
Sequences Defined by Linear or Nonlinear
Differential Equations

Manuel Kauers · Institute for Algebra · JKU



1

, 3, 5, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3

, 5, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5

, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7

, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7, 9

, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7, 9, 11

What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



1, 3, 5, 7, 9, 11
What’s the next number?

Right answer: this is not a meaningful question.

Any number could be next.

1



Infinite sequences are inherently infinite objects.

There is no data structure for representing infinite sequences.

We can only compute with “nice” sequences.

all sequences

nice sequences

We have some freedom concerning what to consider as “nice”.
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“Nice” could mean that there is some kind of explicit expression
for the nth term of the sequence.
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“Nice” could mean that there is some kind of explicit expression
for the nth term of the sequence.

Examples:

• Polynomials, e.g., an = 5n3 − 7n2 + 8n+ 9

• Polynomial linear combinations of exponentials (“C-finite”),
e.g., an = (3n+ 5) + (5n2 + 9)2n + (19n− 5)(−1)n

• So-called hypergeometric terms (products over rational

functions): n!,
(
2n
n

)
, (−1)n

n+1 , etc.

• Linear combinations of hypergeometric terms, e.g.,
an = 5n! + 2n

• Any properly formed expression built from +,−, ·, /, variables,
constants,

∑
, and

∏
, e.g.,

∑n
k=1

1

k+
∏k
i=1(1+1/

∑i
j=1

1
j
)

(→CS)
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“Nice” could mean that there is some kind of explicit expression
for the nth term of the sequence.

n∑
k=1

1
k 2n + n!n! 2n + 3nn2
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“Nice” could mean that there is some kind of explicit expression
for the nth term of the sequence.

These classes are algorithmic, i.e., we can automatically prove and
find relations among their members.

• (n+ 1)2 = n2 + 2n+ 1

• Fn−1Fn+1 − F2n = (−1)n

•
∑n
k=1

∑k
i=1

1
i = (n+ 1)

∑n
k=1

1
k − n
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“Nice” could also mean that there is some kind of implicit
description for the nth term of the sequence.

Example: The infinite sequence of Fibonacci numbers is uniquely
determined by the recurrence equation

an = an−1 + an−2

together with the initial values a0 = 0, a1 = 1.

We can consider various kinds of recurrences.
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“Nice” could also mean that there is some kind of implicit
description for the nth term of the sequence.

Examples:

• Linear with constant coefficients, e.g., an = an−1 + an−2

• First order linear with rational coefficients, e.g.,
an = n+1

2n+1an−1

• Higher order linear with rational coefficients (“P-finite”), e.g.,
an = n+1

2n+1an−1 +
2n+9
n+7 an−2 (→CK)

• Rationally nonlinear (“ARE”), e.g., an = a2n−1/(1+ an−2)
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“Nice” could also mean that there is some kind of implicit
description for the nth term of the sequence.

These classes are also algorithmic, i.e., we can automatically prove
and find relations among their members.

Basic idea: given two implicitly defined sequences an, bn, in order
to prove an = bn construct an implicit description of the sequence
cn = an − bn and then check whether cn is the zero sequence.

Note: we can compute with such sequences even if they do not have
an “explicit” representation.
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Consider the generating function of a sequence:

a(x) =

∞∑
n=0

anx
n

Examples:

exp(x) =

∞∑
n=0

1

n!
xn

log(1− x) =

∞∑
n=1

−
1

n
xn

1√
1− 4x

=

∞∑
n=0

(
2n

n

)
xn
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Any other ideas for representing infinite sequences?

Consider the generating function of a sequence:

a(x) =

∞∑
n=0

anx
n

It can happen that a(x) has a simple form even though an doesn’t.

Example:

√
1+ x

1− log(1− x)
= 1+ 3

2x+
7
8x
2 + 25

48x
3 + 113

384x
4 + · · ·

The sequence 1, 32 ,
7
8 , . . . does not seem to have any explicit repre-

sentation or recursive description.

Idea: Instead of the sequence itself, encode its generating function.
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explicit implicit

an

a(x)

• polynomial

• hypergeometric

• C-finite

• ΠΣ

• hypergeometric

• C-finite

• P-finite

• ARE

• rational

C-finite

• radical

• elementary

• D-finite

• algebraic

• ADE
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a(x) is D-finite if it satisfies a linear differential equation with
polynomial coefficients, e.g.

(5x2+3x−2)a ′′(x)+(9x2−7x+3)a ′(x)+(8x2+9x+2)a(x) = 0.

Fact: a(x) =
∑∞
n=0 anx

n is D-finite if and only if the sequence an
satisfies a linear recurrence equation with polynomial coefficients.

So we can’t encode any new sequences in this way.
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a(x) is algebraic if it satisfies a polynomial equation with
polynomial coefficients, e.g.,

(5x2 + 3x− 2)a(x)2 + (9x2 − 7x+ 3)a(x) + (8x2 + 9x+ 2) = 0.

Fact: If a(x) is algebraic then it is D-finite.

So again we can’t encode any new sequences in this way.

Note also that every series which admits a radical expression is
algebraic, but not vice versa.
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a(x) is ADE if it satisfies a polynomial differential equation with
polynomial coefficients, e.g.,

(3x− 2)a ′′(x)2+ (7x+ 3)a(x)a ′(x) + (9x+ 2)a(x) + (5x+ 3) = 0.
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Example.

For the Bernoulli numbers Bn we have the identity∑
k

(
6n+ 3

6k

)
B6k = 2n+ 1.

The series

f(x) =

∞∑
n=0

Bn

n!
xn

satisfies the differential equation

xf ′(x) − (1− x)f(x) + f(x)2 = 0.

With this equation as definition for Bn, we want to prove the sum-
mation identity above.
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Example.

For the Bernoulli numbers Bn we have the identity∑
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Using computer algebra we can easily get:

46656x5a(6)(x) + 723168x4a(5)(x) + 3259440x3a(4)(x)

+ 4740120x2a(3)(x) + 60480a ′(x) + 1741320xa ′′(x) − a(x) = 0,

46656x5c(6)(x) + 676512x4c(5)(x) + 2792880x3c(4)(x)

+ 3580200x2c(3)(x) + 20160c ′(x) + 1060920xc ′′(x) − c(x) = 0.
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Using computer algebra and the known equation for f(x) we can
also obtain (at least in principle):

a rather lengthy equation, too lengthy for this slide, of the form
poly(x, b(x), b ′(x), . . . , b(12)(x)) = 0
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From the equations for a(x), b(x), c(x), we can compute

an even lengthier equation satisfied by the series
d(x) := c(x) − a(x)b(x)

The conjectured identity follows from this equation after checking
it for some finitely many initial values.
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The conjectured identity follows from this equation after checking
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Some Open Questions:

• Why are there no computer algebra packages supporting such
calculations?

• While it is clear how to prove identities, what can be done
about discovering them?

• Can we decide for a given ADE-sequence if it belongs to one
of the more simple classes?

• Are there more efficient algorithms for intermediate classes,
say between P-finite and ADE?

• Are there any reasonable (algorithmic) classes beyond ADE,
e.g. using recurrences with unbounded history?

• Where do sequences defined by nonlinear functional equations
arise in program verification?
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