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Abstract. We introduce a new method for discovering matrix multiplication schemes based on random

walks in a certain graph, which we call the flip graph. Using this method, we were able to reduce the
number of multiplications for the matrix formats (4, 4, 5) and (5, 5, 5), both in characteristic two and for

arbitrary ground fields.

1. Introduction

Nobody knows the computational cost of computing the product of two matrices. Strassen’s discov-
ery [17] that two 2×2-matrices can be multiplied with only 7 multiplications in the ground field launched
intensive research on the complexity of matrix multiplication during the past decades. One branch of this
research aims at finding upper (or possibly also lower) bounds on the matrix multiplication exponent ω.
The current world record ω < 2.37188 is held by Duan, Wu and Zhou [7] and only slightly improves
the previous record ω < 2.37286 by Alman and Williams [1]. These results concern asymptotically large
matrix sizes.

Another branch of research on matrix multiplication algorithms concerns specific small matrix sizes.
For 2 × 2 matrices, it is known that there is no way to do the job with only 6 multiplications [19], and
that Strassen’s algorithm is essentially the only way to do it with 7 [6]. Also for multiplying a 2 × 2
matrix with a 2 × p matrix and for multiplying a 2 × 3 matrix with a 3 × 3 matrix, optimal algorithms
are known [11]. For all other formats, the known upper and lower bounds do not match. For example,
for the case 3× 3 times 3× 3, the best known upper bound is 23 [14] and the best known lower bound is
19 [2] unless we impose restrictions on the ground domain such as commutativity.

An upper bound for a specific matrix format can be obtained by stating an explicit matrix multi-
plication scheme with as few multiplications as possible. Such schemes can be discovered by various
techniques, including hand calculation [17, 14], numerical methods [16, 15], SAT solving [5, 10, 9], or
machine learning [8]. The latter approach, due to Fawzi et al., has received a lot of attention, even in
the general public, because it led to an unexpected improvement of the upper bound for multiplying
two 4× 4 matrices from 49 to 47 multiplications in characteristic two. They also reduced the bound for
multiplying two 5 × 5 matrices from 98 to 96 in characteristic two, and found improvements for some
formats involving rectangular matrices.

In our quick response [12] to the paper of Fazwi et al., we announced that we can find further schemes
for 4 × 4 matrices using 47 multiplications in characteristic two, and that we can reduce the number of
multiplications required for 5× 5 matrices in characteristic two to 95. In the present paper, we introduce
the method by which we found these schemes.

We define a graph whose vertices are correct matrix multiplication schemes and where there is an edge
from one scheme to another if the second can be obtained from the first by some kind of transformation.
We consider two transformations. One is called a flip and turns a given scheme to a different one with
the same number of multiplications, and the other is called a reduction and turns a given scheme to one
with a smaller number of multiplications. The precise construction of this flip graph is given in Sect. 3.
In Sect. 4, we illustrate (parts of) the flip graph for 2× 2 and 3× 3 matrices.

In order to find better upper bounds for a specific format, we start from a known scheme, e.g., the
standard algorithm, and perform a random walk in the flip graph. Although reduction edges are much
more rare than flip edges, it turned out that there are enough of them to reach interesting schemes with a
reasonable amount of computation time. In particular, we were able to match the best known algorithms
for all multiplication formats n×m times m× p with n,m, p ≤ 5, and found better bounds in four cases.
These results are reported in Sect. 5.
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2. Matrix Multiplication

Let K be a field, let R be a K-Algebra and let A ∈ Rn×m, B ∈ Rm×p. Recall that the computation
of the matrix product C = AB by a Strassen-like algorithm proceeds in two stages. In the first stage
we compute certain products m1, . . . ,mr of linear combinations of entries of A and linear combinations
of entries of B. In the second stage the entries of C are obtained as linear combinations of the mi. An
algorithm of this form is called a bilinear algorithm [4].

For example, in the case n = m = p = 2, if we let

A =

(
a1,1 a1,2
a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
and C =

(
c1,1 c1,2
c2,1 c2,2

)
,

then Strassen’s algorithm computes C in the following way:

m1 = (a1,1 + a2,2)(b1,1 + b2,2) c1,1 = m1 +m4 −m5 +m7

m2 = (a2,1 + a2,2)(b1,1) c1,2 = m3 +m5

m3 = (a1,1)(b1,2 − b2,2) c2,1 = m2 +m4

m4 = (a2,2)(b2,1 − b1,1) c2,2 = m1 −m2 +m3 +m6.

m5 = (a1,1 + a1,2)(b2,2)

m6 = (a2,1 − a1,1)(b1,1 + b1,2)

m7 = (a1,2 − a2,2)(b2,1 + b2,2)

It is common and convenient to express matrix multiplication in the language of tensors. For 2 × 2
matrices, the matrix multiplication tensor is

M2,2,2 =

2∑
i,j,k=1

Ei,j ⊗ Ej,k ⊗ Ek,i ∈ K2×2 ⊗K2×2 ⊗K2×2,

where Eu,v refers to the matrix having a 1 at position (u, v) and zeros elsewhere. Strassen’s algorithm
is based on the observation that this tensor can also be written as the sum of only seven tensors of the
form A⊗B ⊗ Γ . Indeed, we have

M2,2,2 = (a1,1 + a2,2)⊗ (b1,1 + b2,2)⊗ (c1,1 + c2,2)

+ (a2,1 + a2,2)⊗ (b1,1)⊗ (c1,2 − c2,2)

+ (a1,1)⊗ (b1,2 − b2,2)⊗ (c2,1 + c2,2)

+ (a2,2)⊗ (b2,1 − b1,1)⊗ (c1,1 + c1,2)

+ (a1,1 + a1,2)⊗ (b2,2)⊗ (c2,1 − c1,1)

+ (a2,1 − a1,1)⊗ (b1,1 + b1,2)⊗ (c2,2)

+ (a1,2 − a2,2)⊗ (b2,1 + b2,2)⊗ (c1,1),

where for better readability we write ai,j , bi,j , ci,j instead of Ei,j . Readers not comfortable with tensor
products are welcome to understand ai,j , bi,j , ci,j as polynomial variables and ⊗ as multiplication. Note
that each row in the expression above corresponds to one of the mi’s from before. The first two factors
encode their definitions and the third how they enter into the cj,i. Note also that the indices in the third
factor are swapped in order to be consistent with the matrix multiplication literature, where this version
is preferred because it makes certain equations more symmetric.

The general definition is as follows.

Definition 1. Let n,m, p ∈ N. The matrix multiplication tensor of the format (n,m, p) is defined as

Mn,m,p =

n,m,p∑
i,j,k=1

ai,j ⊗ bj,k ⊗ ck,i ∈ Kn×m ⊗Km×p ⊗Kp×n,

where au,v, bu,v, cu,v refer to matrices of the respective format having a 1 at position (u, v) and zeros in
all other positions.

Rank-one tensors are non-zero tensors that can be written as A⊗B⊗Γ for certain matrices A ∈ Kn×m,
B ∈ Km×p, Γ ∈ Kp×m. The rank of a tensor T is the smallest number r such that T can be written as
a sum of r rank-one tensors.

An (n,m, p)-matrix multiplication scheme is a finite set S of rank-one tensors whose sum is Mn,m,p.
We call |S| the rank of the scheme.
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The sum of k linearly independent rank-one tensors need not necessarily have tensor rank k. Strassen’s
discovery amounts precisely to the observation that M2,2,2, which is defined as a sum of 8 linearly
independent rank-one tensors, has only rank 7. A more simple example is the equation

a1,1 ⊗ b1,1 ⊗ c1,1 + a1,1 ⊗ b1,2 ⊗ c3,1 + a1,1 ⊗ (b1,1 + b1,2)⊗ c2,2
= a1,1 ⊗ b1,1 ⊗ (c1,1 + c2,2) + a1,1 ⊗ b1,2 ⊗ (c3,1 + c2,2).

If a matrix multiplication scheme contains the three rank-one tensors in the first line, we can replace them
by the two rank-one tensors in the second line and thereby reduce the rank by one. This observation can
be generalized as follows.

Definition 2. Let n,m, p, r ∈ N and let S = {A(i) ⊗ B(i) ⊗ Γ (i) | i ∈ {1, . . . , r}} be an (n,m, p)-matrix
multiplication scheme. We call S reducible if there is a nonempty set I ⊆ {1, . . . , r} such that

(1) dimK〈A(i)〉i∈I = 1 and
(2) {B(i) | i ∈ I} is linearly dependent over K,

or analogously with B,A or A,Γ or Γ,A or B,Γ or Γ,B in place of A,B.

Proposition 3. Let n,m, p, r ∈ N and let S be a reducible (n,m, p)-matrix multiplication scheme of
rank r. Then there exists an (n,m, p)-matrix multiplication scheme of rank r − 1.

Proof. We prove the statement in the case that the conditions in Def. 2 hold for A and B. In the other
cases the proof works analogously. Since {B(i) | i ∈ I} is linearly dependent, there is a t ∈ I such that
B(t) =

∑
i∈I\{t} βiB

(i) for some βi ∈ K. Moreover, there are αi ∈ K such that A(t) = αiA
(i). Hence, we

have ∑
i∈I

A(i) ⊗B(i) ⊗ Γ (i)

=
∑

i∈I\{t}

A(i) ⊗B(i) ⊗ Γ (i) + αiA
(i) ⊗

∑
i∈I\{t}

βiB
(i) ⊗ Γ (t)

=
∑

i∈I\{t}

A(i) ⊗B(i) ⊗ Γ (i) +
∑

i∈I\{t}

A(i) ⊗B(i) ⊗ αiβiΓ
(t)

=
∑

i∈I\{t}

A(i) ⊗B(i) ⊗ (Γ (i) + αiβiΓ
(t))

Therefore,

S′ = {A(i) ⊗B(i) ⊗ Γ (i) | i ∈ {1, . . . , r} \ I}

∪ {A(i) ⊗B(i) ⊗ (Γ (i) + αiβiΓ
(t)) | i ∈ I \ {t}}

is a multiplication scheme with rank r − 1. �

We call a scheme S′ constructed as above a reduction of S.
Symmetries of the matrix multiplication tensorMn,m,p give rise to various ways to transform a given

matrix multiplication scheme into another one. For example, because of the identity (AB)> = B>A>,
exchanging each rank-one tensor A⊗B⊗Γ by B>⊗A>⊗Γ> maps a correct scheme to another correct
scheme. A correct scheme is also obtained if we replace every rank-one tensor A⊗B ⊗ Γ by B ⊗ Γ ⊗A.
Finally, if U ∈ Km×m is invertible, then the identity AB = AUU−1B implies that also replacing
every rank-one tensor A ⊗ B ⊗ Γ by AU ⊗ U−1B ⊗ Γ maps a correct scheme to another one. These
transformations generate the symmetry group of Mn,m,p. For more details on this group see [6, 13]. We
can let the symmetry group act on the set of matrix multiplications and call two schemes equivalent if
they belong to the same orbit.

Def. 2 is compatible with the action of the symmetry group. For permutations, this is because the
definition explicitly allows any two factors to take the roles of A and B, and linear dependence is preserved
under transposition. Likewise, if some matrices B(i) (i ∈ I) are linearly dependent, then so are the
matrices V B(i)W−1 (i ∈ I) for any invertible matrices V,W . Therefore, we can extend Def. 2 from
individual matrix multiplication schemes to equivalence classes.

3. The Flip Graph

As reducibility is preserved by the application of a symmetry, the only chance to get from an irreducible
to a reducible scheme is by a transformation that, at least in general, does not preserve symmetry. Flips
have this feature. The idea is to subtract something from one rank-one tensor and add it to one of the
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others. This can be done for any two rank-one tensors that share a common factor. For example, we
have

A⊗B ⊗ Γ + A⊗B′ ⊗ Γ ′

= A⊗ (B +B′)⊗ Γ + A⊗B′ ⊗ (Γ ′ − Γ ).

In contrast to a symmetry transformation, this transformation only affects two elements of the multiplica-
tion scheme instead of all. Therefore, we can in general expect the resulting scheme to be non-equivalent
to the original one.

Definition 4. Let n,m, p, r ∈ N and let S, S′ be (n,m, p)-matrix multiplication schemes of rank r. We
call S′ a flip of S if there are

(1) T1 = A⊗B ⊗ Γ ∈ S,
(2) T2 = A⊗B′ ⊗ Γ ′ ∈ S and
(3) T ∈ {A⊗B ⊗ Γ ′, A⊗B′ ⊗ Γ}

such that (S \ {T1, T2}) ∪ {T1 + T, T2 − T} = S′.
The definition is meant to apply analogously for any permutation of A,B and Γ .

The union is always disjoint since we require S and S′ to be of the same rank. Cases where S′ would
have a smaller rank than S need not be included because in these cases S′ is a reduction of S. Note that
flips are reversible because if S′ = (S \ {T1, T2}) ∪ {T1 + T, T2 − T}, then S = (S′ \ {T2 − T, T1 + T}) ∪
{(T2 − T ) + T, (T1 + T )− T}.

Flips are well-defined for equivalence classes of matrix multiplication schemes in the following sense:
If S′ is a flip of S and g is an element of the symmetry group, then g(S) is a flip of g(S′). This is the
case since Def. 4 applies for arbitrary permuations of A,B, Γ and because the symmetry transformations
act linearly on the individual matrices.

Def. 4 introduces flips as rather specific ways of replacing two rank-one tensors in a given scheme by
some other rank-one tensors. However, it turns out that if we only want to replace two rank-one tensors
at a time, then there is not much more we can do. Thm. 7 makes this more precise.

Lemma 5. Let U, V and W be vector spaces. For i = 1, . . . , 4, let A(i) ∈ U,B(i) ∈ V, Γ (i) ∈ W be such
that

A(1) ⊗B(1) ⊗ Γ (1) +A(2) ⊗B(2) ⊗ Γ (2)

= A(3) ⊗B(3) ⊗ Γ (3) +A(4) ⊗B(4) ⊗ Γ (4)
(1)

and
dim〈A(1), A(2)〉 = dim〈B(1), B(2)〉 = dim〈Γ (1), Γ (2)〉 = 2.

Then {
A(1) ⊗B(1) ⊗ Γ (1), A(2) ⊗B(2) ⊗ Γ (2)

}
=
{
A(3) ⊗B(3) ⊗ Γ (3), A(4) ⊗B(4) ⊗ Γ (4)

}
.

Proof. Since A(1) and A(2), B(1) and B(2), and Γ (1) and Γ (2) are linearly independent, there are

α1, α2, α
′
1, α
′
2, β1, β2, β

′
1, β
′
2, γ1, γ2, γ

′
1, γ
′
2 ∈ K,

A,A′ ∈ U \ 〈A(1), A(2)〉,

B,B′ ∈ V \ 〈B(1), B(2)〉,

Γ, Γ ′ ∈W \ 〈Γ (1), Γ (2)〉
such that

A(3) = α1A
(1) + α2A

(2) +A, A(4) = α′1A
(1) + α′2A

(2) +A′,

B(3) = β1B
(1) + β2B

(2) +B, B(4) = β′1B
(1) + β′2B

(2) +B′,

Γ (3) = γ1Γ
(1) + γ2Γ

(2) + Γ, Γ (4) = γ′1Γ
(1) + γ′2Γ

(2) + Γ ′.

After plugging these in (1) and equating coefficients we obtain the following system of equations:

α1β1γ1 + α′1β
′
1γ
′
1 = 1, α1β1γ2 + α′1β

′
1γ
′
2 = 0,

α1β2γ1 + α′1β
′
2γ
′
1 = 0, α1β2γ2 + α′1β

′
2γ
′
2 = 0,

α2β1γ1 + α′2β
′
1γ
′
1 = 0, α2β1γ2 + α′2β

′
1γ
′
2 = 0,

α2β2γ1 + α′2β
′
2γ
′
1 = 0, α2β2γ2 + α′2β

′
2γ
′
2 = 1.
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A straightforward computation confirms that these equations imply that either α1β1γ1 = α′2β
′
2γ
′
2 = 1

and all other variables are 0 or α2β2γ2 = α′1β
′
1γ
′
1 = 1 and all other variables are 0. It follows further that

A,A′, B,B′, C, C ′ need to be zero, which completes the proof. �

Lemma 6. Let U, V be vector spaces. Let B(1), B(2), B(3), B(4) ∈ U and Γ (1), Γ (2), Γ (3), Γ (4) ∈ V be
such that

B(1) ⊗ Γ (1) +B(2) ⊗ Γ (2) = B(3) ⊗ Γ (3) +B(4) ⊗ Γ (4),

dim〈B(1), B(2)〉 = dim〈Γ (1), Γ (2)〉 = 2, and Γ (3), Γ (4) 6= 0.
Then 〈B(1), B(2)〉 = 〈B(3), B(4)〉 and 〈Γ (1), Γ (2)〉 = 〈Γ (3), Γ (4)〉.

Proof. Since Γ (1), Γ (2), Γ (3), Γ (4) 6= 0 the equality implies that B(1), B(2), B(3), B(4) are linearly depen-
dent. Therefore, there exist µ, ν, λ ∈ K such that B(1) = µB(2) + νB(3) + λB(4). It follows

B(2) ⊗ (Γ (2) + µΓ (1)) = B(3) ⊗ (Γ (3) − νΓ (1)) +B(4) ⊗ (Γ (4) − λΓ (1)).

Since Γ (1) and Γ (2) are linearly independent this implies B(2) ∈ 〈B(3), B(4)〉. For the same reason
we have B(1) ∈ 〈B(3), B(4)〉 and since B(1) and B(2) are linearly independent it follows 〈B(1), B(2)〉 =
〈B(3), B(4)〉. The equality 〈Γ (1), Γ (2)〉 = 〈Γ (3), Γ (4)〉 is shown by the same argument. �

Theorem 7. Let U, V and W be vector spaces. For i = 1, . . . , 4, let A(i) ∈ U \ {0}, B(i) ∈ V \ {0}, Γ (i) ∈
W \ {0} be such that

A(1) ⊗B(1) ⊗ Γ (1) +A(2) ⊗B(2) ⊗ Γ (2)

= A(3) ⊗B(3) ⊗ Γ (3) +A(4) ⊗B(4) ⊗ Γ (4),
(2)

dim〈B(1), B(2)〉 = dim〈Γ (1), Γ (2)〉 = 2, and{
A(1) ⊗B(1) ⊗ Γ (1), A(2) ⊗B(2) ⊗ Γ (2)

}
6=
{
A(3) ⊗B(3) ⊗ Γ (3), A(4) ⊗B(4) ⊗ Γ (4)

}
.

Then the following hold:

(1) dim〈A(1), A(2), A(3), A(4)〉 = 1
(2) 〈B(1), B(2)〉 = 〈B(3), B(4)〉
(3) 〈Γ (1), Γ (2)〉 = 〈Γ (3), Γ (4)〉

Proof. We start by showing the first claim. If A(1) and A(2) are linearly independent, then it follows from
Lemma 5 that {

A(1) ⊗B(1) ⊗ Γ (1), A(2) ⊗B(2) ⊗ Γ (2)
}

=
{
A(3) ⊗B(3) ⊗ Γ (3), A(4) ⊗B(4) ⊗ Γ (4)

}
.

Thus, A(1) and A(2) must be linearly dependent. So there exists α ∈ K such that A(2) = αA(1). It follows

A(1) ⊗ (B(1) ⊗ Γ (1) + α(B(2) ⊗ Γ (2)))

= A(3) ⊗B(3) ⊗ Γ (3) +A(4) ⊗B(4) ⊗ Γ (4).

This can only be the case if A(3) and A(4) or B(3) ⊗ Γ (3) and B(4) ⊗ Γ (4) are linearly dependent. If
B(3)⊗Γ (3) and B(4)⊗Γ (4) are linearly dependent, then the right side of (2) has rank one, so the left side
also have rank 1. This would imply that either dim〈B(1), B(2)〉 = 1 or dim〈Γ (1), Γ (2)〉 = 1. Therefore
A(3) and A(4) are linearly dependent and so dim〈A(1), A(2), A(3), A(4)〉 = 1.

Using that the A(i) are constant multiples of each other, and that (λA)⊗B ⊗ Γ = A⊗ (λB)⊗ Γ for
all λ ∈ K, we may as well assume A(1) = A(2) = A(3) = A(4). The equality (2) then reduces to

B(1) ⊗ Γ (1) +B(2) ⊗ Γ (2) = B(3) ⊗ Γ (3) +B(4) ⊗ Γ (4).

The remaining claims follow directly from Lemma 6. �

Informally, Thm. 7 says that if we want to replace two rank-one tensors nontrivially by two others,
then they must agree in one of the factors and this factor cannot change. Additionally, the vector spaces
generated by the other factors must stay the same.

We now introduce the main concept of this paper.
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Definition 8. Let n,m, p ∈ N and let V be the set of all orbits of (n,m, p)-matrix multiplication schemes
under the symmetry group and define

E1 = {(S, S′) | S′ is a flip of S}
E2 = {(S, S′) | S′ is a reduction of S}.

(1) The graph G = (V,E1 ∪ E2) is called the (n,m, p)-flip graph. The edges in E1 are called flips
and the edges in E2 are called reductions.

(2) For a given r ∈ N, the subgraph of G consisting of all vertices of rank at most r is called the
(m,n, p)-flip graph of rank at most r.

(3) For a given r ∈ N, the set {S ∈ V : rank(S) = r} is called the rth level of G.

Note that flips always connect vertices belonging to the same level, whereas a reduction always leads
to a vertex belonging to a lower level. Also keep in mind that if there is a flip from S to S′, then there
is one from S′ to S. The flip graph may have loops, these correspond to flips that accidentally turn a
certain scheme into an equivalent one.

Since we are interested in schemes of low rank, we are interested in paths containing reductions, because
these lead us into lower levels. We have not introduced any edges leading to higher levels, although that
would be an easy thing to do. For example, given a scheme S containing a rank-one tensor A⊗ B ⊗ Γ ,
we can replace this tensor by the two tensors A⊗B⊗ (Γ −Γ ′) and A⊗B⊗Γ ′, for arbitrary Γ ′ ∈ Kp×n.
The result is a scheme that admits a reduction to S. We could call this step a split of Γ . A split produces
a correct matrix multiplication scheme as long as the original scheme does not already contain any of the
newly added elements. With this observation, we can show that the flip graph is connected.

Theorem 9. For every n,m, p ∈ N, the (n,m, p)-flip graph is weakly connected, i.e., the undirected graph
obtained from it by replacing every reduction by a bidirectional edge, is connected.

Proof. For any given scheme S0, we construct a path to the standard algorithm in the underlying undi-
rected graph. The first part of the path consists of reductions to an irreducible scheme S1. Then any two
elements A⊗B⊗Γ,A′⊗B′⊗Γ ′ ∈ S1 have the property that A⊗B and A′⊗B′ are linearly independent.
This ensures that splits of Γ lead to pairwise distinct rank-one tensors. Next we repeatedly split Γ for
every element to construct a scheme S2 such that every element of S2 can be written as A⊗B ⊗ ci,j for
some i, j ∈ N.

For any two elements A ⊗ B ⊗ Γ,A′ ⊗ B′ ⊗ Γ ′ ∈ S2 where A and A′ are linearly dependent and Γ
and Γ ′ are linearly dependent there is a reduction that combines these two elements. We follow such
reductions until we get a scheme S3 where any two elements A ⊗ B ⊗ Γ,A′ ⊗ B′ ⊗ Γ ′ ∈ S3 have the
property that A ⊗ Γ and A′ ⊗ Γ ′ are linearly independent. Then we can repeatedly split B for every
element to construct a scheme S4 where every element has the form A⊗bi,j⊗ck,l. We then use reductions
to combine all elements of S4 with matching bi,j and ck,l. This way we get matrix multiplication scheme
S5 which for all i, j, k, l ∈ N contains at most one element of the form A⊗ bi,j ⊗ ck,l. Therefore, S5 must
be the standard algorithm. �

We are interested in paths in the flip graph that lead to schemes of low rank. Such paths are more
likely to exist if there are many flips. Therefore, we select a ground field K for which we can expect the
number of flips to be large. As specified in Def. 4 and justified in Thm. 7, a flip is possible whenever a
scheme contains two rank-one tensors sharing a common factor. The chances for a common factor are
higher if the field K is small, because the smaller the field, the smaller the number of possible factors.
For this reason, we consider the ground field K = Z2 in the following experiments. For this ground field
Thm. 7 implies that the only way to replace two rank-one tensors in a scheme is a flip.

Corollary 10. Let r ∈ N and let S and S′ be two irreducible matrix multiplication schemes of rank r
over Z2 that differ in exactly two elements. Then S′ is a flip of S.

Proof. Let A(1) ⊗B(1) ⊗ Γ (1), A(2) ⊗B(2) ⊗ Γ (2) ∈ S and A(3) ⊗B(3) ⊗ Γ (3), A(4) ⊗B(4) ⊗ Γ (4) ∈ S′ be
those elements. Then we have

A(1) ⊗B(1) ⊗ Γ (1) +A(2) ⊗B(2) ⊗ Γ (2)

= A(3) ⊗B(3) ⊗ Γ (3) +A(4) ⊗B(4) ⊗ Γ (4)

and {
A(1) ⊗B(1) ⊗ Γ (1), A(2) ⊗B(2) ⊗ Γ (2)

}
6=
{
A(3) ⊗B(3) ⊗ Γ (3), A(4) ⊗B(4) ⊗ Γ (4)

}
.
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standard
algorithm

Strassen’s
algorithm

Figure 1. In the (2, 2, 2)-flip graph of rank at most 8, this figure shows the component
containing the standard algorithm. Flips are depicted by undirected edges and reductions
by directed edges.

Since S is not reducible at least two of 〈A(1), A(2)〉,〈B(1), B(2)〉 and 〈Γ (1), Γ (2)〉 have dimension two, say

dim〈B(1), B(2)〉 = dim〈Γ (1), Γ (2)〉 = 2.

Then from Theorem 7 follows that dim〈A(1), A(2), A(3), A(4)〉 = 1 and therefore we also have A(1) =
A(2) = A(3) = A(4). Moreover, 〈B(1), B(2)〉 = 〈B(3), B(4)〉 and 〈Γ (1), Γ (2)〉 = 〈Γ (3), Γ (4)〉. Because of
K = Z2, this can only be if B(3) = B(1) + B(2) or Γ (3) = Γ (1) + Γ (2) and likewise for B(4) and Γ (4).
Thus, S′ is a flip of S. �

4. 2× 2 matrices and 3× 3 matrices

The (2, 2, 2)-flip graph of rank at most 8 for K = Z2 is not too big. Fig. 1 shows the connected
component to which the standard algorithm belongs. It has 272 vertices, each representing the orbit of one
multiplication scheme, and 1183 edges, 7 of which are reductions (shown by green arrows). The component
also contains Strassen’s algorithm. The distance between the standard algorithm and Strassen’s algorithm
is 8, a path is highlighted in the figure. Although the standard algorithm allows many flips, it only has
one neighbor, because any two schemes obtained by a flip from the standard algorithm are equivalent.
The diameter of the component is 12.

Using SAT solvers as in [10, 9], we have tried to find out whether there are other matrix multiplication
schemes of rank at most 8. For 2 × 2 matrices, modern SAT solvers have no trouble generating many
multiplication schemes in a short time. Strangely enough, while we found many solutions belonging to
the connected component shown in Fig. 1, we only found exactly one solution (up to symmetries) that
does not belong to this component:

M2,2,2 = (a1,1 + a2,2)⊗ (b1,1 + b2,2)⊗ (c2,1)

+ (a2,2)⊗ (b1,1 + b2,1)⊗ (c1,2 + c2,1 + c2,2)

+ (a2,1 + a2,2)⊗ (b1,1)⊗ (c1,2 + c2,2)

+ (a1,1)⊗ (b1,2 + b2,2)⊗ (c1,1)

+ (a1,2)⊗ (b1,1 + b1,2 + b2,1 + b2,2)⊗ (c1,1 + c2,1 + c2,2)

+ (a1,2 + a2,1)⊗ (b1,1 + b1,2)⊗ (c2,2)

+ (a1,2 + a2,2)⊗ (b2,1 + b2,2)⊗ (c2,1 + c2,2)

+ (a1,1 + a1,2)⊗ (b1,1 + b1,2 + b2,2)⊗ (c1,1 + c2,1).

This scheme has no neighbors and thus forms a connected component of its own. We do not know whether
the (2, 2, 2)-flip graph of rank at most 8 has any further components.

For 3 × 3-matrices and K = Z2, the flip graph is so large that it is no longer possible to determine
the entire component of the standard algorithm in the (3, 3, 3)-flip graph of rank at most 27. Again, and
for the same reason as before, the standard algorithm itself has only one neighbor. At distance 2, we
found 600 vertices, at distance 3 there are about 20000, and at distance 4 nearly 600000. None of them
is reducible. Computing the whole neighborhood of distance 5 is infeasible.
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Figure 2. Sparsity of reduction steps. If a point (x, y) belongs to a region labeled r,
then for x random paths starting from the standard algorithms, the yth vertex has rank r.

With long random walks however, it is quite likely to encounter reducible vertices. We employ the
following simple procedure to search for reductions.

Algorithm 1. Input: A matrix multiplication scheme S and a limit ` for the path length.
Output: A matrix multiplication scheme with rank decreased by one or ⊥.

1 if S has no neighbours, return ⊥
2 for i = 1, . . . , `, do:

3 if S is reducible, then return a reduction of S.

4 if one of the neighbours of S is reducible, then return a reduction of it.

5 Set S to a randomly selected neighbour of S.

6 return ⊥

An implementation of this procedure in C can explore paths of lengths 108 within minutes and needs
almost no memory.

Starting from the standard algorithm we easily find schemes of rank 23, matching the record set by
Laderman in 1976 [14], but we found no scheme of rank 22. Restricting the lengths of the random walks
to 107, more than 95% of the walks reach a scheme of rank 23, and almost all a scheme of rank 24. Recall
that along a random walk, the rank can only decrease but not increase. In Fig. 2, we show for 10000
random walks after how many steps they reach a scheme of a specific rank.

If we now focus on the flip graph of rank at most 23, it is feasible to determine for a given vertex
the entire connected component to which it belongs. The schemes we reached by random walks from
the standard algorithm turned out to belong to 584 different connected components with altogether
64061 vertices. The components are quite diverse with respect to size and symmetry; Fig. 3 shows three
examples. The component on the top has 681 vertices and has no automorphisms. Some connected
components are isomorphic to each other, typically such components enjoy nontrivial symmetries. For
example, the component shown at the bottom right of Fig. 3 has an automorphism group of order 576
and appears 32 times.

The small component shown on the left appears 39 times and has an automorphism group of order
8. The triangular structure in this component appears often in the flip graph. It originates from the
two possibilities to choose T for a flip. Two flips of a scheme that use the same rank-one tensors in the
flip always are adjacent. The square structure in the middle appears whenever there is an element that
shares a different factor with each of two other elements of a scheme.

There are also components consisting of a single vertex. Laderman’s scheme is such an example.
It seems that not all schemes of rank 23 can be reached from the standard algorithm, because the

64000 solutions we were able to obtain by random paths starting from the standard algorithm do not
include all the 17000 solutions found in [9] using SAT solving. Of course, given the size of the graph and
the lengths of the paths, it is virtually impossible to check whether there really is no path or we were
just not lucky enough to find it.

5. Other formats

For larger matrix formats, it becomes harder to find random paths starting from the standard algorithm
that go all the way down to a scheme of low rank. An adjusted search strategy that simultaneously
considers many partial random paths was found to work more efficiently. In this variant, we maintain
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Figure 3. Three example components of the (3, 3, 3)-flip graph of rank at most 23.

a pool of schemes of a certain rank r from which we randomly choose starting points, then do random
walks starting from there until either a length limit or a scheme of rank r−1 is encountered. In the latter
case, the new scheme is saved. The procedure is repeated until a prescribed number of schemes of rank
r − 1 is reached. Then these schemes form the new pool of starting points and the method is repeated
until the desired target rank is reached.

Algorithm 2. Input: A set P of schemes of a certain rank, a path length limit `, a pool size limit s, and
a target rank r
Output: A set Q of s schemes of rank r

1 if P consists of schemes of rank r, return P .

2 Q = ∅
3 while |Q| < s do:

4 apply Alg. 1 to a random element of P and `.

5 if Alg. 1 returns a scheme, add it to Q.

6 call the algorithm recursively with Q in place of P .

For our experiments, we used as P the set containing only the standard algorithm, ` = 106 and
s = 20000. With these settings, we were able to find schemes matching the best known rank bounds for
all (n,m, p) with 2 ≤ n,m, p ≤ 5, except for (n,m, p) = (5, 5, 5). For the latter case, starting from the
standard algorithm we only get down to rank 97 while Fawzi et al. [8] discovered a scheme of rank 96
(valid mod 2). However, taking their scheme as starting point of a random walk, we discovered schemes
of rank 95 within seconds. One of these schemes we announced in [12]. For (n,m, p) = (4, 4, 5), they
give a scheme of rank 63, improving the previous record by one, while we were able to find a scheme of
rank 60 starting from the standard algorithm. Also this scheme is only valid mod 2.

One of the remarkable outcomes of the recent work of Fawzi et al. [8] is an apparent discrepancy of
the rank depending on the characteristic of the ground field. Their scheme for (n,m, p) = (4, 4, 4) of rank
47 as well as their scheme for (n,m, p) = (5, 5, 5) of rank 96 are only valid in characteristic two and can
be shown not to be the homomorphic image of a scheme for K = Q. As our search in the flip graph uses
K = Z2, the question is whether our schemes are also restricted to ground fields of characteristic two.
To answer this question, we have applied Hensel lifting [18] to the schemes we discovered.
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(n,m, p) K previously best our rank
known rank

(2, 2, 2) any 7 [17] 7
(2, 2, 3) any 11 [11] 11
(2, 2, 4) any 14 [11] 14
(2, 3, 3) any 15 [11] 15
(2, 2, 5) any 18 [11] 18
(2, 3, 4) any 20 [11] 20
(3, 3, 3) any 23 [14] 23
(2, 3, 5) any 25 [11] 25
(2, 4, 4) any 26 [11] 26
(3, 3, 4) any 29 [16] 29
(2, 4, 5) any 33 [11] 33
(3, 3, 5) any 36 [16] 36
(3, 4, 4) any 38 [16] 38
(2, 5, 5) any 40 [11] 40
(3, 4, 5) any 47 [8] 47
(4, 4, 4) Z2 47 [8] 47
(4, 4, 4) any 49 [17] 49
(3, 5, 5) any 58 [15] 58
(4, 4, 5) Z2 63 [8] 60
(4, 4, 5) any 63 [8] 62
(4, 5, 5) any 76 [8] 76
(5, 5, 5) Z2 96 [8] 95
(5, 5, 5) any 98 [15] 97

Table 1. Comparison between best known rank and the rank we found

A set S = {((α(`)
i,j )) ⊗ ((β

(`)
j,k)) ⊗ ((γ

(`)
k,i)) : ` = 1, . . . , r} of rank-one tensors is a matrix multiplication

scheme if and only if the cubic equations

r∑
`=1

α
(`)
i1,i2

β
(`)
j1,j2

γ
(`)
k1,k2

= δi2,j1δj2,k1
δk2,i1

are satisfies for all i1, i2, j1, j2, k1, k2, where δ is the Kronecker delta function. These equations are known
as the Brent equations [3], and finding a matrix multiplication scheme is equivalent to solving these
equations.

Knowing a solution valid mod 2s for some s ∈ N, we can view it as an approximation to order s of
a solution valid in the 2-adic integers, make an ansatz with undetermined coefficients for a refinement
of this approximation to order s + 1, plug this ansatz into the Brent equations, reduce mod 2s+1 and
divide by 2s. This leads to a linear system over Z2 for the undetermined coefficients in the ansatz,
which can be solved with linear algebra. If it has no solution, this proves that the approximation does
not admit any refinement to order s + 1. If it does have a solution, we pick one and proceed to refine.
Once a decent approximation order is reached (we generously used s = 100 although much less would
have been sufficient in most cases), we can apply rational reconstruction [18] to find a candidate solution
with coefficients in Q or even Z. Whether the reconstruction was successful, i.e., whether the candidate
solution over Q or Z is indeed a solution, can be checked easily by plugging it into the Brent equations.

Proceeding as described above, we can confirm the mismatch for (n,m, p) = (4, 4, 4) and (n,m, p) =
(5, 5, 5) observed by Fawzi et al. [8]: none of our more than 100000 schemes of rank 47 for (n,m, p) =
(4, 4, 4) and none of our more than 30000 schemes of rank 95 for (n,m, p) = (5, 5, 5) can be lifted from
Z2 to Z4. However, we were able to lift a scheme of rank 97 for (n,m, p) = (5, 5, 5) from Z2 to Z, thereby
breaking the record set by Smirnov and Sedoglavic [15] for this size. Moreover, while none of our schemes
of rank 60 for (n,m, p) = (4, 4, 5) could be lifted, we were able to lift some of the schemes of rank 62,
thereby breaking the record set by Fawzi et al. [8] for this size. For all other formats, we found no
improvements but were able to match the best known bounds on the rank. An overview over the current
state of affairs is given in Table 1.

One scheme for each format and the implementation of the search procedure are available at

https://github.com/jakobmoosbauer/flips.git.

https://github.com/jakobmoosbauer/flips.git
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The other schemes are available upon request.

6. Open questions

The flip graph offers a new explanation for the existence of Strassen’s algorithm and has led us to
improved matrix multiplication schemes for some formats. We believe that the flip graph is interesting
in its own right and deserves to be better understood.

For example, is not clear how well-suited the standard algorithm is as starting point for the search
procedure. Thm. 9 states that if we allow to use reductions backwards, then every algorithm is reachable
from the standard algorithm. However, we found a (2, 2, 2)-matrix multiplication scheme of rank 8 that
is not connected to the standard algorithm by a path that uses only vertices of rank 8.

Question 1. For n,m, p ∈ N, is there a rank r such that all vertices in level r of the (n,m, p)-flip graph
are reachable from the standard algorithm?

If there are schemes of low rank which can not be reached from the standard algorithm, they might
become reachable if we add additional edges to the graph. In Corollary 10 we show that, at least over
Z2, the only way to replace exactly two rank-one tensors in one step is a flip.

Question 2. Under which condition can we replace more than two rows of a matrix multiplication scheme
at the same time, such that the resulting scheme is not necessarily reachable by a sequence of flips?

Another way to add edges to the graph would be to add for every reduction also the reverse edge.
However, this would create a lot of additional edges to higher levels. It is not clear at which points in
the search procedure one should go to a higher level and which of these edges to use.

Question 3. How can we utilize edges leading to a higher level in the search procedure?

The search procedure would also benefit if we could determine whether two vertices belong to the
same connected component in the current level. This would allow us to restrict the pool of schemes
in Algorithm 2 such that there are not too many vertices in the same component and thus the search
potentially covers a larger part of the graph.

Question 4. Given two matrix mulatiplication schemes of the same format and rank, is there an efficient
way to determine whether they are connected within one level of the flip graph?

More generally, in order to search for matrix multiplication schemes of low rank, there might be a
better way than following random paths in the graph.

Question 5. Given a matrix multiplication scheme S, is there a systematic way to find reduction edges
that can be reached from S?

Finally, we observed that many of the connected components in the (3, 3, 3)-flip graph of rank at
most 23 are highly symmetric. Understanding these symmetries would help understanding the structure
of the flip graph and might be useful in the search procedure.

Question 6. What is the significance of the high symmetry in some of the large components in the
(3, 3, 3)-flip graph of rank at most 23?
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