d.
Then, by the definition of b

b(n) = b(qd+ s) = a(d`q + sl) = a(`(dq + s)) = a(`n).
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5.2 Ring operations

Theorem 16. Let a, b be C2-finite of order r1, r2, respectively and let d be the torsion number of
the eigenvalues appearing in the recurrences of a, b. Then,

1. the sequence a+ b is C2-finite of order at most d(r1 + r2) and

2. the sequence ab is C2-finite of order at most dr1r2.

Furthermore, such recurrences can be computed.

Proof. We can compute C2-finite recurrences of maximal order r1, r2 for a(dn + i), b(dn + i) by
Lemma 14. The closure properties a(dn+ i) + b(dn+ i) and a(dn+ i)b(dn+ i) can be computed
again by solving a linear system of equations over the field Q(R). Then, the same order bounds
as in the C-finite and D-finite case apply, so the sequences a(dn+ i) + b(dn+ i), a(dn+ i)b(dn+ i)
have maximal orders r1 + r2, r1r2, respectively. By Theorem 12, we can interlace these sequence
and obtain a recurrence of order d(r1 + r2), dr1r2 for a+ b and ab, respectively.

In the special case that both C2-finite sequences are C-finite or D-finite, the torsion number
is 1 and the bounds simplify to the known order bounds for these rings.

Theorem 16 does not imply that the ring of C2-finite sequences is computable. We can compute
C2-finite recurrences for the sum and the product. These recurrences, however, have leading
coefficients which can have finitely many zeros. To uniquely determine the sequences a + b, ab
we might need to define additional initial values at these singularities. However, by the Skolem
problem, we do not know whether these singularities can be computed. This is also illustrated in
the next example.

Example 17. Let a(n) = 2(n+1
2 ) (A006125 in the OEIS [25]) and b(n) = 4(n

2) (A053763). Both
sequences are C2-finite satisfying the recurrences

2n+1 a(n)− a(n+ 1) = 0, 4n b(n)− b(n+ 1) = 0.

The torsion number of L(1, 2, 4) is d = 1. The coefficients for a recurrence of c = a + b are given
by an element in the kernel of (

1 2n+1 22n+3

1 22n 24n+2

)
.

A recurrence is therefore, for instance, given by

23n+3(2n − 1)c(n)− 2n+2(22n − 2)c(n+ 1) + (2n − 2)c(n+ 2) = 0.

The recurrence has order ord(a) + ord(b) = 2 as expected but the leading coefficient has a zero
term at n = 1. Shifting the recurrence yields a recurrence of higher order with a leading coefficient
which does not have any zero terms anymore.

Example 18. Let c be C-finite of order 2 satisfying

c(n)− c(n+ 2) = 0, c(0) = −1, c(1) = 1.

Let a, b be C2-finite satisfying

a(n) = 1 c(n)b(n)− b(n+ 1) = 0, b(0) = 1.

The eigenvalues that appear are 1 and −1. The torsion number is therefore d = 2. Let ai(n) =
a(2n+ i) and bi(n) = b(2n+ i) for i = 0, 1. These are even C-finite of order 1 satisfying

ai(n)− ai(n+ 1) = 0, bi(n) + bi(n+ 1) = 0.

Let si = ai + bi. These si are C-finite of order 2 satisfying

si(n)− si(n+ 2) = 0.
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The interlacing s = a+ b of s0, s1 satisfies the C-finite recurrence of order 4 = d(ord(a) + ord(b))

s(n)− s(n+ 4) = 0.

However, s also satisfies a C2-finite recurrence of order 3, namely

c0(n)s(n) + c2(n)s(n+ 2) + s(n+ 3) = 0

with

c0(n)− c0(n+ 2) = 0, c0(0) = −1, c0(1) = 0,

c2(n)− c2(n+ 2) = 0, c2(0) = 0, c2(1) = −1.

There cannot be a shorter recurrence for s(n) as it contains 2 consecutive zeros.

5.3 Sparse subsequences

Theorem 19. Let c be C-finite of order r and λ1, . . . , λm its eigenvalues and λi 6= 0 for all
i = 1, . . . ,m. Let d be the torsion number of the eigenvalues. Then, we can compute a C2-finite
recurrence of

c(jn2 + kn+ `)

of maximal order dr for all j, k, ` ∈ N.

Proof. In a first step, we show how we can find a recurrence of order r for the sequence

a(n) = c(d(jn2 + kn) + `).

Lemma 11 in [14] shows that Mpn+q for p, q ∈ Z is a matrix of C-finite sequences. The proof shows
that the characteristic polynomials of the sequences is the characteristic polynomial of Mp. Let
Mc be the companion matrix of c. Suppose

(x− λ1)d1 · · · (x− λm)dm

is the characteristic polynomial of c which, by definition of the companion matrix, is also equal to
the characteristic polynomial of Mc. Then, by the closed form of C-finite sequences, the charac-
teristic polynomial of c(pn) is given by

(x− λp1)d1 · · · (x− λpm)dm

which, in turn, is equal to the characteristic polynomial of Mp
c . By (6), the sequences that generate

the underlying ring R used for computing a recurrence for a(n) all have characteristic polynomial
equal to the characteristic polynomials of Mdk

c and M2dj
c . An element in the kernel of the linear

system over the field Q(R) can easily be computed if s = r. This gives rise to a C2-finite recurrence
of order r for a.

An arbitrary sequence
b(n) = c(jn2 + kn+ `)

can be written as interlacing of sequences

ar(n) = c(d(djn2 + (2jr + k)n) + jr2 + kr + `)

for r = 0, . . . , d− 1 as the term at index n = qd+ r of the interlacing is precisely given by

ar(q) = c(d(djq2 + (2jr + k)q) + jr2 + kr + `)

= c(j(d2q2 + 2rq + r2) + k(dq + r) + `) = c(jn2 + kn+ `).

We can compute C2-finite recurrences of order r for these sequences ar by the first part of the
proof (choosing j = dj, k = 2jr+ k, ` = jr2 + kr+ `). By Theorem 12 we can therefore compute a
C2-finite recurrence of order dr for b.
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Example 20. Let c be the C-finite sequence (A006131 in the OEIS) satisfying

4 c(n) + c(n+ 1)− c(n+ 2) = 0, c(0) = c(1) = 1.

The sequence has eigenvalues 1±
√
17

2 and their torsion number is 1. The sparse subsequence a(n) =
c(n2) is C2-finite of order 2 satisfying

c0(n)a(n)− c(4n+ 3)a(n+ 1) + c(2n)a(n+ 2) = 0

where c0 is C-finite of order 2 satisfying

4096 c0(n)− 144 c0(n+ 1) + c0(n+ 2) = 0, c0(0) = −20, c0(1) = −1856.

6 Outlook

Recently, the class of simple C2-finite sequences has been introduced [24] that satisfies the same
computational properties as C2-finite sequences, but does not share the same technical issues. In
particular, it is possible to derive bounds for the asymptotic behavior, there is a characterization
through the generating function and closure properties can be computed more efficiently.

It is, however, not clear whether it is possible to derive order bounds for simple C2-finite
sequences as we have presented here for C2-finite sequence. In that case, one is dealing with an
inhomogeneous linear system and the underlying ring is not a principal ideal domain. Hence, one
cannot simply bound the rank of modules.

Typically, given a defining recurrence for a C2-finite sequence, it is difficult to argue that it
does not satisfy a shorter recurrence. For D-finite sequences, it is a common strategy to use Guess-
and-prove to derive a shorter recurrence (or to find evidence that it is holonomic in the first place).
It would be desirable to have a guessing routine for C2-finite sequences. As a naive approach leads
to a non-linear system (see also [29]), it needs to be investigated how this can be solved efficiently.
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