
How does the Gerrymander Sequence
Continue?

Manuel Kauers
Institute for Algebra

Johannes Kepler University
Altenberger Straße 69, 4040 Linz, Austria

manuel.kauers@jku.at

Christoph Koutschan
Johann Radon Institute for Computational and Applied Mathematics

Austrian Academy of Sciences
Altenberger Straße 69, 4040 Linz, Austria

christoph.koutschan@oeaw.ac.at

George Spahn
Department of Mathematics

Rutgers University (New Brunswick)
110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

geosp98@gmail.com

Abstract

We compute a few additional terms of the gerrymander sequence (OEIS A348456)
and provide guessed equations for the generating functions of some sequences in its
context.

1 Introduction

In a guest lecture on April 28, 2022, in Zeilberger’s famous course on experimental math-
ematics at Rutgers [9], Sloane talked about some of his favorite entries of the OEIS. One
of the entries he highlighted in his lecture was A348456. The nth term of this sequence is
defined as the number of ways to dissect a 2n × 2n chessboard into two polyominoes, each
of area 2n2. Here is one of the solutions for n = 4:

1

mailto:manuel.kauers@jku.at
mailto:christoph.koutschan@oeaw.ac.at
mailto:geosp98@gmail.com
https://oeis.org/A348456
https://oeis.org/A348456

Finding such dissections can be viewed as a combinatorial version of gerrymandering, and it
has thus been suggested to call the sequence the gerrymander sequence. When Sloane gave
his lecture, only the first three terms of the gerrymander sequence were known (they are
2, 70, 80518). He declared, perhaps exaggerating a bit, that he considers the next term of
this sequence as the “most wanted number” in the whole OEIS. This statement motivated
Zeilberger to offer a donation of $100 to the OEIS in honor of the person who first manages
to compute this most wanted number. In this paper, we explain how we computed not only
the next term of A348456, but in fact the next four terms. They are

7157114189,

49852157614583644,

28289358593043414725944353, and

1335056579423080371186456888543732162,

respectively. In addition, we confirm the correctness of the previously known three terms.
Our Mathematica source code is available at http://www.koutschan.de/data/gerry/.

We employ the transfer-matrix method, a classical technique in enumerative combina-
torics whose general idea is nicely explained in Sect. 4.7 of Stanley’s textbook [10]. We tweak
this method by introducing catalytic variables, in order to apply it to the problem at hand;
this is explained in Sect. 2. Besides the computation of specific terms, the transfer-matrix
method also allows us to derive structural information about the generating function for
boards of rectangular shapes m × n when m is fixed and n varies. The case m = 3 was
proposed by Knuth as a Monthly problem a few years ago [8]. It turns out that if an is the
number of ways to break a 3 × 2n board into two connected components of the same size
(A167242), then

∞∑
n=0

anx
n =

1 +
√

1− 4x

(
√

1− 4x+ x)2

1√
1− 4x

− 1− x2 + 2x3

(1− x)3
.

It is not a coincidence but a consequence of a theorem of Furstenberg [2] that the generating
function is algebraic. In principle, it can be computed by combining the transfer-matrix
method with the method of creative telescoping [11, 1, 5]. However, this quickly becomes
expensive when m increases. In Sect. 4, we report on some computations we did in this
direction.

2

https://oeis.org/A348456
http://www.koutschan.de/data/gerry/
https://oeis.org/A167242

2 The transfer matrix

The transfer-matrix method was invented in the context of statistical mechanics [6, 7], in
order to express the partition function of a statistical model in a simpler and more succinct
form than its plain definition as a multi-dimensional sum. The method is applicable whenever
the mechanical system can be decomposed into a sequence of N subsystems, each of them
interacting only with the previous and the next one. Let ` denote the number of states that
each of these subsystems can have, and mi,j(k) a “statistical weight” that is associated with
state i of subsystem k − 1 being next to state j of subsystem k. The relation between these
two adjacent subsystems is then described by the transfer matrix M(k) =

(
mi,j(k)

)
1≤i,j≤`,

and the partition function of the whole system can be written in the form

v>init ·M(1) ·M(2) · · ·M(N) · vfinal,

where vinit and vfinal are vectors of dimension `.
Recall that we are interested in counting the number of ways that an m× n grid can be

divided into two (or, more generally, q) connected regions, each of which is represented by
a different color. We can apply the transfer-matrix method to this gerrymandering problem
by decomposing the grid into a sequence of columns that are added one after the other. In
each step, not all of the 2m (resp., qm) potential columns can be added, because some would
violate the rules, e.g., by creating two disconnected regions of the same color:

+ ?

� � � �

� � � � � � � �

Clearly, the information how the squares in the right-most column are colored is not
sufficient to decide which columns can come next. For example, we need to know that the
two black squares in the last column belong to the same connected region, otherwise we
could not add a column with only white squares.

Thus, in order to decide which columns can be added and to tell whether the completed
grid has the desired number of connected regions, we introduce states for remembering
connectivity information that is implied by all previous columns. More precisely, a state is
described by a pair (c, P), where c ∈ {0, 1}2n encodes the content of the last column (the
colors white and black are now represented by the numbers 0 and 1, respectively), and where
P = {P1, . . . , Pk} is a partition of {1, . . . , 2n} that indicates which squares in that column
belong to the same connected region. For example, in the figure above, the previous columns

3

imply that the two black squares are connected, while the two white squares are not. The
fact that they could (and should!) be connected by adding further columns is not relevant
at this moment. Hence, in the partially completed grid we have k different regions, and Pj
gives the positions of squares belonging to the j-th region. In particular, all these squares
must have the same color, that is |{ci | i ∈ Pj}| = 1 for all 1 ≤ j ≤ k.

For example,
(
(0, 0, 1, 0), {{1, 2}, {3, 4}}

)
or
(
(1, 1, 0, 0), {{1, 2}, {3}, {4}}

)
are not valid

state descriptions because the first violates the same-color condition, while the latter claims
that the squares at positions 3 and 4 belong to different regions although they are obviously
connected. In contrast, (

(1, 0, 0, 0), {{1}, {2, 3, 4}}
)
,(

(1, 0, 0, 1), {{1}, {2, 3}, {4}}
)
,

or
(
(1, 0, 0, 1), {{1, 4}, {2, 3}}

)
are valid state descriptions, which we depict graphically as follows (connections that happen
in previous columns are symbolized by an arc):

But even if we stick to the above rules, there are still many pairs (c, P) that describe im-
possible states, for example,

(
(0, 1, 0, 1), {{1, 3}, {2, 4}}

)
. Connecting 1 with 3 and 2 with 4

produces arcs that cross each other, meaning that this connectivity cannot be achieved by
extending the column to the left. Similarly, by considering how a column could be extended
to the right, we can discard uninteresting states, i.e., states that could possibly be reached,
but which represent “hopeless” situations that will never allow us to complete the grid in a
satisfactory manner. For example, the state

(
(0, 1, 0, 1), {{1}, {2}, {3}, {4}}

)
is uninterest-

ing, because all four squares are declared to belong to different regions, and it is impossible
to connect 1 with 3 and 2 with 4 by adding more columns to the right. Hence, for the column
c = (0, 1, 0, 1) we consider only two out of four possible states:

� �

Algorithmically, we construct the set of states as follows: in step (1) we enumerate the
set of all states that are not impossible, and in step (2) we discard those states which are
uninteresting. In both steps it is clear from the construction that no necessary state is
discarded, ensuring the correctness of our method.

1. For each tuple c ∈ {0, 1}2n, all non-crossing arc configurations are generated, where the
vertices for these configurations are maximal chunks of squares of the same color. All

4

arcs point in the same direction and each arc connects two vertices of the same color.
Each vertex has at most one outgoing and at most one incoming arc. For example, the
following column of size 8 admits seven such arc configurations:

2. A state (c, P) is uninteresting if there are two connected components A1, A2 ∈ P of
the same color and B1, B2 ∈ P of the opposite color such that the following condition
holds:

maxA1 + 1 = minB1 ∧maxB1 = minA2 − 1

∧ (maxA2 < maxB2 ∨minB2 < minA1).

It corresponds to situations where we cannot draw another non-crossing arc configu-
ration on the right side such that all vertices of the same color get connected:

uninteresting: interesting state:

There is one subtle issue one still has to take care of: if the current column equals
(0, . . . , 0) or (1, . . . , 1), then we need to store the information whether the other color has
not yet appeared (in which case this column can be followed by any other column), or whether
the other color has appeared previously (in which case this column can only be followed by
more copies of the same column). In our graphical notation, we decorate the latter of these
two states by a prime.

Let us denote by L the set of states that is constructed according to the above rules. The
number of states ` = |L| grows (at least) exponentially with n, since each of the 22n possible
columns appears in at least one state. For example, for n = 2 we have 16 different columns
but 26 states in total; they are explicitly enumerated in Figure 1. The number of states for
1 ≤ n ≤ 7 is given in Table 1.

To construct the transfer matrix M , for each state we need to determine which other
states it can move into by adding an appropriate next column. Note that for this purpose it
does not matter in which particular column of the grid we are: in each step we can use the

5

n `
vinit vfinal M

#6=0 sparsity #6=0 sparsity #6=0 sparsity

1 6 4 33.33 % 6 0.00 % 16 55.56 %
2 26 14 46.15 % 16 38.46 % 178 73.67 %
3 154 32 79.22 % 34 77.92 % 2546 89.26 %
4 1026 58 94.35 % 60 94.15 % 44008 95.82 %
5 7222 92 98.73 % 94 98.70 % 832454 98.40 %
6 52650 134 99.75 % 136 99.74 % 16505486 99.40 %
7 393878 184 99.95 % 186 99.95 % 337332580 99.78 %

Table 1: Number ` of states and number #6=0 of non-zero entries in vinit, vfinal, and in the
transfer matrix M .

same matrix M , which is in contrast to the general situation sketched at the beginning of
this section. The rows and columns of the transfer matrix are indexed by the states; hence
we obtain an ` × ` matrix. Let s = (c, P) be any of the ` states and let c′ ∈ {0, 1}2n be an
arbitrary column. If attaching c′ to the state s would violate the connectivity requirements,
then the matrix entries at positions (s, s′) are set to 0, where s′ is any state containing c′.

But what should be put as the matrix entry when a transition is actually possible? Here
another condition has to be considered that so far has not been taken care of: the two regions
must have the same area. Since this requirement can only be checked at the very end when
the whole grid is filled, we need to propagate information about the number of squares of
either color through the whole computation. For this purpose, we introduce a “catalytic”
variable x that counts the number of white squares that have been used so far. In each
transition this counter has to be increased accordingly. Assume that state s = (c, P) admits
attaching column c′ to it, which basically means that no existing region gets disconnected
(this happens when c and c′ have opposite colors at all positions given by some Pj ∈ P),
except when all squares of c′ have the same color and only a single Pj ∈ P is related to the
other color, in which case we move to one of the two primed states. In any case, the new
connectivity information P ′ is uniquely determined from c, c′, P , and therefore yields a new
state s′ = (c′, P ′). It may well happen that s′ 6∈ L is an uninteresting state, in which case
no matrix entry is generated. Otherwise the matrix entry at position (s, s′) is set to x#0(c′),
where #0(c′) denotes the number of 0’s in c′.

Now that we have constructed the transfer matrix M , it remains to consider the start
and the end of this process. We start the grid with a single column. There cannot be any
additional connectivity information other than what can be seen in this column. We define
a start vector vinit, which is indexed by the states and hence is `-dimensional. Its entry at
position s = (c, P) equals x#0(c) if the parts of P correspond exactly to the consecutive runs
of entries of the same color in c (in other words, if the graphical representation of s has no
arcs (and no prime!)), and 0 otherwise.

When we have filled the grid up to the last column, we have to decide which states are

6

′
′

•
•

•

•

•

•

•

•

•

•
•

•••
•

•

•

•

•

•

•

•

•
•

• •

Figure 1: All 26 states for a grid with 4 rows and their possible transitions; note that each
state can also be followed by itself — these loops are not depicted.

7

“accept” states. Clearly, this is the case for states s = (c, P) such that |P | ≤ 2. Since we
just want to add up the results of all acceptable states, we define a vector vfinal that is 1 at
accept states and 0 otherwise (see Table 1).

Having all this at hand—the transfer matrix M , the start vector vinit, and the end
vector vfinal—one can compute

p(x) = v>init ·M2n−1 · vfinal, (1)

which is a polynomial in x. The coefficient of xk in p gives the number of ways that the
2n × 2n grid can be divided into a white polyomino of k squares and a black polyomino
consisting of 4n2− k squares. This means that for sequence A348456 we need to extract the
coefficient of x2n2

and divide the result by 2 in order to eliminate the distinction between
black and white.

3 Optimizations

In this section, we discuss some optimizations that one can employ when implementing the
method described in Section 2. For our purposes, we have used the computer algebra systems
Maple and Mathematica.

First, it is clear that in (1) one should not compute M2n−1 explicitly, using expensive
matrix multiplications. Instead, it is more efficient to exploit the associativity of matrix
multiplication and perform only (cheap) matrix-vector multiplications:

p(x) = (· · · ((v>init ·M) ·M) · · ·) · vfinal.

Then we address the problem that the matrices get large: for example, for n = 7 the
transfer matrix M has 3938782, i.e., about 115 billion entries, which poses memory challenges
when one does not have a supercomputer at hand. However, we realize that the matrix is
very sparse. Clearly, in each row we can have at most 22n nonzero entries (because this is
the number of different grid columns we can add), but actually there are much fewer, since
many of these columns are not admissible (e.g., because they disconnect existing regions).
Table 1 shows the sparsity of the transfer matrix M and of the vectors vinit and vfinal. In
Mathematica, one can use the command SparseArray to store such matrices in a memory-
efficient way, which has the additional advantage that it also speeds up the matrix-vector
multiplications. Note that the vector will quickly become dense as we multiply the matrix
to it, reflecting the fact that we have no unreachable states in L.

The next observation concerns the structure of the transfer matrix. Since each specific
column of the matrix is responsible for producing the counting polynomial for a specific state
(c, P), by matrix multiplication, all entries of this column of M must either be 0 or x#0(c).
No other powers of x can occur in the same column. It is more efficient to work with the
{0, 1}-matrix M ′ = M

∣∣
x→1

and store the x-powers in a separate diagonal matrix

X = diag
((
x#0(c)

)
(c,P)∈L

)
8

https://oeis.org/A348456

transfer matrix mult. in Z[x] in Z[x]/(x2n2+1) eval-int. + CRT

dense M 23.1 s 22.3 s 69.6 s
dense M ′X 9.1 s 8.3 s 89.7 s
sparse M 16.3 s 15.3 s 1.8 s
sparse M ′X 1.9 s 2.0 s 0.6 s

Table 2: Effect of different strategies on the runtime, for n = 4.

n create states build M
total time for matrix-vector multiplications

mult. in Z[x] in Z[x]/(x2n2+1) eval-int. + CRT

3 0.01 s 0.39 s 0.10 s 0.12 s 0.06 s
4 0.06 s 10 s 1.9 s 2.0 s 0.6 s
5 0.87 s 5 min 56 s 54 s 21 s
6 13.6 s 5 h 49 min 44 min 10 min
7 4 min 5 d 29 h 25 h 5 h

Table 3: Runtime observed for various strategies and various problem sizes, using the de-
composition M ′X and the sparse matrix representation.

such that M = M ′ · X. Computing v>init ·M has the disadvantage that large intermediate
expressions are produced that can only be combined after expansion, since they are sums of
products of monomials times polynomials. This is avoided by computing

(
v>init ·M ′) ·X.

We know that the result is a polynomial p(x) of degree 4n2, whose coefficient of x2n2

we wish to extract. Hence, the whole computation can be done modulo x2n2+1, which does
not change the coefficient of x2n2

, but which reduces the size of intermediate expressions.
Alternatively, one can apply the evaluation-interpolation technique combined with the Chi-
nese remainder theorem (CRT). Not only the degree of p(x) is known, we also know that
it is palindromic, i.e., p(x) = x4n2

p(1/x). Therefore p(x) can be interpolated by using only
2n2 + 1 evaluation points. In addition, we can determine an a-priori bound on the height
of p(x): let k be the maximal number of nonzero entries in any row (or column) of M , then
the entries of M2n−1 are polynomials with coefficients at most k2n−2 and the height of p(x)
is thus bounded by `2k2n−2.

Table 2 illustrates the effect of the different strategies on the runtime of the computation.
Table 3 shows computation times for 3 ≤ n ≤ 7. Note that we used parallelization for some
of the tasks, but the timings are given in CPU time. They were measured on Intel Xeon
E5-2630v3 processors at 2.4 GHz. As a curiosity, we realized that Mathematica takes about
twice as long for computing v>init ·M (row vector times matrix) compared to computing the
equivalent product M> · vinit (transposed matrix times column vector). The timings in the
last column of Table 3 refer to the minimal number of primes that are needed to reconstruct
the correct result (which we know already from the two previous computations). In order

9

to obtain a provably correct result with the CRT approach, one would have to use enough
primes to exceed the bound on the height of p(x). For example, the result for n = 7 is
approx. 1.335 · 1036, therefore requiring 4 primes of size 231, while our bound `2k2n−2 with
` = 393878 and k = 16384 yields 5.804 · 1061, corresponding to 7 primes of the same size.

4 Further results

While the gerrymandering problem for a rectangular board of size m× n is symmetric in m
and n, the cost of the transfer-matrix method is highly asymmetric. As explained above, the
cost depends exponentially on the side length that determines the transfer matrix but only
polynomially on the side length that appears in the exponent. Because of this discrepancy,
slim rectangular boards are somewhat easier to handle than boards that are quadratic or
close to quadratic. For small values of m, it is not too hard to let n grow into the hundreds
or even thousands.

For fixed m and varying n, we are interested in the number of solutions to the gerry-
mandering problem for a board of size m× n. Obviously there is no solution when both m
and n are odd. Therefore, for fixed and even m, we define an as the number of solutions
for a board of size m × n, and for fixed odd m, we define an as the number of solutions
for a board of size m × 2n. For certain vectors vinit, vfinal and a certain matrix M whose
entries are polynomials in x, we then have an = 1

2
[xnm/2](v>initM

n−1vfinal) if m is even and
an = 1

2
[xnm](v>initM

2n−1vfinal) if m is odd. We know from linear algebra that the entries of
a matrix power Mn are C-finite sequences with respect to n, i.e., they satisfy linear recur-
rences with constant coefficients, or in other words, their generating functions are rational.
An explicit formula is given in Thm. 4.7.2 of Stanley’s book [10]: for a fixed `× `-matrix M
and any i, j ∈ {1, . . . , `}, the generating function of the sequence appearing in the (i, j)th
entry of Mn is

(−1)i+j
det(I` − tM)[j,i]

det(I` − tM)
,

where the exponent [j, i] indicates the removal of the jth row and the ith column of the
matrix I` − tM . The generating function for a sequence defined as v>initM

n−1vfinal is just a
certain linear combination of such rational functions.

In particular, the rational generating function for the sequence (v>initM
n−1vfinal)

∞
n=0 (or

(v>initM
2n−1vfinal)

∞
n=0, if m is odd) can be explicitly computed from the vectors vinit, vfinal, and

the matrix M . At least in principle. In practice, for large matrices M involving a symbolic
parameter x, computing the determinant of I` − tM , which involves an additional symbolic
parameter t, can be a hassle. We have managed to compute the rational expressions using
evaluation/interpolation techniques for m = 3, . . . , 7. The computation is non-rigorous in so
far as the number of evaluation points was only determined experimentally. In Table 4, we
summarize their sizes. The cases m = 1 and m = 2 are quite simple, for example, for m = 2

10

m 1 2 3 4 5 6 7
degt of numerator 2 4 7 17 36 75 203
degx of numerator 2 4 23 34 190 236 1425

monomials in numerator 3 9 76 194 1955 4312 55218
degt of denominator 2 4 7 17 36 75 203
degx of denominator 2 4 22 34 188 235 1422

monomials in denominator 4 9 76 194 1935 4310 55188

Table 4: Sizes of rational generating functions for various values of m.

the generating function is

−t4x4 − t3x4 − 2t3x3 − t3x2 + 4t2x2 − tx2 + 2tx− t+ 1

(t− 1)2(tx2 − 1)2

= 1 + (x2 + 2x+ 1)t+ (x4 + 4x3 + 4x2 + 4x+ 1)t2

+ (x6 + 6x5 + 6x4 + 6x3 + 6x2 + 6x+ 1)t3 + · · ·

For m = 3, the expression is already too big to fit in a line, and as can be seen in the table,
the sizes increase significantly with respect to m.

The number of colors affects the growth of the expressions even more significantly. We
have considered a variant of the problem where besides black cells and white cells we also
have gray cells. The question is then how many ways there are to dissect the m×n grid into
three connected regions, with prescribed areas for each color. The corresponding rational
generating function contains three variables: one marking the length n of the board, one
marking the area of black cells, and one marking the area of white cells. (There is no need
for a variable marking the area of the gray cells because we know that the areas of the three
colors must sum to mn.) We were only able to construct the rational generating function for
the case m = 3. Its numerator has degree 29 in t and degree 32 in x1 and x2, it altogether
consists of 7939 monomials. The denominator has degree 28 in t and degree 30 in x1 and
x2, and it consists of 7412 monomials.

Returning to the case of two colors, it remains to discuss the coefficient extraction oper-
ator. If a(x, t) is a rational generating function in x and t, viewed as power series in t whose
coefficients are polynomials in x, extracting the coefficient of xαn (with α = m/2 or α = m
depending on whether m is even or odd) from the nth term of the series is the same as
extracting the coefficient of x−1 from x−1a(x, t/xα). This can be done by creative telescop-
ing [11, 1, 5], as follows: using computer algebra, we can compute polynomials p0(t), . . . , pr(t)
which only depend on t as well as a rational function b(x, t) such that

p0(t)
a(x, t/xα)

x
+ · · ·+ pr(t)

dr

dtr
a(x, t/xα)

x
=

d

dx
b(x, t).

Applying [x−1] on both sides, we get zero on the right, because the derivative of a rational
function cannot have a residue. On the left, observe that taking the residue with respect

11

to x commutes with the polynomials pi(t) and the derivations in t. Therefore the series
a(t) := 1

2
[x−1]

(
x−1a(x, t/xα)

)
satisfies the differential equation

p0(t)a(t) + · · ·+ pr(t)
dr

dtr
a(t) = 0.

In practice, using the second-named author’s implementation [4], this approach works nicely
for m = 3 (A167242), where we obtain a computer proof of Knuth’s result mentioned in
the introduction, and for m = 4 (A167247), where we find a differential equation of order 5
and polynomial coefficients of degree 208. Using guessing [3], we can also find a differential
equation of order 2 with polynomial coefficients of degree 96 as well as a polynomial equation
of degree 2 with polynomial coefficients of degree 51. The correctness of these guessed equa-
tions can be proved by showing that the corresponding differential operators are right factors
of the differential operators obtained via creative telescoping, and checking an appropriate
number of initial values. The equations, as well as the rational generating functions, are
available at http://www.koutschan.de/data/gerry/.

For m ≥ 5, we have not been able to find equations either by creative telescoping or by
guessing, although Furstenberg’s theorem guarantees their existence. Following Zeilberger’s
example, the first-named author (M.K.) will therefore offer a donation of €100 to the OEIS
in honor of the person who first manages to find a differential equation for some m ≥ 5,
either experimentally or rigorously.

5 Acknowledgment

We thank Doron Zeilberger for encouraging us to work on this problem and to write this
paper. We are also indebted to the anonymous referee for checking our manuscript very
carefully, by even producing an own implementation of our method. This process helped to
clarify some inaccuracies and thus greatly improved the readability of the paper. M.K. was
supported by the Austrian FWF grant P31571-N32.

References

[1] Frédéric Chyzak. The ABC of creative telescoping. Habilitation à diriger des recherches
(HDR), 2014. http://specfun.inria.fr/chyzak/Publications/Chyzak-2014-ACT.
pdf.

[2] Harry Furstenberg. Algebraic functions over finite fields. J. Algebra 7 (1967), 271–277.

[3] Manuel Kauers. Guessing handbook. Technical Report 09-07, RISC Report Series,
Johannes Kepler University, Linz, Austria, 2009. http://www.risc.jku.at/research/
combinat/software/Guess/.

12

https://oeis.org/A167242
https://oeis.org/A167247
http://www.koutschan.de/data/gerry/
http://specfun.inria.fr/chyzak/Publications/Chyzak-2014-ACT.pdf
http://specfun.inria.fr/chyzak/Publications/Chyzak-2014-ACT.pdf
http://www.risc.jku.at/research/combinat/software/Guess/
http://www.risc.jku.at/research/combinat/software/Guess/

[4] Christoph Koutschan. HolonomicFunctions (user’s guide). Technical Report 10-01,
RISC Report Series, Johannes Kepler University, Linz, Austria, 2010. https://risc.

jku.at/sw/holonomicfunctions/.

[5] Christoph Koutschan. Creative telescoping for holonomic functions, in Carsten Schnei-
der and Johannes Blümlein, eds., Computer Algebra in Quantum Field Theory: Inte-
gration, Summation and Special Functions, Springer, 2013, pp. 171–194.

[6] Hendrik A. Kramers and Gregory H. Wannier. Statistics of the two-dimensional ferro-
magnet. Part I. Phys. Rev. 60 (1941), 252–262.

[7] Hendrik A. Kramers and Gregory H. Wannier. Statistics of the two-dimensional ferro-
magnet. Part II. Phys. Rev. 60 (1941), 263–276.

[8] Donald E. Knuth (proposer) and Editors (solver). Balanced tilings of a rectangle with
three rows. Problem 11929. Amer. Math. Monthly 125 (2018), 566–568.

[9] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. An illustrated guide
with many unsolved problems. Math 640 Guest Lecture, Rutgers University, April
28, 2022. https://vimeo.com/704569041/4ffa06b95e [talk]; https://sites.math.
rutgers.edu/~zeilberg/EM22/C27.pdf [slides].

[10] Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University
Press, 1999.

[11] Doron Zeilberger. The method of creative telescoping. J. of Symbolic Comput. 11
(1991), 195–204.

2010 Mathematics Subject Classification: Primary 05A15. Secondary 68W30, 33F10.

Keywords : transfer-matrix method, polyomino, computer algebra.

(Concerned with sequences A167242, A167247, and A348456.)

Received ???; revised version received ???. Published in Journal of Integer Sequences, ???.

Return to Journal of Integer Sequences home page.

13

https://risc.jku.at/sw/holonomicfunctions/
https://risc.jku.at/sw/holonomicfunctions/
https://vimeo.com/704569041/4ffa06b95e
https://sites.math.rutgers.edu/~zeilberg/EM22/C27.pdf
https://sites.math.rutgers.edu/~zeilberg/EM22/C27.pdf
https://oeis.org/A167242
https://oeis.org/A167247
https://oeis.org/A348456
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	The transfer matrix
	Optimizations
	Further results
	Acknowledgment

