
A Normal Form for
Matrix Multiplication Schemes

Manuel Kauers?[0000−0001−8641−6661] and Jakob
Moosbauer??[0000−0002−0634−4854]

Institute for Algebra, Johannes Kepler University, Linz, Austria
{manuel.kauers,jakob.moosbauer}@jku.at

Abstract. Schemes for exact multiplication of small matrices have a
large symmetry group. This group defines an equivalence relation on the
set of multiplication schemes. There are algorithms to decide whether
two schemes are equivalent. However, for a large number of schemes a
pairwise equivalence check becomes cumbersome. In this paper we pro-
pose an algorithm to compute a normal form of matrix multiplication
schemes. This allows us to decide pairwise equivalence of a larger number
of schemes efficiently.

1 Introduction

Computing the product of two n×n matrices using the straightforward algorithm
costs O(n3) operations. Strassen found a multiplication scheme that allows to
multiply two 2 × 2 matrices using only 7 multiplications instead of 8 [13]. This
scheme can be applied recursively to compute the product of n × n matrices
in O(nlog2 7) operations. This discovery lead to a large amount of research on
finding the smallest ω such that two n × n matrices can be multiplied using at
most O(nω) operations. The currently best known bound is ω < 2.37286 and is
due to Alman and Williams [1].

Another interesting question is to find the exact number of multiplications
needed to multiply two n× n matrices for small numbers n. For n = 2 Strassen
provided the upper bound of 7. Winograd showed that we also need at least 7
multiplications [14]. De Groote proved that Strassen’s algorithm is unique [6]
modulo a group of equivalence transformations.

For the case n = 3 Laderman was the first to present a scheme that uses
23 multiplications [9], which remains the best known upper bound, unless the
coefficient domain is commutative [11]. The currently best lower bound is 19 and
was proved by Bläser [3]. There are many ways to multiply two 3 × 3 matrices
using 23 multiplications [8,5,10,12,7,2].

For every newly found algorithm the question arises whether it is really new
or it can be mapped to a known solution by one of the transformations described
by de Groote. These transformations define an equivalence relation on the set of

? M.K. was supported by the Austrian Science Fund (FWF) grant P31571-N32.
?? J.M. was supported by the Land Oberösterreich through the LIT-AI Lab.

matrix multiplication algorithms. Some authors used invariants of the action of
the transformation group to prove that their newly found schemes are inequiv-
alent to the known algorithms. The works of Berger et al. [2] and Heule et al.
[7] provide algorithms to check if two given schemes are equivalent. Berger et
al. give an algorithm that can check equivalence over the ground field R if the
schemes fulfill a certain assumption. Heule et al. provide an algorithm to check
equivalence over finite fields.

Heule et al. presented more than 17,000 schemes for multiplying 3×3 matrices
and showed that they are pairwise nonequivalent, at least when viewed over the
ground field Z2. Their collection has since been extended to more than 64,000
pairwise inequivalent schemes. For testing whether a newly found scheme is really
new, we would need to do an equivalence test for each of these schemes. Due to
the large number of schemes this becomes expensive.

In this paper we propose an algorithm that computes a normal form for
the equivalence class of a given scheme over a finite field. If all known schemes
already are in normal form, then deciding whether a newly found scheme is
equivalent to any of them is reduced to a normal form computation for the
new scheme and a cheap syntactic comparison to every old scheme. Although
the transformation group over a finite field is finite, it is so large that checking
equivalence by computing every transformation is not feasible. Thus, Heule et
al. use a strategy that iteratively maps one scheme to another part by part. We
use a similar strategy to find a minimal element of an equivalence class.

2 Matrix Multiplication Schemes

Let K be a field and let A,B ∈ Kn×n. The computation of the matrix product
C = AB by a Strassen-like algorithm proceeds in two stages. In the first stage
we compute some intermediate products M1, . . . ,Mr of linear combinations of
entries of A and linear combinations of entries of B. In the second stage we
compute the entries of C as linear combinations of the Mi.

For example if n = 2, we can write

A =

(
a1,1 a1,2
a2,1 a2,2

)
B =

(
b1,1 b1,2
b2,1 b2,2

)
and C =

(
c1,1 c1,2
c2,1 c2,2

)
.

Strassen’s algorithm computes C in the following way:

M1 = (a1,1 + a2,2)(b1,1 + b2,2)

M2 = (a2,1 + a2,2)(b1,1)

M3 = (a1,1)(b1,2 − b2,2)

M4 = (a2,2)(b2,1 − b1,1)

M5 = (a1,1 + a1,2)(b2,2)

M6 = (a2,1 − a1,1)(b1,1 + b1,2)

M7 = (a1,2 − a2,2)(b2,1 + b2,2)

c1,1 = M1 +M4 −M5 +M7

c1,2 = M3 +M5

c2,1 = M2 +M4

c2,2 = M1 −M2 +M3 +M6.

A Strassen-like multiplication algorithm that computes the product of two
n× n matrices using r multiplications has the form

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · ·)(β(1)

1,1b1,1 + β
(1)
1,2b1,2 + · · ·)

...

Mr = (α
(r)
1,1a1,1 + α

(r)
1,2a1,2 + · · ·)(β(r)

1,1b1,1 + β
(r)
1,2b1,2 + · · ·)

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·+ γ

(r)
1,1Mr

...

cn,n = γ(1)n,nM1 + γ(2)n,nM2 + · · ·+ γ(r)n,nMr.

All the information about such a multiplication scheme is contained in the
coefficients αi,j , βi,j and γi,j . We can write these coefficients as a tensor in
Kn×n ⊗Kn×n ⊗Kn×n:

r∑
l=1

((α
(l)
i,j))

n,n
i=1,j=1 ⊗ ((β

(l)
i,j))n,ni=1,j=1 ⊗ ((γ

(l)
i,j))n,ni=1,j=1. (1)

A multiplication scheme, seen as an element of Kn×n⊗Kn×n⊗Kn×n is equal
to the matrix multiplication tensor defined by

∑n
i,j,k=1Ei,k ⊗Ek,j ⊗Ei,j where

Eu,v is the matrix with 1 at position (u, v) and zeros everywhere else [4]. Formulas
become a bit more symmetric if we look at the tensor

∑n
i,j,k=1Ei,k⊗Ek,j ⊗Ej,i

corresponding to the product CT = AB, so we will consider this tensor instead.
We represent a scheme as a table containing the matrices in this tensor. We

will refer to the rows and columns of this table as the rows and columns of a
scheme. For example Strassen’s algorithm is represented as shown in Table 1.

3 The Symmetry Group

There are several transformations that map one matrix multiplication scheme to
another one. We call two schemes equivalent if they can be mapped to each other
by one of these transformations. De Groote [6] first described the transformations
and showed that Strassen’s algorithm is unique modulo this equivalence.

The first transformation is permuting the rows of a scheme. This corresponds
to just changing the order of the Mi’s in the algorithm. Another transformation
comes from the fact that AB = CT ⇔ BTAT = C. It acts on a tensor by
transforming a summand A⊗B⊗C to BT ⊗AT ⊗CT . Moreover, it follows from

α β γ

1

(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
2

(
0 0
1 1

) (
1 0
0 0

) (
0 0
1 −1

)
3

(
1 0
0 0

) (
0 1
0 −1

) (
0 1
0 1

)
4

(
0 0
0 1

) (
−1 0
1 0

) (
1 0
1 0

)
5

(
1 1
0 0

) (
0 0
0 1

) (
−1 1
0 0

)
6

(
−1 0
1 0

) (
1 1
0 0

) (
0 0
0 1

)
7

(
0 1
0 −1

) (
0 0
1 1

) (
1 0
0 0

)

Table 1: Strassen’s Algorithm

the condition that the sum (1) is equal to the matrix multiplication tensor, that
also a cyclic permutation of the coefficients α, β and γ is a symmetry transfor-
mation. Taking those together we get an action that is composed by an arbitrary
permutation of the columns of a scheme and transposing all the matrices if the
permutation is odd.

Finally, we can use that for any invertible matrix V we have AB = AV V −1B.
The corresponding action on a tensor A ⊗ B ⊗ C maps it to AV ⊗ V −1B ⊗ C.
Since we can permute A, B and C we also can insert invertible matrices U and
W which results in the action

(U, V,W) ∗A⊗B ⊗ C = UAV −1 ⊗ V BW−1 ⊗WCU−1. (2)

This transformation is called the sandwiching action.
If we combine all these transformations we get the group G = Sr × S3 n

GL(K,n)3 of symmetries of n × n matrix multiplication schemes with r rows.
By Aut(G) we denote the group of automorphisms of a group G.

Definition 1. Let ϕ : S3 → Aut(GL(K,n)3) be defined by

ϕ(π) =

{
(U, V,W) 7→ π((U, V,W)) if sgn(π) = 1

(U, V,W) 7→ π((V −T ,W−T , U−T)) if sgn(π) = −1

The symmetry group of n×n matrix multiplication schemes with r rows is defined
over the set G = Sr × S3 ×GL(K,n)3 with the multiplication given by

(σ1, π1, (U1, V1,W1)) · (σ2, π2, (U2, V2,W2)) =

(σ1σ2, π1π2, (U1, V1,W1)ϕ(π1)((U2, V2,W2))).

The action g ∗ s of a group element g = (σ, π, (U, V,W)) ∈ G on a multiplication
scheme s ∈ (Kn×n)r×3 is defined by first letting σ permute the rows of s then
letting π permute the columns of s and transposing every matrix if sgn(π) = −1
and finally letting U, V and W act on every row as defined in equation (2).

One can show that this action fulfills the criteria of a group action.

4 Minimal Orbit Elements

Two schemes are equivalent if they belong to the same orbit under the action of
the group G. Our goal in this section is to define a normal form for every orbit.
The particular choice of the normal form is partly motivated by implementation
convenience and not by any special properties. From now on we assume that K is
a finite field. Since over a finite field the symmetry group is finite we could decide
equivalence or compute a normal form by exhaustive search. However, already
for n = 3 the symmetry group over Z2 has a size of 23! · 6 · 4741632 ≈ 7 · 1029.

Definition 2. Let s ∈ (Kn×n)r×3 be a matrix multiplication scheme. The rank
pattern of the scheme is defined as the table

((rank si,1, rank si,2, rank si,3))ri=1.

The rank vector of a row (A,B,C) is (rank(A), rank(B), rank(C)).

Since the matrices U, V and W are invertible, the sandwiching action leaves
the rank pattern invariant. Transposing the matrices does not change their rank
either. Therefore the only way a group element changes the rank pattern of a
scheme is by permuting it accordingly. So for two equivalent schemes their rank
patterns only differ by a permutation of rows and columns. This allows us to
permute the rows and columns of the scheme such that the rank pattern becomes
maximal under lexicographic order.

This maximal rank pattern is a well-known invariant of the symmetry group
that has been used to show that two schemes are not equivalent. For example
Courtois et al. [5] and Oh et al. [10] used this test to prove that their schemes
were indeed new. However, this method only provides a sufficient condition for
the inequivalence of schemes and can not decide equivalence of schemes. In Heule
et al.’s data for certain rank patterns there are almost 1000 inequivalent schemes
having this rank pattern.

We choose the normal form to be an orbit element which has a maximal rank
pattern and is minimal under a certain lexicographic order. For doing so fix a
total order on K such that 0 < 1 < x for all x ∈ K \ {0, 1}. The order need not
be compatible with + or · in any sense. For the matrices in the schemes we use
colexicoraphic order by columns, with columns compared by lexicographic order.
This means for two column vectors v = (x1, . . . , xn)T and v′ = (x′1, . . . , x

′
n)T we

define recursively

v < v′ :⇔ x1 < x′1 ∨ (x1 = x′1 ∧ (x2, . . . xn) < (x′2, . . . , x
′
n))

For two matrices M = (v1 | · · · | vn) and M ′ = (v′1 | · · · | v′n) we define

M < M ′ :⇔ vn < v′n ∨ (vn = v′n ∧ (v1 | · · · | vn−1) < (v′1 | · · · | v′n−1))

For ordering the schemes we use the common lexicographic order. So we
compare two schemes row by row from top to bottom and in each row we compare
the matrices from left to right using the order defined above.

Definition 3. Let s ∈ (Kn×n)r×3 be a matrix multiplication scheme. We say s
is in normal form if s = min{s′ ∈ G ∗ s | the rank pattern of s′ is sorted}, where
the minimum is taken with respect to the order defined above.

Such a normal form clearly exists and it is unique since the group G is finite
and the lexicographic order is a total order.

The strategy to compute the normal form is as follows:
Let s be a multiplication scheme and let N be its normal form.
We start by going over all column permutations of s and sort their rows by

rank pattern to find a scheme s′ with maximal rank pattern. If there are several
column permutations that lead to the same maximal rank pattern, we consider
each of them separately, since there are at most six.

Then we proceed row by row. For all rows of s′ that have maximal rank
pattern, we determine the minimal element of their orbit under the action of
GL(K,n)3. From the definition of the normal form, it follows that the smallest
row we can produce this way has to be the first row (A,B,C) of N . However,
we might be able to reach the first row of N from several different rows and also
the choice of U, V and W is in general not unique.

Apart from the first row of N we also compute the stabilizer of the first
row, which is the set of all triples (U, V,W) ∈ GL(K,n)3 such that (A,B,C) =
(UAV −1, V BW−1,WCU−1). For each possible row that can be mapped to the
first row we compute the tail, by which we mean the list of all remaining rows
after applying a suitable triple (U, V,W).

We then continue this process iteratively. We go over each tail and determine
a row that has maximal rank vector and becomes minimal under the action of
the stabilizer. To do this we apply every element of the stabilizer to all possible
candidates for the next row. This uniquely determines the next row of the normal
form and we get again a list of tails and the stabilizer of the already determined
rows.

The full process is listed in Algorithm 1.

Proposition 1. Algorithm 1 terminates and is correct.

Proof. The termination of the algorithm is guaranteed, since in line 19 the new
tails contain one row less than in the previous step, so eventually the list of tails
only contains empty elements.

To prove correctness we first note that the choice of P ensures that it contains
a scheme that can be mapped to its normal form without applying further column
permutations. From now on we only consider the iteration of the loop in line 3
where s′ is this scheme.

Input : A matrix multiplication scheme s
Output: An equivalent scheme in normal form

1 P := {s′ ∈ (S3 × Sr) ∗ s | s′ has maximal rank pattern in (S3 × Sr) ∗ s}
2 o := s
3 for s′ ∈ P do
4 candidate := ()
5 tails = {s′}
6 stab = GL(K,n)3

7 while tails 6= {()} do
8 min := (1, . . . , 1)T

9 newtails := {}
10 for t ∈ tails do
11 for r ∈ t with maximal rank vector do
12 g := argming∈stab g ∗ r
13 if g ∗ r < min then
14 min := g ∗ r
15 newtails := {}
16 if g ∗ r = min then
17 newtails := newtails ∪ (g ∗ t \ {g ∗ r})
18 stab := {g ∈ stab | g ∗min = min}
19 tails := newtails
20 append min to candidate

21 if candidate < o then
22 o := candidate

23 return o

Algorithm 1: Normal Form Computation

It remains to show that after lines 4 to 20 the candidate is in normal form.
To this end we prove the following loop invariant for the while loop: candidate
is an initial segment of the normal form and there is a g ∈ stab and a t ∈ tails
such that g ∗ t is a permutation of the remaining rows of the normal form.

The lines 4, 5 and 6 ensure that the loop invariant is true at the start of
the loop. We now assume that the loop invariant holds at the beginning of an
iteration and prove that it is still true after the iteration. Since we know that
there are g ∈ stab and t ∈ tails such that g ∗ t is a permutation of the remaining
part of the normal form and the rank vector is invariant under the group action
the lines 10 and 11 will at some point select an r that can be mapped to the
next row of the normal form.

Since the normal form is the lexicographically smallest scheme in its equiv-
alence class, the next row must always be the smallest row that has not been
added to candidate yet. Therefore by choosing g such that g ∗ r is minimal in
line 12 we ensure that min is the next row of the normal form.

In line 17 a transformed version t′ = g ∗ t \ {g ∗ r} of the element t with
r removed is added to newtails. Therefore, newtails still contains an element t′

that can be mapped to the remaining rows of the normal form.

Finally, we have to show that stab still contains a suitable element. Let
g′ ∈ stab be such that g′ maps t to a permutation of the remaining rows of the
normal form. Let g be the element chosen to minimize r in line 11. Since stab is
a group it must contain g′ · g−1. Moreover, newtails contains g ∗ t \ {g ∗ r} which
is mapped to g′ ∗ t \ {g′ ∗ r}. Therefore, g′ · g−1 has the desired property. ut

5 Minimizing the First Row

Algorithm 1 is more efficient than a naive walk through the whole symmetry
group G because we can expect the stabilizer to quickly become small during
the computation. However, in the first iteration we still go over the full group
GL(K,n)3. In this section we describe how this can be avoided.

The order we have chosen ensures that the first row has a particular form.

Proposition 2. Let G = GL(K,n)3 and let (A,B,C) ∈ (Kn×n)3 be such that
(A,B,C) is the minimal element of G ∗ (A,B,C). Then the following hold:

1. A has the form (
0 0
Ir 0

)
where r = rankA.

2. B is in column echelon form.
3. If rankA = n, then A = In and B has the form(

0 0
Ir 0

)
(3)

where r = rankB.

Proof. Using Gaussian elimination we can find

(A′, B′, C ′) = (U, V,W) ∗ (A,B,C)

where A′ and B′ are in the described form. Note that for part 3 we can first
determine V and W and then choose U = V A−1. To show that (A,B,C) already
is in this form we proceed by induction on n. If n = 1, then the claims are true.
For the induction step assume that the claims are true for n− 1.

1. We first consider the special case rankA = n. Denote by v1, . . . , vn the
columns of A. Since A ≤ A′ = In there are two cases:
Case 1: vn < en. Then vn = 0 contradicting the assumption that A has full
rank.
Case 2: vn = en. Then the last row of A contains only zeros apart from the
1 in the bottom right corner. Otherwise we could use column reduction to
make A smaller. Since A is minimal, also the matrix we get when we remove
the last column and row from A has to be minimal. So by the induction
hypothesis A has the desired form.

Now suppose rankA < n. Since the last column of A′ contains only zeros
and A is minimal, the last column of A consists only of zeros. We can use row
reduction to form a matrix A′′ that is equivalent to A, has a zero row and all
other rows equal to those of A. So A′′ < A. We then shift the zero row of A′′

to the top. Since this doesn’t make A′′ bigger, it is still not greater than A.
Because of the minimality of A, its first row has then to be zero as well. Now
we can remove the last column and first row of A and the resulting matrix
must still be minimal. So by the induction hypothesis A is of the desired
form.

2. Since we already showed A = A′ we can assume U = V = In. So B′ is
the column echelon form of B. We write B as (v1 | · · · | vn) and B′ as
(v′1 | · · · | v′n). We again have two cases:
Case 1: vn < v′n. So v′n 6= 0 and since B′ is in column echelon form this
implies v′n = en. Then vn = 0 which contradicts that B′ is the column
echelon form of B.
Case 2: vn = v′n. Since B′ is in column echelon form we either have vn = en
or vn = 0. We claim that the matrix we get by removing the last column
and row from B is minimal. If not, there is a sequence of column operations
that makes that matrix smaller. Let B′′ = (v′′1 | · · · | v′′n) be the matrix we
get by applying these operations to B and let i be the index of the right
most column that was changed. So v′′i with the last element removed must
be smaller than vi with the last element removed. However, this implies that
v′′i < vi and therefore B′′ < B, which is a contradiction. So by the induction
hypothesis B with the last row and column removed must be in column
echelon form.
It remains to show that the last rows of B and B′ are equal. There must exist
a sequence of column operations that turn B into B′. If vn = en = v′n, then
these operations would eliminate all elements in the last row of B, except the
one in the bottom right corner. This implies B′ ≤ B and therefore B′ = B.
If vn = 0 = v′n, then this sequence cannot change the last row because any
column operation not involving the last column would destroy the column
echelon form in the upper left part. Therefore B = B′.

3. Let rankA = n. We have already shown that A = In. For any choice of V we
can choose U = V A−1 to ensure A′ = In. So B is minimal under arbitrary
row and column permutations. So in this case the claim can be shown the
same way as 1. ut

Let s ∈ (Kn×n)r×3 be a matrix multiplication scheme. Denote by (U, V,W)
the element of GL(K,n)3 used to transform s into normal form and denote by
(A1, B1, C1) the first row of the normal form of s. Let (A,B,C) be the row that
is mapped to (A1, B1, C1) and assume that the columns of s do not need to be
permuted.

Then (A,B,C) must have a maximal rank vector. Therefore, A has the max-
imal rank of all the matrices in the scheme. So if the scheme contains a matrix of
full rank then A has full rank. Moreover, A1 is the minimal element equivalent
to A under the action of GL(K,n)3.

Input : A triple of n× n matrices (A,B,C)
Output: A minimal triple equivalent under the action of GL(K,n)3

1 if rankA = n then
2 A1 := In
3 C′ := CA
4 if rankB = n then
5 B1 := In
6 C1 := minW∈GL(K,n)WB−1C′W−1

7 else
8 B1 := minV,W∈GL(K,n) V BW

−1

9 S := {(V,W) | V,W ∈ GL(K,n) ∧ V B = B1W}
10 C1 := min(V,W)∈S WC′V −1

11 else
12 A1 := minU,V ∈GL(K,n) UAV

−1

13 (U, V) := argminU,V ∈GL(K,n) UAV
−1

14 B′ = V B;C′ = CU−1

15 S := {(U, V) | U, V ∈ GL(K,n) ∧ UA1 = A1V }
16 B1 := min(U,V)∈S,W∈GL(K,n) V B

′W−1

17 C′′ = WC′, where W is chosen as in the line above
18 S′ := {(U, V,W) ∈ GL(K,n)3 | UA1 = A1V ∧ V B1 = B1W}
19 C1 := min(U,V,W)∈S′ WC′′V −1 return (A1, B1, C1)

Algorithm 2: Special treatment of first row

If A has full rank, then A1 = In by Proposition 2. So we consider the scheme
s′ = (A−1, In, In) ∗ s instead and update A,B,C and U, V,W accordingly. Then
A = A1 = In and therefore U = V . So by Proposition 2, B1 must be of the
form 3.

If B also has full rank, then we set s′′ = (B−1, B−1, In)∗s′ and adjust A,B,C
and U, V,W again. So we have B = B1 = In and U = V = W . Now we can
determine C1 and the stabilizer of the first row by iterating over GL(K,n) and
minimizing WCW−1.

If B does not have full rank, we determine all invertible matrices V and
W such that V BW−1 = B1. This can be done by solving the linear system
V B = B1W and discarding all solutions corresponding to singular matrices.
Since U = V we go through all possibilities for V and W and minimize WCV −1.
This allows us to determine C1 and the stabilizer of the first row.

If A does not have full rank, we solve the linear system UA = A1V and
discard all solutions corresponding to singular matrices. The remaining solutions
are the possible choices for U and V such that UAV −1 = A1. By Proposition 2,
B1 must be in column echelon form. So for all possible choices of U and V we
determine W such that V BW−1 is in column echelon form. The smallest matrix
V BW−1 constructed this way must be equal to B1. Then we go over all such
triples (U, V,W) that map B to B1 and determine those that minimize WCU−1.
So we find C1 and the stabilizer of the first row.

The process is summarized in Algorithm 2.

6 Timings and Analysis

All the timing and analysis is done on an extension of Heule et al.’s data set
with an implementation of our algorithm for 3 × 3 matrices over Z2. This data
set contains 64,150 schemes.

For a comparison we have tested the equivalence check of Heule et al. on
10,000 randomly selected pairs from the data set and computed the normal
form of 10,000 randomly selected schemes. Checking equivalence of two schemes
took on average 0.0092 seconds. Computing a normal form took on average 1.87
seconds. The check for syntactic equivalence of the schemes in normal form takes
about 0.00002 seconds, which is negligible. Thus, in our application checking
equivalence of a single new scheme against a set of known schemes in normal
form is faster than directly checking equivalence as soon as we have at least 204
schemes.

To get an idea how well the algorithm scales for larger values of n we have
experimentally determined the size of the stabilizers in algorithm 2. Instead of
iterating over the complete group GL(K,n)3, Algorithm 2 only iterates over
stabilizers from the beginning on. In the case that the scheme contains at least
one matrix of full rank, which in the data set are slightly more than half of
the schemes, we have to iterate over all elements of GL(K,n)2 in the worst case.
However, this is a very pessimistic upper bound. The size of GL(Z2, 3)2 is 28,224,
whereas the average size of the stabilizer we actually iterate over is 460.

In the second case we iterate over S in line 15, which again cannot exceed
the size of GL(K,n)2 and on the data set has on average 135 elements. We also
have to iterate over S′ in line 18. The size of S′ is bounded by |GL(K,n)3|,
which in our case is 4,741,632. However, for a sample of the data set the largest
stabilizer that occurred contains 576 elements and on average this stabilizer has
274 elements.

In summary, naively computing a normal form by simply iterating over all
elements of GL(K,n)3 for each row will take time O(r|GL(K,n)|3), where r is
the length of the scheme. Assuming that after O(1) iterations of Alg. 1 we are left
with a stabilizer of size O(1), the cost of Alg. 1 is only O(r + |GL(K,n)|3). We
cannot prove that the stabilizers become so small so quickly, but the assumption
is consistent with our experiments. Finally, assuming that the solution space in
line 18 of Alg. 2 has at most O(|GL(K,n)|2) elements, Alg. 2 pushes the total
cost of computing a normal form down to O(r+ |GL(K,n)|2). Again, we cannot
prove any such claim about line 18, but the assumption is consistent with our
experiments.

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplica-
tion. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 522–539 (2021). https://doi.org/10.1137/1.9781611976465.32

2. Berger, G.O., Absil, P.A., De Lathauwer, L., Jungers, R.M., Van Barel,
M.: Equivalent polyadic decompositions of matrix multiplication ten-
sors. J. Comput. Appl. Math. 406, Paper No. 113941, 17 (2022).
https://doi.org/10.1016/j.cam.2021.113941

3. Bläser, M.: On the complexity of the multiplication of matrices of small formats. J.
Complexity 19(1), 43–60 (2003). https://doi.org/10.1016/S0885-064X(02)00007-9

4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory,
vol. 315. Springer Science & Business Media (2013)

5. Courtois, N.T., Bard, G.V., Hulme, D.: A new general-purpose
method to multiply 3x3 matrices using only 23 multiplications (2011).
https://doi.org/10.48550/ARXIV.1108.2830, https://arxiv.org/abs/1108.2830

6. de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear
mappings ii. optimal algorithms for 2 × 2-matrix multiplication. Theoretical Com-
puter Science 7(2), 127–148 (1978). https://doi.org/https://doi.org/10.1016/0304-
3975(78)90045-2

7. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3 × 3-matrices. J.
Symbolic Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003

8. Johnson, R.W., McLoughlin, A.M.: Noncommutative bilinear algorithms for
3 × 3 matrix multiplication. SIAM J. Comput. 15(2), 595–603 (1986).
https://doi.org/10.1137/0215043

9. Laderman, J.D.: A noncommutative algorithm for multiplying 3 × 3 matri-
ces using 23 multiplications. Bull. Amer. Math. Soc. 82(1), 126–128 (1976).
https://doi.org/10.1090/S0002-9904-1976-13988-2

10. Oh, J., Kim, J., Moon, B.R.: On the inequivalence of bilinear algorithms for
3 × 3 matrix multiplication. Inform. Process. Lett. 113(17), 640–645 (2013).
https://doi.org/10.1016/j.ipl.2013.05.011

11. Rosowski, A.: Fast commutative matrix algorithm (2019).
https://doi.org/10.48550/ARXIV.1904.07683

12. Smirnov, A.V.: The bilinear complexity and practical algorithms for ma-
trix multiplication. Zh. Vychisl. Mat. Mat. Fiz. 53(12), 1970–1984 (2013).
https://doi.org/10.1134/S0965542513120129

13. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969). https://doi.org/10.1007/BF02165411

14. Winograd, S.: On multiplication of 2 × 2 matrices. Linear Algebra and its
Applications 4(4), 381–388 (1971). https://doi.org/https://doi.org/10.1016/0024-
3795(71)90009-7

