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What's the next term?

1,1,2,5,14,42



What's the next term?

1,1,2,5,14,42,135



What’s the exact value?

0.571429



What’s the exact value?

0.571429 ~ 1
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The LLL algorithm can do this trick

Input: A basis of a submodule L of Z™ (aka “lattice”)
Output: A basis of L consisting of short vectors

Want: p, q € Z such that 10’p — 5714286q — r = 0.

4 1 0

7] €/ 0 N yCz?
—2 10000000 5714286
short long long

An exact rational number can be recovered in this way from a
numerical approximation provided that we have enough digits of
accuracy.
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Guessing Linear Recurrence Equations

Instantiate the ansatz
!
(c1o+crin)anyt + (coo +cornjan =0

form=0,...,3 to get a linear system for the four undetermined
coefficients cqo, co1,C10,C11-

10 1 0 Co0
1 1 2 2 Co1 —0
2 4 5 10 C10
5 15 14 42 C11
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Guessing Linear Recurrence Equations

If we have #equations > #£variables, we do not expect a solution.
If there does exist a solution, it probably means something.
Assume we know the first N terms of a certain sequence.

Assume we want to find a recurrence of order v and degree d.
Then there are (r+ 1)(d + 1) variables and N — r equations.

The linear system is overdetermined iff (r+1)(d +2) < N.
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What if we don’t have enough data?

Correct equations are typically much nicer than generic solutions.
Idea: search specifically for nice equations.
Some common features of nice equations:

[

[ ]

[ ]

e The coefficients only involve small integers

Enforcing the first three leads to nonlinear equations o

But the last one is accessible via LLL @
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Example

The numbers a, = Y (2)3 satisfy a recurrence of order 2 and
degree 2.

Classical guessing needs at least 12 terms to find this equation.

Suppose we only know ay,..., ag.

coo

co1

1 0 0 2 0 0 10 0 0 co2

2 2 2 10 10 10 56 56 56 cro
10 pAY 40 56 112 224 346 692 1384 c1] | =0

56 168 504 346 1038 3114 2252 6756

20268 ||cy2
346 1384 5536 2252 9008 36032 15184

60736  242944) | cap
€21
€22



Example

A basis for the Z-module of all solutions in Z’ is

2 0 0 0

0 1 0 0

0 1 P 0
67069 231310 232560 434140
—52693 |, —181747 |, —182728 |, —341119
—45994 —158629 —159486 —297729
—13414 —46262 —46512 —86828
13424 46300 46550 86900

5636 19438 19543 36483
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Example

A basis for the Z-module of all solutions in Z’ is

-8 -8 12 —42
16 21 12 14
8 -1 —34 58

—16 —6 —46 —29

—211, —-291, 27 |, —-17

-7 1 21 40
4 2 8 10
4 4 —6 —4
1 0 -2 —6

Indeed,
(—8—T6n—8n?)an+(—16—21n—7n?)an 1+ (@+4n+n?)ans2 =0

is a correct recurrence.
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How far can we go with this idea?

Classically, at least (r+ 1)(d 4 2) terms are needed to find a
recurrence of order r and degree d.

It seems that with LLL we get along with fewer terms.
How many terms are needed now?

It depends.
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How far can we go with this idea?

The linear system must be such that the “true” coefficient vector
is significantly shorter than a “generic”’ solution.

Theorem (Siegel's lemma). For every A € Z™™ with m > n there
exists x € kerz A \ {0} with [[x[leo < (M[[A]Joo)™/ M.

For generic recurrences of order r and degree d, a somewhat
informal estimation suggests that O(+v/rd) terms will suffice.

Recurrences arising in meaningful applications are not generic.
What about these?
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How far can we go with this idea?

For some 6700 D-finite entries from the OEIS, we compared
e the number Njin,ig of terms needed by linear algebra guessing.

e the number N || of terms needed by LLL-based guessing.

NLLL/Niinalg NiLL/Niinalg

T T
| 1

1+

0.5

| | | | | | |
0 2,000 4,000 6,000 0 50 100 150

all cases cases with Njjpaig > 50

Observation: in some cases we only need a third of the data.
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How far can we go with this idea?

For some 6700 D-finite entries from the OEIS, we compared
e the number Nj,,5 of terms needed by linear algebra guessing.

e the number N || of terms needed by LLL-based guessing.

200 [~

Neo

100 [~

°C \ \
0 100 200

Niinalg

Observation: in some cases we only need a third of the data.
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Why not just compute more terms?

The computation of further terms can be prohibitively expensive.

For example, if ay, is the number of permutations in S;, which
avoid the pattern 1324, then a; is unknown for all . > 50.

“Not even God knows the 1000th term.”

—Doron Zeilberger

Linear algebra doesn't find a recurrence with 50 terms.
LLL-based guessing doesn't succeed either.

Let's try some less prominent examples.
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Why not just compute more terms?

There are 350000 sequences in the OEIS. We checked all entries
for which between 25 and 150 terms were known and where linear
algebra doesn’t suffice to find a recurrence.

We checked 1, d such that (r+ 1)(d +2) < 3N and accepted a
solution if the next 10 terms produced from the given data by the
corresponding recurrence are all integers.

This led to about 1300 hits.
Many of these were obviously wrong.
Many others were obviously correct.

In about 20 cases, we may have found something interesting.
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an ::#{TEESn:TE(k-i-Z)—T[(k) # 2 for allk}

Example: a4 = 18 because six 7T € S4 are excluded.

|PRZ

(1234
VAR

|PRZ
3124

(12344

1234 |

M3

1234
1243
IPRZ
2143
1234
3142
PR
4132

(1234
1324

1234
2314
(1234
3774
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4213 |

1234
1342
(1234
2351

1234
3241 ]
(1234

4231

1234
1423

1234

2413 )

(1234
T2

IPRZ

4312
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tEs2)
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RZYA

(12345
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an 2:#{7T63n27'[(k+2)—7'[(k) # 2 for allk}

We found a trustworthy recurrence of order 10 and degree 6.

At least the next 10000 sequence terms predicted by the
guessed recurrence are integers.

The first vector in the LLL-basis is much shorter than the
other basis vectors.

Even if we just use 29 of the 36 known terms the recurrence
can be detected.

The guessed operator has a right factor of order 8 and
degree 11.

This right factor has only “nice” asymptotic solutions.

We computed asg, asy, asg, aze (!) and found that these
terms were correctly predicted by the guessed recurrence.
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A189281

With the recurrence, it's easy to compute more terms of the
sequence. Without the recurrence, it's much more difficult.

time to compute an
w/o recurrence
(hours)

30

20

0 10 20 30 40 50 60

The classical approach would need to find the recurrence.

Their computation would take 1.5 - 108 years.
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